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Long-term breeding schemes using genomic selection (GS) can boost the

response to selection per year. Although several studies have shown that GS

delivers a higher response to selection, only a few analyze which stage GS

produces better results and how to update the training population to maintain

prediction accuracy. We used stochastic simulation to compare five GS

breeding schemes in a self-pollinated long-term breeding program. Also, we

evaluated four strategies, using distinct methods and sizes, to update the

training set. Finally, regarding breeding schemes, we proposed a new

approach using GS to select the best individuals in each F2 progeny, based

on genomic estimated breeding values and genetic divergence, to cross them

and generate a new recombination event. Our results showed that the best

scenario was using GS in F2, followed by the phenotypic selection of new

parents in F4. For TS updating, adding new data every cycle (over 768) to

update the TS maintains the prediction accuracy at satisfactory levels for more

breeding cycles. However, only the last three generations can be kept in the TS,

optimizing the genetic relationship between TS and the targeted population

and reducing the computing demand and risks. Hence, we believe that our

results may help breeders optimize GS in their programs and improve genetic

gain in long-term schemes.

KEYWORDS

recurrent genomic selection, training set design, stochastic simulation, self-
pollinated crops, GS-based methods
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Introduction

Genomic selection (GS) has been successfully employed in

plant and animal breeding (Heffner et al., 2011a; Spindel et al.,

2015; Wolc et al., 2015; Garner et al., 2016). In this technique,

breeders build a training set (TS) containing genotyped and

phenotyped individuals to estimate the marker effects and use

them to calculate genomic estimated breeding values (GEBV) of

only genotyped individuals (Meuwissen et al., 2001). Selecting

genotypes based on only genomic information allows one to

elect them early, which fastens breeding schemes and increases

the genetic gain (Beyene et al., 2015; Voss-Fels et al., 2019).

However, several parameters influence the accuracy of GEBV

prediction, including TS size (Heffner et al., 2011b; Lorenz,

2013), population structure (Guo et al., 2014), the genetic

relationship between the TS and selection candidate genotypes

(Lorenz and Smith, 2015), and trait heritability (Combs and

Bernardo, 2013).

Several studies have examined the optimal employment of

GS in self-pollinated crop breeding programs (Lorenz et al.,

2012; He et al., 2016; Michel et al., 2016). The self-pollinated

crop breeding programs are composed of three phases: creating

genetic variation, identifying desirable recombinant lines within

progenies, and stabilizing and advancing the desired genotype

(Brown et al., 2014). Several breeding methods increase the

homozygosity during the line fixation step, and single-seed

descent (SSD) is the method most suited to accelerating a

breeding scheme. In rice, especially in the IRRI breeding

program, the rapid generation advance (RGA) method,

consisting of an SSD method conducted in greenhouses or

screenhouses, aims to accelerate and shorten the plant growth

cycle (Collard et al., 2017). Thus, considering the breeder’s

equation that is based on selection intensity, selection

accuracy, additive variance, and cycle time, GS and RGA

combination can boost genetic gain in rice long-term breeding

schemes, principally due to shortening each cycle, increasing the

response to selection (Falconer and Mackay, 1996).

Long-term breeding schemes should be analyzed in terms of

genetic gain, response to selection, genetic variance, and GS

accuracy. Even though several studies involve GS in long-term

recurrent selection schemes (Goddard, 2009; Jannink, 2010;

Muleta et al., 2019), only a few analyze what is the best

breeding stage for applying it. (Bassi et al., 2016; Gaynor et al.,

2017). Mendonça et al. (2020) showed that GS increases the

efficiency in advanced breeding phases when using a low-

intensity selection for quantitative traits in soybean early

phases. Marulanda et al. (2016) verified different strategies to

apply GS in hybrid breeding programs in several self-pollinated

crops. They concluded that using GS followed by one-stage

phenotypic selection produced the highest genetic progress.

