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Obtaining crop above-ground biomass (AGB) information quickly and accurately 

is beneficial to farmland production management and the optimization of 

planting patterns. Many studies have confirmed that, due to canopy spectral 

saturation, AGB is underestimated in the multi-growth period of crops when 

using only optical vegetation indices. To solve this problem, this study obtains 

textures and crop height directly from ultrahigh-ground-resolution (GDS) red-

green-blue (RGB) images to estimate the potato AGB in three key growth periods. 

Textures include a grayscale co-occurrence matrix texture (GLCM) and a Gabor 

wavelet texture. GLCM-based textures were extracted from seven-GDS (1, 5, 10, 

30, 40, 50, and 60 cm) RGB images. Gabor-based textures were obtained from 

magnitude images on five scales (scales 1–5, labeled S1–S5, respectively). Potato 

crop height was extracted based on the generated crop height model. Finally, 

to estimate potato AGB, we used (i) GLCM-based textures from different GDS 

and their combinations, (ii) Gabor-based textures from different scales and their 

combinations, (iii) all GLCM-based textures combined with crop height, (iv) all 

Gabor-based textures combined with crop height, and (v) two types of textures 

combined with crop height by least-squares support vector machine (LSSVM), 

extreme learning machine, and partial least squares regression techniques. The 

results show that (i) potato crop height and AGB first increase and then decrease 

over the growth period; (ii) GDS and scales mainly affect the correlation between 

GLCM- and Gabor-based textures and AGB; (iii) to estimate AGB, GLCM-based 

textures of GDS1 and GDS30 work best when the GDS is between 1 and 5 cm and 

10 and 60 cm, respectively (however, estimating potato AGB based on Gabor-

based textures gradually deteriorates as the Gabor convolution kernel scale 

increases); (iv) the AGB estimation based on a single-type texture is not as good as 

estimates based on multi-resolution GLCM-based and multiscale Gabor-based 

textures (with the latter being the best); (v) different forms of textures combined 

with crop height using the LSSVM technique improved by 22.97, 14.63, 9.74, and 
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8.18% (normalized root mean square error) compared with using only all GLCM-

based textures, all Gabor-based textures, the former combined with crop height, 

and the latter combined with crop height, respectively. Therefore, different forms 

of texture features obtained from RGB images acquired from unmanned aerial 

vehicles and combined with crop height improve the accuracy of potato AGB 

estimates under high coverage.

KEYWORDS

UAV, RGB images, GLCM-/Gabor-based textures, crop height, above-ground 
biomass

Introduction

The above-ground biomass (AGB) of crops is the total dry 
organic mass of the above-ground vegetative organs per unit area at 
a particular time (Zhou et al., 2018). AGB is an essential phenotypic 
parameter for evaluating crop growth and predicting yield (Zhou 
et al., 2019). In addition, crop AGB information is a vital decision-
making indicator for simulating nitrogen concentration dilution 
curves, which play an essential role in determining the nitrogen 
nutrition status and guiding fertilization management (Huang et al., 
2015). Traditionally, manual measurement of AGB requires 
destructive sampling and weighing, which is a highly subjective, 
time-consuming, and labor-intensive manner to estimate from 
point to area (Liu et al., 2021a). At the same time, the constraints of 
sampling points and the variability of the field environment make 
this inefficient method to acquire AGB unsuited for large-scale real-
time monitoring of crop growth (Castaldi et al., 2015). Therefore, 
new technologies are needed to quickly and accurately estimate the 
AGB of large-scale crops to provide scientific guidance for 
improving field management and increasing yield.

Remote-sensing technology is currently the most effective 
non-contact method for estimating crop AGB over large scales 
(David et al., 2020). To estimate the AGB of large-scale crops, 
satellite remote-sensing data (e.g., Sentinel-2, Landsat 8-OLI, 
and Worldview-2) is the best choice because of its advantages of 
wide coverage and free access by users (Dong et al., 2020; He 
et al., 2021). However, the satellite remote-sensing technology is 
difficult to fully exploit because of various factors such as satellite 
revisit cycle, atmospheric conditions, and spatial resolution, 
limiting the rapid development of precision agriculture (Li et al., 
2020a). Although few restrictions encumber ground remote 
sensing based on backpacks or vehicle-mounted equipment, 
such an approach is unsuited for large-scale AGB monitoring 
because of the limitations of remote-sensing platforms (Ryu 
et al., 2020). Fortunately, remote sensing from unmanned aerial 
vehicles (UAVs) now fills the technology gap formed by and 
inadequacies of satellite and ground remote sensing. Given its 
simple operation, convenience, flexibility, efficient data 
acquisition, and high temporal and spatial resolution of the 
images obtained by UAV remote sensing, this approach has 

created a new paradigm for the quantitative estimation of crop 
AGB (Duan et al., 2021).

Vegetation indices (VIs) such as the normalized difference 
vegetation index, the renormalized difference vegetation index, 
and the ratio vegetation index obtained from broadband 
multispectral data from the visible to the near-infrared have been 
used with significant success to estimate crops AGB (Chen et al., 
2009; Meng et al., 2013). At present, research into estimating AGB 
is mainly divided into two categories: (i) research based on 
physical models and (ii) research based on empirical regression 
models (Yang et al., 2019). Physical models (e.g., the PROSPECT 
and PROSAIL models) have robust mechanisms and applicability, 
but many parameters required by these models are difficult to 
obtain, which limits their use for estimating crop AGB (Wan et al., 
2021; Yang et al., 2021a). In empirical models, different regression 
techniques are used to relate feature parameters to AGB (Meng 
et al., 2017; Xu et al., 2018). These regression techniques fall into 
two categories (Yue et al., 2018a): traditional regression techniques 
[e.g., multiple stepwise regression, partial least squares regression 
(PLSR), and principal component analysis] and machine-learning 
techniques [e.g., random forest, artificial neural networks, and 
extreme learning machine (ELM)]. Spectral VIs combined with 
various regression techniques to estimate crop AGB offer the 
advantages that (i) VIs and AGB are strongly correlated over the 
reproductive growth period of crops, and (ii) the model structure 
is simple, which facilitates applications in AGB estimation (Bao 
et al., 2020; Kumar et al., 2021).

However, numerous studies have challenged the wisdom of 
using VIs to estimate the crop AGB in the multi-growth periods. 
The main arguments brought to bear are that (i) VIs saturate easily 
under high crop coverage, and (ii) VIs lose their sensitivity to AGB 
in the multi-growth period, making it challenging to use VIs to 
estimate crop AGB in the multi-growth period (Ma et al., 2019; 
Zhang et al., 2020). At present, the four primary techniques used to 
enhance the accuracy of AGB estimates are (i) the synthetic aperture 
radar technique (Montesano et  al., 2013, 2014), (ii) the laser 
intensity direction and ranging (LiDAR) technique (Cao et al., 2018; 
Hu et  al., 2020), (iii) the narrowband hyperspectral technique 
(Filippi et al., 2014; Tao et al., 2020), and (iv) the crop-height model 
(CHM; Roth and Streit, 2018; Zhu et al., 2019a; Issa et al., 2020).
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Given the use of long-wavelength electromagnetic radiation, 
synthetic aperture radar remote-sensing techniques can penetrate 
the crop canopy and are not affected by weather conditions, which 
means that they overcome the problem of premature saturation of 
AGB estimates by optical remote-sensing VIs and are thus highly 
suitable for long-term monitoring of AGB for areas with high crop 
coverage (Banda and Tebaldini, 2020). Previous studies have 
confirmed that using the backscattering coefficient of synthetic 
aperture radar remote sensing produces highly accurate estimates 
of crop AGB for wheat (Han et al., 2019), maize (Hosseini et al., 
2019), and rice (Yang et al., 2016).