Hence, there is room to optimize GS employment, considering

different strategies and breeding stages to boost genetic gain and

improve efficiency in a breeding program.
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Another point to highlight in long-term breeding schemes

employing GS is that prediction accuracy (PA) declines over

cycles (Jannink, 2010; Muleta et al., 2019). This phenomenon

might be due to the reduction of the genetic relationship between

TS and selection candidate genotypes (Lorenz and Smith, 2015),

the breakdown of linkage disequilibrium (LD) between marker

and QTL by recombination (Jannink, 2010; Müller et al., 2017),

and genetic variability decreasing in the population. In this

context, few studies shed light on TS updating requirements

(Jannink, 2010; Muleta et al., 2019; DoVale et al., 2021) to reduce

the PA decline across breeding cycles. There are several manners

to select individuals to update TS population, and selecting them

based on genetic relationship with candidate genotypes to

selection seems to be the best strategy to minimize the PA

decline (Neyhart et al., 2017). Therefore, our study aimed to

optimize the use of GS and identify a method to update the TS

with greater efficiency in self-pollinated crop breeding programs.

Also, we proposed a new method employing GS to select the best

individuals in each F2 progeny to cross them and generate a new

recombination event.
Material and methods

Our study compared different GS strategies applied in a

long-term breeding program. For that, we used rice (Oryza

sativa L.) as a self-pollinated model crop and stochastic

simulations performed by the AlphaSimR package (Gaynor

et al., 2021). Furthermore, we evaluated different strategies for

updating the TS and how it influences genetic parameters over

breeding cycles.
Long-term breeding schemes employing
genomic selection

Historical population and genetic parameters
A historical rice founder population was simulated as 1,000

unique diploid inbred individuals, with 12 chromosome pairs

each, using a Markovian Coalescent Simulator (MaCS) (Chen

et al., 2009). For that, 1,644 biallelic segregating sites were

considered, uniformly distributed across chromosomes and

360 segregating loci randomly sampled as quantitative trait

nucleotides (QTN), and 994 segregating loci as single-

nucleotide polymorphism (SNP). The genome size (cM) and

chromosome sizes follow those values described by Li

et al. (2008).

In order to simulate a quantitative trait as yield, we used the

genetic parameters obtained by Li et al. (2008). Each QTN

received randomly additive and dominance effects. Genetic

values for each genotype were obtained by summing all

additive and dominance effects for all QTN. Additive effects

(a) were sampled of a gamma distribution with scale and shape
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parameters equal to 1 and randomly assigned for each QTN.

Similarly, dominance effects (d) for each QTN were computed

by multiplying the absolute value of its additive effect (ai) by

locus-specific dominance degree (di). Dominance degrees were

sampled of a Gaussian distribution with di eN(md ,s 2
d ), where md

is the average dominance degree equal to 0.22 and s 2
d is the

dominance variance equal to 0.50. Finally, dominance effects

were assigned for each QTN according to the equation below:

di =
0,     if  QTN   is   homozygous

di � jaij,     if  QTN   is   heterozygous

(

Phenotypic values were obtained by adding a random error

sampled of a Gaussian distribution with mean equal to 0 and

variance ( s 2
e ) equal to 1, which was defined by broad-sense (H2 =

0.53) and narrow (h2 = 0.50) heritabilities.

Base population and burn-in phase
In order to obtain our base population, we selected 48

individuals based on their superior phenotypic values from

1,000 lines of the historical population. As a starting point to

consider a representative program as current 4-year rice

breeding programs, we simulated five traditional recurrent

selection cycles totaling 20 years of breeding in the burn-in

stage. These 48 parental lines were crossed to generate 30 F1
plants, which were selfed to produce 230 F2 plants from each

cross (Cobb et al., 2019). SSD was used in line fixation stages

until the F6, where the best individuals were selected based on

their phenotypic values to find the next breeding cycle. After five

recurrent breeding cycles, we obtained the base population to

evaluate the recurrent genomic selection breeding schemes.

Finally, the base TS was composed of 1,536 inbred lines

originated from 30 crosses, between 48 individuals (parents),

with nearly 52 plants per cross, from the base population after

the burn-in stage. Markers effects were predicted using the ridge-

regression best linear unbiased prediction (RRBLUP)

(Endelman, 2011) according to the equation below:

y = 1m +  Zuu +   ϵ

where y is the vector of individual phenotypic values from the

TS; m is the mean (intercept); u is the vector of marker effects, where

u   e  N(0, Is 2
u ); and ϵ is the vector of random residuals. 1 is the

vector of ones and Zu is the incidence matrix of TS genotypes form

markers. Zu is coded as 1 for homozygous A1A1, -1 for homozygous

A2A2, and 0 for heterozygous A1A2.