LiDAR remote-sensing techniques actively transmit 
electromagnetic wave pulses with a specific penetration ability to 
interact with ground objects. By statistically calculating the height 
or quantity of LiDAR echoes, different variables characterizing 
crop canopy structure (such as volume and coverage) can 
be  obtained, which is very useful for estimating crop AGB 
(Malambo et  al., 2018). For example, Walter et  al. (2019) 
demonstrated that volume and height data acquired by LiDAR 
correlate strongly with wheat AGB. Wang et al. (2017) showed that 
VIs combined with metrics obtained through LiDAR improve 
estimates of maize AGB. Furthermore, because crop height is a 
good metric of crop growth, the canopy height determined by 
LiDAR to estimate crop AGB is a very promising method to 
resolve spectral saturation (Salum et  al., 2020). At present, 
UAV-LiDAR is widely used, mainly because it is convenient, data 
collection is fast, it provides a digital elevation model and digital 
surface model of the field, and it promotes the production of a 
CHM, which provides a new avenue for estimating crop AGB 
(Zhu et al., 2019b).

Narrowband hyperspectral techniques have the capacity to 
continuously acquire crop canopy spectral reflectance data 
with high spectral resolution, which means that mining the 
hidden information in the spectrum is helpful for AGB 
estimation. Therefore, crop AGB estimation can be enhanced 
by using spectral differential analysis (Gnyp et al., 2014), band-
depth analysis (Fu et al., 2014), continuous wavelet analysis 
(Yao et al., 2018), and red-edge-region analysis (Marshall and 
Thenkabail, 2015). For example, Yue et al. (2021) showed that 
the accuracy of estimates of winter wheat AGB during the 
multi-growth period could be  improved by using wavelet 
coefficients and multiple stepwise regression methods. Yang 
et al. (2021b) proposed that, during the multi-growth period 
of crops, the red-edge region leads to more accurate AGB 
estimates than the use of traditional VIs.

Although the above-mentioned remote-sensing techniques 
accurately estimate AGB and allow for real-time monitoring of 
crop growth, obtaining the data incurs high cost, and data 
processing is complex, which prevents this approach from gaining 
wide acceptance in the private sector (Poley and McDermid, 
2020). In contrast, UAV digital remote-sensing systems are more 
acceptable because of their low price, simple data structure, and 
convenient data processing (Guo et al., 2021; Wang et al., 2021). 
More importantly, UAV-based RGB images may be  spliced 

together to obtain digital surface models (from which a CHM can 
be  developed) and ultrahigh-ground-resolution (GDS) digital 
orthophoto images (from which crop canopy spectra can 
be extracted), which provides more avenues to accurately estimate 
crop parameters.

Previous reports have confirmed that the CHM generated 
from UAV-based RGB images can be used for AGB estimation 
(Yue et al., 2018b; Lu et al., 2019). However, estimating AGB in 
multiple growth periods based only on crop height is not reliable 
because the change in crop height (such as wheat, maize, and rice) 
is not apparent in the late growth period, whereas AGB continues 
to increase, making it unfeasible to estimate AGB in the whole 
growth period based only on crop height (Fu et al., 2021). Niu 
et al. (2019) reported that combining crop canopy height and VIs 
is more accurate for estimating maize AGB than the use of either 
crop height or VIs alone. Similarly, VIs calculated from RGB-based 
images also suffer from spectral saturation under high crop 
coverage, resulting in inaccurate AGB estimates (Christelle and 
Emmanuel, 2020). Thus, considering the limitations of VIs and 
crop height to estimate AGB, researchers have begun to mine 
image features from ultrahigh-GDS RGB images to enhance the 
accuracy of AGB estimation models.

UAV-based ultrahigh-GDS RGB images are helpful not only 
for estimating AGB (Batistoti et al., 2019) but also for estimating 
chlorophyll (Liu et al., 2021b), nitrogen content (Li et al., 2015), 
leaf area index (Yue et al., 2018a), and crop yield (Zeng et al., 
2021). These studies show that ultrahigh-GDS RGB images are 
rich in crop canopy surface information for monitoring growth. 
Therefore, canopy texture features can be  extracted from 
ultrahigh-GDS UAV-based RGB images for estimating AGB (Mao 
et al., 2021). For example, Yue et al. (2019) confirmed that textures 
based on the gray level co-occurrence matrix (GLCM) and 
extracted from UAV-based RGB images with various GDS 
produce more accurate winter wheat AGB estimates than the 
traditional narrow and wideband VIs. Zhu et  al. (2021) also 
reported that GLCM-based textures from UAV-based RGB images 
can be used to estimate maize AGB.

A literature review shows that most studies only extract 
single-scale GLCM-based texture features from specific GDS 
images to estimate crop AGB. However, the Gabor-based 
transformation features provide information that can be used to 
describe image textures and have been fully applied in the field of 
image processing, despite receiving little attention in crop 
phenotyping research (Shen and Bai, 2006; Fu et al., 2021). The 
crop canopy structure and size are known to vary with the growth 
period, which makes it difficult to use single-scale texture features 
to reflect differences in canopy structure. If the multiscale texture 
features can be extracted, the morphology of the crop canopy 
structure could be described to maximum extent, allowing more 
accurate estimates of crop AGB over multiple growth periods.

Furthermore, the texture features extracted from 
ultrahigh-GDS UAV-based RGB images can represent the high-
frequency information of crop canopy photos, which provides 
new information (e.g., lush vegetation) about the crop canopy. If 
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this information can be combined with the vertical height of the 
crop canopy, it could be used to accurately estimate AGB. On the 
one hand, different texture techniques offer different potentials 
for extracting high-frequency information. On the other hand, 
the high-frequency information contained in images of different 
GDS will vary. After a careful literature review, no study has been 
found that proposes using different multiscale texture techniques 
to extract high-frequency information for estimating 
potato AGB.

Therefore, the present study investigates the performance of 
GLCM- and Gabor-based textures and various textures combined 
with crop canopy height to estimate potato AGB. GLCM-based 
textures were extracted from seven-GDS (1, 5, 10, 30, 40, 50, and 
60 cm) RGB images. Gabor-based textures were obtained from 
magnitude images on five scales (scales 1–5, denoted S1–S5, 
respectively). We estimate the potato AGB by applying a least-
squares support vector machine (LSSVM), an ELM, and PLSR 
using, respectively, (i) GLCM-based textures from different GDS 
RGB images and their combinations, (ii) Gabor-based textures 
from different scales and their combinations, and (iii) GLCM-
based textures, Gabor-based textures, and their combinations 
integrated with crop height.

Experiment and methods

Experiments

The experiment was conducted at the National Precision 
Agriculture Research Demonstration Base (40°10’N, 116°26′E), 
Changping District, Beijing, China. Changping District has a 
typical warm temperate semi-humid continental monsoon climate, 
where the main crops are summer maize and winter wheat.

To increase the spatial growth difference of potato crops in 
the field, we use Zhongshu 5 (Z5) and Zhongshu 3 (Z3) early 
maturing potato varieties planted with different planting 
densities, nitrogen, and potassium fertilizers treatments. Forty-
eight plots were planted, with each plot covering 32.5 m2 and 
with a row spacing of 0.6 m. Eighteen plots filled the density test 
area with three gradients [60,000 plants/hm2 (T1), 72,000 
plants/hm2 (T2), and 84,000 plants/hm2 (T3)] and six 
repetitions. Twenty-four plots occupied the nitrogen test area 
with four gradients [0 kg/hm2 urea (N0), 244.65 kg/hm2 urea 
(N1), 489.15 kg/hm2 urea (N2, normal treatment, 15 kg pure N), 
and 733.50 kg/hm2 urea (N3)] and six repetitions. Six plots 
occupied the potassium fertilizer test area with two gradients 
[0 kg/hm2 potassium fertilizer (K0), 1941 kg/hm2 potassium 
fertilizer (K2)] and three repetitions. The specific test plan is 
shown in Figure 1. The planting method is mulching, and the 
field management includes weeding, soil cultivation, and 
watering. To accurately correct the terrain for subsequent RGB 
images, eleven ground control points (G1–G11) were uniformly 
deployed around the test plot and accurately positioned by 
using differential global positioning with millimeter accuracy.