To perform the GS, the genomic estimated breeding value

(GEBV) was estimated using the following equation: GEBV =

Mu, where M is the incidence matrix of selection candidate

genotypes, and u is the vector of predicted marker effects.

Breeding schemes simulations
Simulations were based on the rice breeding program

structure from the International Rice Research Institute (IRRI)
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(Collard et al., 2019). For all scenarios, the line fixation phase

was conducted by the single-seed descent (SSD) method, which

collects one seed from each segregating plant to advance to the

next stage until it reaches a high homozygosity level. Seven

breeding schemes were compared, with different timelines and

GS procedures (Figure 1). Five schemes employed GS in distinct

stages during the line fixation phase, and two phenotypic

breeding schemes (traditional and drift) were used as

baselines. Additionally, two group sizes of parental lines (24

and 48) were used to populate the crossing block, totaling 14

different scenarios. The parental line group size aims to analyze

the effect of selection intensity over the coming cycles and their

consequences on the breeding population’s performance and

genetic variability. In this case, we make a naive assumption,

considering the number of parents is a proxy for the effective

population size (Ne).

For all scenarios (breeding schemes and population sizes),

we used the same base population aforementioned. In the first

cycle, all breeding schemes were the same from crossing to the F2
generation. Thirty crosses were randomly made from the

parental lines. Then, F1 plants were selfed to produce an F2
segregating generation with 230 F2 plants per cross (Cobb et al.,

2019). From the F2 phase, the different long-term breeding

schemes were applied until the new parental group selection

for the next cycle. After the second cycle, each scheme followed

independently and was simulated over 20 breeding cycles and

100 replicates, totaling 2,000 estimates (Figure 1).

Traditional (Trad) and drift (Drift) schemes were conducted

by the SSD method from F2 to F6 generation. Each generation

lasted about 180 days, totaling four years for each cycle. These

two schemes only differed on parental group selection: the best

phenotypic values for Trad and a random sample for Drift. The

line fixation phase for breeding schemes using GS was conducted

by the rapid generation advanced (RGA) method. The RGA

method is an SSD method carried out in greenhouses or

screenhouses to accelerate and shorten the growth plant cycle

(~ 90-100 days) (Collard et al., 2017). All breeding schemes

using GS employed the TS composed by 1,536 inbreed lines, as

aforementioned. Below are details about each breeding scheme:
• GSF2: GS was performed in the F2 stage, and all plants

were genotyped. Individuals with the highest GEBV in

F2 were selected (24 or 48), regardless of progenies, to

compound the next cycle (one year per cycle).

• GSF2SF4: GS was performed in the F2 stage, and

genotypes with the highest GEBV within each progeny

were selected for the next generation (F3). So, 230 F3
plants from the selected F2 plants were conducted until

F4. Then, in F4, individuals with the highest phenotypic

values were selected, regardless of progenies, to

compound the next cycle (2 years per cycle).

• GSF4: GS was performed in the F4 stage, and all plants

were genotyped. Individuals with the highest GEBV in
frontiersin.org
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F4 were selected (24 or 48), regardless of progenies, to

compound the next cycle (2 years per cycle).

• GS_FSb: GS was performed in the F2 stage, and the two

individuals with the highest GEBV within each progeny

were selected and crossed to generate 230 F1seg
segregating plants. These plants were conducted until

F4, and individuals with the highest phenotypic values

were selected, regardless of progenies, to compound the

next cycle (2.33 years per cycle).

• GS_FSd: GS was performed in the F2 stage, and the

highest individuals (10%) based on GEBV were selected

to calculate the Euclidean genetic distance between them.