Collection and processing of crop height 
and AGB data

Ground crop height and AGB data were collected on 28 May 
2019, 10 June 2019, and 20 June 2019, which corresponded to 
periods of potato tuber formation (P1), tuber growth (P2), and 
starch storage (P3), respectively. During each growth period, four 
plants representative of the overall growth level were selected from 
each plot. The vertical height of each plant was measured with a 
ruler, and the average value was taken as the measured crop height 
(in centimeters) for each plot.

To obtain the AGB data, three plants representative of the 
overall growth level were artificially selected from each plot. After 
artificial field sampling, put it into a white sealed bag and quickly 
took it back to the laboratory. The samples were washed with 
running water indoors. After the sample was naturally dried, the 
stems and leaves were cut into small pieces by using scissors. The 
separated samples were killed at 105°C, and dried at 80°C in a 
large bake oven until reaching constant mass. For each growth 
period, the plant density and dry mass of the stems and leaves of 
each plant sample as measured by a high-precision balance were 
used to calculate the potato AGB of each plot (in kg/hm2).

Unmanned aerial vehicle RGB image 
acquisition and processing

After the ground collection work was completed, the DJI 4A 
series product produced by DJI Group, Ltd. was used to carry out 
UAV remote-sensing operations in the bare soil period (April 20, 
2019) and the three critical growth periods of potatoes. The UAV 

FIGURE 1

Potato planting plan at Changping District, 2019.
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system was equipped with a three-channel CMOS sensor, with 20 
million effective pixels and a maximum pixel value of 4,000 × 3,000. 
To ensure the generation of RGB images with high GDS, the UAV’s 
flying height was manually set to 20 m, and the heading and side 
overlap were both 80%. By using its position and orientation system 
during flight, the UAV recorded the three-dimensional position of 
the sensor in real-time. The flights were conducted in clear, calm 
weather to reduce the variation of crop canopy reflection intensity 
caused by uneven illumination. The take-off position and flight path 
were essentially the same for each flight to accurately match the 
digital surface model (DSM) obtained in different growth periods.

Before extracting crop height and multiscale texture features 
from UAV RGB images, we used Agisoft PhotoScan Professional 
software to splice together digital images from the various periods. 
Next, the RGB images were topographically corrected based on 
the measured three-dimensional coordinates of G1–G11, and the 
correction error for each period was less than 2 cm. Finally, the 
DSM and digital orthophoto map of the test location were derived 
for each period. The specific image-processing flow followed that 
of Fu et al. (2021). A total of 48 regions of interest (ROIs) were 
delineated according to the boundary of each sample plot.

Generation of crop height model

Crop height represents the growth of groups and symbolizes 
the vertical structure of the crop canopy, which is closely related to 
AGB. Therefore, the accurate acquisition of crop-height information 
is important for monitoring crop growth and managing farmland 
production (Niu et al., 2019). First, in this study, the DSM of the 
three critical growth periods (P1–P3) and the bare soil period of 
potatoes were topographically corrected and established through 
high-density point clouds. The raster statistics tool of ArcGIS 10.2 
software was then used to calculate the difference in DSM between 
potato critical growth periods and the bare soil period and obtain 
the crop height model of the corresponding growth period 
(Figures 2D–F). Finally, the average potato crop height of each plot 
was automatically extracted by using the ROI tool.

Extraction of GLCM- and Gabor-based 
texture features

The GLCM is a matrix function involving pixel distance and 
angle. It reflects spatial variations in the gray distribution of the 
image by calculating the correlation between the gray levels of two 
points separated by a certain distance and in a specific direction in 
the image (Fu et al., 2021). The flying height of the UAV in this study 
was 20 m, and the GDS of the obtained images was about 0.85 cm. 
The original image was sampled to 1 cm by resampling. GDS5, 
GDS10, GDS20, GDS30, GDS40, GDS50, and GDS60 cm images 
were acquired based on the GDS1-cm image using the nearest-
neighbor pixel method. In this study, GLCM-based texture features 
in four directions (0°, 45°, 90°, 135°) were extracted from each 