The most divergent sibs were crossed within each progeny

to generate 230 F1seg segregating plants. These plants were

conducted until F4, and individuals with the highest

phenotypic values were selected, regardless of progenies,

to compound the next cycle (2.33 years per cycle).
Theveragee genetic value, the genetic value of the best

genotype, additive genetic variance, and PA were calculated

for each breeding cycle. The PA was calculated as the Pearson

correlation between true genetic values and GEBV. For the Trad

scheme, PA was computed as the square root of heritability (h2),

whereas for the Drift scheme as considered zero due to random

selection. Furthermore, the response to selection after ten years

of breeding was calculated following the equation:

RS =
Xi − X0

t

tiers in Plant Science 04
where RS is the relative response to selection to the first

breeding cycle; Xi is the genetic value mean of the parental group

in the i cycle; X0 is the genetic value mean of the base population,

and t is the breeding cycle time, in this case, ten years.
Training sets update scenarios

Different strategies examined the effect of TS updating on the

breeding schemes. The crossing block was fixed at 48 parental

lines for each cycle, and the GSF2SF4 scheme was used as the

breeding scheme. In addition, Trad and Drift schemes were used

as benchmarks. Below are details about the updating scenarios:
• TSC0: the TS was composed of 1,536 individuals without

updates. Markers effects were used to predict genetic

values and select genotypes in future cycles.

• TSCN: TS was initially composed of 384 individuals. For

each new cycle, a new TS was built with 13 random

individuals from each F4 progeny, totaling 384

individuals. Marker effects were estimated in each

cycle and used to predict genetic values and select

genotypes in the next cycle.

• TSALL: TS was initially composed of 384 individuals.

Every cycle, new individuals were added to TS (13 from

each F4 progeny), increasing TS size by 384 each cycle

(384, 768, 1152, …, 7,680). Marker effects were

estimated in each cycle and used to predict genetic

values and select genotypes in the next cycle.
FIGURE 1

Scheme of the first cycle of the long-term breeding schemes. At the end of each scheme, a parental group was selected for recycling and
compounding the next cycle that works independently. Trad: traditional phenotypic selection; Drift: random selection; GSF2: genomic selection
performed in F2 stage; GSF2SF4: genomic selection performed in F2 stage and phenotypic selection performed in F4 stage; GSF4: genomic
selection performed in F4 stage; GS_FSb: genomic selection performed on F2 stage to select the two best individuals based on genomic
estimated breeding values and crossed them to make a new recombination event; GS_FSd: genomic selection performed on F2 stage to select
the two most divergent individuals and crossed them to make a new recombination event.
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• TSGPO: TS was composed of three sets of 384 individuals,

one set per generation (grandparents, parents, and

offspring). Every cycle, the newest set (13 randomly

individuals from each F4 progeny) was included, and

the oldest one was removed. Markers effects were

estimated in each cycle and used to predict genetic

values and select genotypes in the next cycle.
Finally, only for the TSGPO scenario, three different TS sizes

(384, 768, and 1152) were simulated to add into the TS every

breeding cycle, aiming to recalibrate the marker effects and keep

the GS accuracy at satisfactory levels for more generations. Each

TS updating strategy was simulated over 20 breeding cycles and

replicated 100 times. Similar to the breeding schemes, PA was

calculated for each cycle and replicate.
Results

Influence of the breeding schemes and
number of parental lines

Regarding the number of parental lines, GS-based methods

showed similar performances for the population mean (genetic

mean), the best genotype performance, PA, and additive genetic

variance (Figures 2A, B). However, for the Trad scheme, the

population mean plateau was reached earlier using 24 than 48

parental lines., whereas GS_FSb and GSF2SF4 showed the best

performance for GS-based methods for both parental sizes.

Furthermore, GS_FSb and GSF2SF4 revealed higher population

mean and the best genotype performance in the earliest breeding

cycles (Figure 2).

Our results revealed a reduction of additive variance across

breeding cycles for all schemes (Figure 2C). Using 48 parental

lines resulted in slightly higher additive variance values, and the

drift effect was more pronounced on genetic variability when

using 24 parents (Figure 2C). Moreover, all GS breeding schemes

revealed a PA reduction across the cycles (Figure 2D), reaching

negative values from the eighth cycle, for 24 parents, whereas

using 48 parentals, only GS_FSd and GS_FSb showed negative

values from the eighth and tenth cycle, respectively.

In order to evaluate response to selection, we defined ten

years of breeding horizon to place all schemes on the same page

since they have different lengths. By doing so, GSF2SF4 method

outperformed the others, showing a response to selection 166%

higher than the Trad scheme (Figure 3). Moreover, GSF2SF4
revealed a genetic gain 20% higher than fast recycling methods,

such as GSF2, highlighting the trade-off between the number of

cycles and the importance of updating the training sets.