channel of UAV RGB images. Four moving windows (3 × 3, 5 × 5, 
7 × 7, 9 × 9) were set in each direction for extracting diverse textures. 
We selected eight standard GLCM-based texture features, including 
the mean (Mea), variance (Var), homogeneity (Hom), contrast 
(Con), dissimilarity (Dis), entropy (Ent), second moment (Sec), and 
correlation (Cor) for analyzing the performance of estimating 
AGB. To simplify the description, the texture features were prefixed 
with R-, G-, or B- to denote the GLCM-based extracted textures for 
the three channels (e.g., R-Con denotes the contrast of the R band).

The Gabor transform, also known as the windowed Fourier 
transform (Gaussian function as a window function), is a 
transformation from the time to the frequency domain and offers 
good characteristics for extracting local space and frequency 
domain information from the target (Shen and Bai, 2006). The 
Gabor filter is like the visual stimulus–response of simple cells in 
the human visual system. It is sensitive to the edge of the image, 
which can provide good direction-scale selection characteristics, 
and is insensitive to illumination changes, confronting changes in 
illumination with appropriate adaptation (Jones and Palmer, 1987; 
Fu et al., 2020). Therefore, the Gabor transform is often used to 
extract and analyze image texture features. In this study, four 
directions (0°, 45°, 90°, 135°) and five scales (S1–S5) were selected 
to generate a total of twenty filter banks. The other parameters were 
set to the same values as in Fu et al. (2021). For each ROI in the 
growth period of each potato, the RGB images were convolved with 
the Gabor filter banks to generate a total of sixty types of amplitude 
images. Based on these magnitude images, we obtained the same 
textures as GLCM-based textures. Therefore, 480 texture features 
were extracted from each plot. To simplify the description later, R-, 
G-, B- followed by the scale factors served to characterize the 
texture features of different bands and scales (e.g., R-S2-Ent denotes 
the entropy of scale 2 of the R-band). Figure 3 shows the specific 
process of extracting diverse GLCM- and Gabor-based textures.

Technical route and regression analysis

To verify the hypothesis proposed herein, repeats 2 and 3 data 
(32 groups) collected in each potato growth period in 2019 served 
as the calibration set to estimate AGB, and repeat 1 data (16 
groups) served as the validation set to verify the reliability and 
stability of the model. Figure 4 shows the technical scheme of this 
study. The coefficient of determination R (Zhou et al., 2019), root 
mean square error (RMSE), mean absolute error (MAE), and 
normalized root mean square error (NRMSE) were used to 
evaluate the estimation accuracy of different models.

Results and analysis

Crop-height response to potato AGB

Figures 5A–C show the relative residuals of the extracted crop 
height based on UAV RGB images during the P1–P3 growth 
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period of potatoes. The results show that the extracted crop height 
in each growth period is generally low, and that most of the 
relative residuals are less than 20% (RMSE <3 cm), which indicates 
that the crop height extracted through the crop height model 
(Figure 2) is reliable. The result in Figure 5D shows that crop 
height and AGB correlate positively in all key potato growth 
periods (p > 0.01), which means that crop height may contribute 
to the potato AGB estimates over multi-growth periods.

Response of GLCM-based texture 
features to potato AGB

Response of GLCM-based textures from 
different windows and directions to potato 
AGB

Taking the RGB images of GDS1 as an example, Figures 6A–D 
examine the Pearson correlation coefficients between GLCM-
based textures and potato AGB in different windows and 
directions. The results show that the correlation of GLCM-based 
textures with potato AGB is basically independent of direction 
and window size. To reduce the dimensionality of the data, we use 
GLCM-based textures with 45° orientation and a 5 × 5 window for 
potato AGB estimation. The results shown in Figures 6E,F indicate 
that GLCM-based texture correlates weakly with potato AGB in 
three single growth periods (p < 0.05), and that, when considering 
the multiple growth periods of crops, GLCM-based textures 
correlate positively (e.g., G-dis) or negatively (e.g., B-cor) with 
potato AGB (p < 0.01), which indicates that the use of 

GLCM-based textures may also improve the accuracy of AGB 
estimates of potatoes in multiple growth periods.