Furthermore, using 24 parents was slightly better than 48, but,

from our perspective, it does not compensate for the risks due to

the drift effect. Hence, we considered 48 parents and the GSF2SF4
breeding scheme for further comparisons.
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Effect of training set update

After the breeding scheme evaluation, different ways to update

the TS were evaluated on their performance on long-term

breeding schemes. Overall, the updating methods (TSCN, TSALL,

and TSGPO) produced similar responses in terms of PA over cycles

and outperformed the TSC0 (no updates). Also, TSC0 presented a

steep decline in the earliest breeding cycles (Figure 4). Differences

were negligible among the updated scenarios, so TSGPO was

considered the best due to its ease of implementation and

stability trend over cycles. Another advantage is, that if for any

reason, experiments were missed in a certain year and precluded

TS updating, TSGPOmight buffer and keep the accuracies at higher

levels due to its size. Moreover, the last three generations

maximize the genetic relationship between TS and the targeted

population and reduce the computing demand due to its

affordable size. Therefore, the TSGPO scenario for updating TS

was considered for the final comparisons.

Finally, we compared different sample sizes to update the TS

every breeding cycle. Overall, adding sample sizes of 768 (~10%

of the breeding program population size after RGA) or more

every cycle, keeps the GS accuracy at satisfactory levels for more

cycles (up 8 or 10), outperforming the TSC0 (no updates) or

small sample sizes, such as 384 (Figure 5). However, after 8 or 10

cycles, there is a steady decay even for the best methods.
Discussion

Breeding schemes and the number of
parental lines

GS can speed up breeding schemes and increase genetic gain

(Jannink et al., 2010; Varshney et al., 2017). However, to

maximize the breeding program efficiency, deciding how and

at which stage to apply GS is essential. This study tested different

long-term breeding strategies for implemented GS based on a

simulated rice breeding program. Furthermore, a new approach

is proposed for using GS during the line fixation stage. In this

approach, two individuals (best ones - GS_FSb, and most

divergent - GS_FSd) within each F2 progeny are identified and

crossed to generate a new recombination event. These progenies

are then fixed using the RGA method until F4 to select new

parents for the next recurrent cycle.

Our results showed that the number of parental lines to

compose the crossing block influences all genetic parameters

over breeding cycles. This influence was expected due to the

relationship between the number of parental lines, the effective

population size (Ne), and the selection intensity. In the scenarios

examined here, the number of crosses (crosses = 30) was the

same in both scenarios (24 and 48 parentals). However, fewer

parents increase the number of crosses with the same parent,

which reduces the final Ne and, consequently, the genetic
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A
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C

FIGURE 2

Population mean (A), the best genotype (B), additive variance (C), and prediction accuracy of selection (D) over 20 recurrent cycles using two
sizes of parental lines (N=24 and N=48). Each colored line represents a breeding scheme. Trad: traditional phenotypic selection; Drift: random
selection; GSF2: genomic selection performed in F2 stage; GSF2SF4: genomic selection performed in F2 stage and phenotypic selection
performed in F4 stage; GSF4: genomic selection performed in F4 stage; GS_FSb: genomic selection performed on F2 stage to select the two
best individuals based on genomic estimated breeding values and crossed them to make a new recombination event; GS_FSd: genomic
selection performed on F2 stage to select the two most divergent individuals and crossed them to make a new recombination event.
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variance. Also, a smaller Ne increases the effect caused by the

drift (Hartl and Clark, 2006), reducing genetic variance in long-

term breeding cycles. Therefore, the Drift scheme acted as one of

the benchmarks for this purpose. In the Drift scheme, using 24

parentals resulted in an additive genetic variance reduction over

breeding cycles, whereas using 48 parental lines showed higher
Frontiers in Plant Science 07
resilience to this effect (Figure 2C). Furthermore, Ne is a crucial

factor for breeders as programs with a smaller Ne will become

inbred faster and show no further response to selection (Cobb

et al., 2019).