Response of GLCM-based textures of different 
ground resolution to potato AGB

The results shown in Figure  7 indicate that the Pearson 
correlation coefficients of GLCM-based textures with different 
GDS and potato AGB differ significantly. GLCM-based textures 
of GDS1 correlate strongly with AGB (p < 0.01). The GLCM-based 
textures of GDS5 and GDS10 correlate more weakly with AGB 
and the correlation coefficient has the opposite sign. The GLCM-
based textures of GDS20 and GDS30; GDS40, GDS50, and GDS60 
approximately correlate with AGB. These results show that the 
image GDS affects the relationship between GLCM-based textures 
and AGB. Therefore, we must evaluate the accuracy of GLCM-
based textures at different resolutions to estimate potato AGB.

Response of Gabor-based texture 
features from different directions and 
scales to potato AGB

Figures 8A–D show the Pearson correlation coefficients of 
Gabor-based textures (GDS1) and potato AGB at different 
orientations and different scales. The size and sign of the 
correlation coefficient show that the correlation between Gabor-
based textures and potato AGB is significantly more affected by 
scale than by direction, which differs completely from the result 
for GLCM-based textures. Therefore, we use Gabor-based textures 

A B C

D E F

FIGURE 2

UAV RGB images and potato crop height of each plot. (A,D) P1, (B,E) P2, and (C,F) P3 periods.
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with different scales in 45° orientation to estimate potato 
AGB. The results shown in Figures  8E,F indicate an excellent 
linear relationship between Gabor-based textures and potato AGB 
in single- or multi-growth periods under multiple scales (p < 0.01). 
Compared with the results in Figures 7E,F, when the AGB exceeds 
1,000 kg/hm2, the Gabor-based textures remain sensitive to AGB 
(p < 0.01), which indicates that the multiscale Gabor-based 
textures are more promising for AGB estimation than multi-
resolution GLCM-based textures.

Using GLCM-based texture features to 
estimate potato AGB

As shown in Figure 7, five representative ground resolution 
images were selected to extract GLCM-based textures to 
estimate potato AGB. The selected ground resolution and 
GLCM-based textures (using the “findCorrelation” function in 
the Caret package of the R language, with a cutoff of 0.99) 
appear in Table 1.

Figure  9 shows potato AGB estimates using the LSSVM, 
ELM, and PLSR techniques based on image textures of GDS1, 
GDS5, GDS10, GDS30, GDS60, and their combinations. These 

results show that multi-resolution GLCM-based textures provide 
better estimates (R2 = 0.68–0.71, RMSE = 261–269 kg/hm2, 
MAE = 214–218 kg/hm2, NRMSE = 21.94–22.65%) than others 
with single ground resolution textures. In addition, for GDS1 to 
GDS5, the GLCM-based textures of GDS1 provide the best AGB 
estimates (R2 = 0.63–0.67, RMSE = 273–290 kg/hm2, MAE = 216– 
236 kg/hm2, NRMSE = 22.96–24.43%). Between GDS10 and 
GDS60, the GLCM-based textures of GDS30 provide the best 
AGB estimates (R2 = 0.59–0.64, RMSE = 288–305 kg/hm2, 
MAE = 246–256 kg/hm2, NRMSE = 24.28–25.64%).

Using Gabor-based texture features to 
estimate potato AGB

The multiscale Gabor-based textures used in this study to 
estimate potato AGB are listed in Table 2 (the selection rules are 
given in Table 1). To compare the effect of single and multiscale 
Gabor-based textures for potato AGB estimation, we also use the 
LSSVM, ELM, and PLSR techniques to build AGB estimation models.