Several studies reported an increase in response to selection

in breeding schemes that use GS (Gorjanc et al., 2018;
FIGURE 4

Prediction accuracy of selection over 20 breeding cycles via GSF2SF4 scheme considering 48 parental lines using different methods to update
the training set. Each colored line represents an updating training set method. TSC0: training set without updates; TSCN: a new training set was
built every cycle with the previous generation; TSALL: training set updated every cycle with the addition of a new set from the previous cycle;
TSGPO: training set built with the three last generations and updated each cycle.
FIGURE 3

Genetic gains after ten years of breeding using different selection schemes and two sizes of parental lines (N=24 and N=48). Trad: traditional
phenotypic selection; Drift: random selection; GSF2: genomic selection performed in F2 stage; GSF2SF4: genomic selection performed in F2
stage and phenotypic selection performed in F4 stage; GSF4: genomic selection performed in F4 stage; GS_FSb: genomic selection performed
on F2 stage to select the two best individuals based on genomic estimated breeding values and crossed them to make a new recombination
event; GS_FSd: genomic selection performed on F2 stage to select the two most divergent individuals and crossed them to make a new
recombination event.
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Muleta et al., 2019). In our study, long-term breeding schemes

employing GS showed values between 200% (GSF2) and 608%

(GS_FSd) higher than phenotypic selection (Trad) in the first

breeding cycle for response to selection per year (Figure 2C).

This increase was principally due to the shortening of the

breeding cycle with the GS implementation. However, as the

breeding cycles progress, they rapidly decreased their response

to selection. In addition, GS can accelerate inbreeding by

selecting closely related individuals, yet, on the other way, this

can also cause a faster exhaustion of the genetic variance faster

than phenotypic selection (Jannink, 2010). Our results also

revealed a higher decline in genetic variance under GS

breeding schemes than a traditional breeding scheme, and

consequently, their response to selection decay faster

(Figure 2). However, this effect can be mitigated and offset by

preserving a larger Ne (48 parent scenario), reducing the genetic

variance consumed by GS over breeding cycles, and permitting

long-term genetic gain.

Genomic selection also increases genetic gain by shortening the

breeding cycle to select the best genotypes with phenotyping

(Jannink et al., 2010; Lorenz et al., 2011; Crossa et al., 2017).

However, breeders need to consider the mode of reproduction of

the species associated with the breeding method when deciding to

apply GS to reach the desirable effect (Brown et al., 2014). For

example, using early generations (F4 or early) instead of doubled

haploid lines can hinder the selection of the best new parentals once

the residual heterozygosity reduces the precision of estimating QTL

effects, the additive genetic variance, and consequently, the PA. This

fact can be more prominent if the trait is controlled by several QTLs

and has low heritability (Mayor and Bernardo, 2009). However,
Frontiers in Plant Science 08
residual heterozygosity tends to be lower than expected due to the

increase in inbreeding over recurrent selection cycles in a closed

system, crossing only elite by elite parents. Also, rice does not

currently have scalable and feasible procedures to generate doubled-

haploid populations, hence, in this study, the RGA method was

used to advance generations and increase endogamy in our GS

breeding schemes. This method reduces the rice growth cycle to 90-

100 days, depending on the genotype (Collard et al., 2017).

Differences in the number of generations in the breeding schemes

examined led to differences in the total cycle time. For instance, the

Trad scheme takes four years to complete each cycle, whereas the

GSF2 only takes six months. The GSF2S4 yielded 166% higher

genetic gain than the Trad scheme and 20% better than GSF2 in

ten years of breeding (Figure 3). Another interesting point is that

the best scenarios are composed of 2-stages selection. This result

shows that besides longer, 2-stages combining GS and phenotypic

selection compensates rather than applying rapid cycling, using

only GS at stage-1 for recycling parents. Therefore, our results

reinforce that to obtain sustainable long-term genetic gain in long-

term breeding schemes is crucial to consider a balance between

genetic gain, PA, time, and genetic variance over the breeding cycles

(Jannink et al., 2010). In this context, some questions arise for

further studies: do we get progressive increases in effectiveness with

3, 4, and 5 stages of selection? E.g., GS at F2 +GS at F4 + Phenotypic

at F6? Do we need different types of selection (we used GS and

phenotypic here - 2 different types)? Would the same response be

shown with, e.g., two rounds of GS?

Few studies explore the best phase or stage to apply GS to

maximize the genetic gain in long-term breeding schemes

(Gorjanc et al., 2018; Bassi et al., 2016). A new method
FIGURE 5

Prediction accuracy of selection over 20 breeding cycles via GSF2SF4 scheme considering 48 parental lines, the TSGPO method, and different
sample sizes to update every cycle’s training set. Each colored line represents an updating training sample size. TSGPO: training set built with the
three last generations and updated each cycle; 0, 384, 768, and 1152 are the number of individuals used to update the TS.
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employed GS in the line fixation stage in a rice breeding

program. In this scheme, a cross was simulated between two

individuals selected by GS in the F2 generation considering the

best GEBVs (GS_FSb) and the most divergent between best

GEBVs (GS_FSd). Among the GS-based schemes, the GS_FSb

reached the highest population mean over the breeding cycles

(Figure 2A). The strategy of crossing the best individuals based

on GEBV probably enriched the parents in which major-effect

alleles were fixed since these individuals may have the same

genotype for these alleles (Zhong et al., 2009; Jannink, 2010).

Also, loci with minor effects, but important for the trait could be

divergent between these individuals, and recombination between

these loci may increase the probability of a future line having this

favorable allele in homozygosity. On the other hand, when we

crossed the most divergent individuals, major loci may have

different alleles in each genotype. Therefore, the probability of

achieving a future line with the favorable allele in this locus is

lower, and indeed GS_FSd had one of the worst results

considering genetic value over breeding cycles.

Even though GS_FSb has shown the highest population

mean over breeding cycles, its values were close to the GSF2SF4
scheme. However, further considering genetic gain, it is crucial

to regard the practicality of realizing each breeding scheme in

real conditions. Making a new cross between two individuals

from an F2 progeny brings additional labor and costs. Hence,

since the difference between GS_FSb and GSF2SF4 is negligible,

we consider the GSF2SF4 the best scenario to employ GS.
Effect of training set update strategies

The second objective of this study was to identify a better

strategy for TS updating to guarantee a higher genetic gain and

avoid the decline of accuracy across long-term breeding cycles. As

mentioned, all genomic breeding schemes showed a reduction of

accuracy over breeding cycles (Figure 2D). After the first breeding

cycle, PA showed a substantial decrease, and by the last breeding

cycles, GS was practically by chance, with PA close to zero. This

situation can hinder the selection of the best genotypes, and

consequently, the population’s genetic performance does not

increase and may sometimes decrease (Jannink, 2010; Neyhart

et al., 2017). This observation is consistent with several other

studies showing the PA reduction in long-term breeding schemes

(Jannink, 2010; Müller et al., 2017; Muleta et al., 2019). Working

with GS optimization in a sorghum breeding program, Muleta

et al. (2019) verified that the PA declined over breeding cycles,

especially for oligogenic traits. The latter study also showed that

TS updating slowed the decline in accuracy over breeding cycles

but did not prevent this entirely. In our results, all scenarios

involving GS with TS updating reached the best population

performance compared to the phenotypic selection, at least

until the sixth breeding cycle. TSC0 had the highest population

mean values in initial cycles, which shows that a larger TS delivers
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a higher accuracy (Cericola et al., 2017; Norman et al., 2018) due

to a larger number of allelic observations is required to predict

small QTL effects accurately (Gilmour, 2007). However, the TSC0
displayed a higher decrease in PA across breeding cycles since this

scenario did not update the TS (Figure 4). After the fourth cycle,

its PA reduction may promote a lower population performance

than other updating scenarios due to the lack of reliability in the

selection process. Amongst scenarios that did include TS

updating, the TSN scenario was more unstable than TSGPO or

TSALL. These results show that it is crucial to maintain a high

genetic relationship between the TS and selection candidate

genotypes when updating TS.

Another question about updating the TS is which lines and

the number of lines to select. Neyhart et al. (2017) studied

updating TS methods in a barley long-term breeding program.

Updating the TS minimizes the decline in accuracy due to

updating LD between markers and QTL. Furthermore, it was

found that the PA was slightly higher when the TS contained

only the most recent data, whereas adding the best individuals

from each cycle in long-term breeding schemes resulted in the

highest genetic gain (Neyhart et al., 2017).

All updating methods avoided an abrupt decline in PA across

breeding cycles, corroborating with previous studies (Neyhart

et al., 2017; Muleta et al., 2019). In the first cycle, TSC0 PA

presented the highest accuracy (0.40), which the TS size effect can

explain (Müller et al., 2017; Zhang et al., 2017; Norman et al.,

2018). However, TSC0 PA over breeding cycles presented the

highest decline displaying negative values from the eighth cycle.

This is because the TSC0 scenario did not update the training set,

and selection candidate genotypes were selected only using the

initial marker effects. Hence, the genetic relationship between the

TS and selection candidate genotypes decreased across breeding

cycles, resulting in PA decline (Lorenz and Smith, 2015).

When considering the maintenance of PA and genetic gain

across breeding cycles, it requires maintaining a balance between

the genetic relationship between the TS and selection candidate

genotypes and accurate estimates of LD between markers and

QTL. However, in long-term recurrent schemes, new

recombination events occur at each breeding cycle, which

causes a breakdown of LD between markers and QTL,

consequently decreasing PA (Jannink, 2010; Müller et al.,

2017). High-density marker panels can reduce an abrupt PA

decline across breeding cycles and, therefore, deliver higher

genetic gain in long-term genomic recurrent schemes (DoVale

et al., 2021). Our simulation scenarios used a low-density marker

panel, which may explain a lower PA resulting from a lower

probability of LD between the marker and the QTL, finishing in

a smaller fraction of explained genetic variation (Solberg et al.,

2008). Hence, high-density marker panels could help increase

the probability of finding markers in LD with the same QTL

across different cycles (Daetwyler et al., 2010).

This study used an SNP chip containing 1,000 markers to

simulate the SNP panel optimized for the IRRI irrigated
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breeding program (Arbelaez et al., 2019). Low-density SNP

panels are attractive for GS due to their cost-effectiveness

(Vallejo et al., 2018; Arbelaez et al., 2019; Al-Tobasei et al.,

2021). In this context, our results showed that updating the TS

with an affordable size reduced the PA decline over breeding

cycles, presenting a lower decay than in other studies (Neyhart

et al., 2017; Muleta et al., 2019), even using a low-density marker

set. Furthermore, updating the TS promoted more accurate

estimates of LD between markers and QTL since, in long-term

breeding schemes, recombination between marker and QTL

causes an LD decrease, whereas selection and drift act to

generate new LD or tighten the LD between closely linked loci

(Hill and Robertson, 1968; Habier et al., 2007; Lorenz et al.,

2011). This outcome is crucial as SNP chips with few markers

may permit breeding programs with limited resources to use GS

in their pipeline. However, it seems not essential to consider

previous cycles to estimate the LD patterns between markers and

QTL since TSALL and TSGPO were similar to those obtained via

TSCN, which counts only the last breeding cycle. However, as

described earlier, we considered TSGPO a straightforward and

stable method. Furthermore, it might buffer and maintain the

accuracies at good levels in cases of missing a year of trials.

Finally, even with updating the training set, the accuracy still

tends to reduce drastically to very low levels after 10-12 cycles.

The main explanation is the lack of genetic variability due to the

high intensity and closed related parents’ selection. For both, we

can monitor the genetic variability over the cycles and, at the

recombination step, include external parents into the crossing

block. Also, we could define restrictions in the parental selection,

optimizing the trade-off between response to selection and

relatedness, for instance, setting a maximum number of

parents from each cross.
Conclusion

Implementation of genomic selection on long-term breeding

schemes may accelerate genetic gains. However, it is crucial to

determine at and when to implement the genomic selection since

it can produce lower genetic gain than phenotypic selection,

depending on the strategy. For example, applying genomic

selection in an F2 progeny followed by a phenotypic selection

of new parentals in F4 produced the highest genetic gain across

breeding cycles. Moreover, updating the training set allowed

better maintenance of prediction accuracy over recurrent

breeding cycles. Adding a new and proper amount of

information (over 768 individuals) every cycle into the training

set allows re-estimation of the marker’s effects. In other words,

updating the LD between markers and underlying QTL

guarantees the highest genetic gain over recurrent selection

cycles. Finally, only the last three generations should be kept in

the TS, optimizing the genetic relationship between TS and the

targeted population in a closed system.
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