The results in Figure 10 show that (i) the use of multiscale 
Gabor-based textures produces more accurate AGB estimates than 
the use of GLCM-based textures with different GDS (R2 = 0.70–

FIGURE 3

Multiform texture features extraction process from GLCM- and Gabor-based analysis.
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0.74, RMSE = 244–271 kg/hm2, MAE = 207–232 kg/hm2, NRMSE = 20.55– 
22.80%). (ii) For different scales, the AGB estimation results 
gradually became less accurate with increasing scale. (iii) Finally, 
when the AGB exceeds 1,000 kg/hm2, the multiscale Gabor-based 
textures (Figures 10F,L,R) overestimates the AGB more than does 
the GLCM-based textures of different GDS. These results confirm 
that the multiscale Gabor-based textures produce more accurate 
estimates of potato AGB than do multi-resolution GLCM-
based textures.

Using texture features and crop height to 
estimate potato AGB

To determine whether the fusion of high-frequency 
information and vertical crop canopy structure information is 

helpful for AGB estimation, we estimate potato AGB by using (i) 
GLCM-based textures of different resolutions and crop height; (ii) 
Gabor-based textures of different scales and crop height; and (iii) 
GLCM- and Gabor-based textures of all forms and crop height. 
The results in Figure  11 show that (i) the LSSVM technique 
produces more accurate estimates of potato AGB (R2 = 0.73–0.78, 
RMSE = 236–255 kg/hm2, MAE = 187–199 kg/hm2, NRMSE = 19.90– 
20.90%); (ii) combining textures of different resolutions and scales 
separately with the crop height enhances the accuracy of AGB 
estimates (and more so for the latter); (iii) different textures 
combined with crop height produce the most accurate estimates 
of potato AGB for the same regression technique (R2 = 0.75–0.78, 
RMSE = 236–243 kg/hm2, MAE = 187–209 kg/hm2, NRMSE = 19.86– 
20.48%). More importantly, different textures combined with crop 
height are not underestimated when AGB exceeds 1,000 kg/hm2. 
The results in Figures 11B,E,H than those in Figures 11A,D,G, 

FIGURE 4

Technical route of the study.
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which validates the argument that multiscale Gabor-based 
textures are more promising than multi-resolution GLCM-based 
textures for estimating potato AGB.

Discussion

The use of different varieties, planting density, nitrogen 
fertilizer, and potassium fertilizer leads to significant differences 
in the growth of potato crops. At present, to obtain AGB 
information, crop-growth monitoring is done mainly by optical 
remote sensing. However, this approach has limitations (Zhang 
et al., 2020) because optical VIs lose their sensitivity to AGB for 
high crop coverage, resulting in the underestimation of potato 
AGB in reproductive growth periods. To improve the AGB 
estimation of potato crops in multiple growth periods and 
investigate the feasibility of using digital cameras for AGB 
estimation, this study obtained RGB images of potato canopies 
from an economic UAV remote-sensing platform and directly 
extracted different texture features and crop height to estimate 
potato AGB.

Response of crop height to AGB

Fluctuations in crop height can reflect crop health and 
nutritional status. At the same time, reasonable plant height is 
also the basis for stable and high-yield crops. Therefore, accurate 
acquisition of plant height information is vital for crop-growth 
monitoring and farmland production management (Lu et al., 
2019). For example, Niu et al. (2019) and Yue et al. (2018a) used 
crop height to estimate maize and winter wheat 
AGB. Unfortunately, using crop height alone to estimate AGB 
during the whole growth period of maize and wheat may be of 
limited use because variations in height are not apparent in the 
later growth stage of maize and wheat, whereas AGB increases 
significantly (corn grain and ear formation). On the contrary, 
potato growth differs significantly from that of maize and wheat. 
In the early reproductive growth period, potato stem nodes 
elongate and leaves expand, increasing both AGB and crop 
height. However, in the later stage of reproductive growth, the 
underground tubers expand continuously so that the nutrients 
accumulated on the ground must be transferred underground, 
resulting in wilting and yellowing of the stems and leaves of 

A B

C D

FIGURE 5

Comparison of the relative residuals (%) of the extracted crop height during the growth period of potato (A) P1, (B) P2, (C) P3, and (D) the 
relationship between AGB and estimated crop height based on UAV.
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above-ground potato plants. A small number of leaves even fall 
off, which reduces the crop height and AGB simultaneously, as 
shown in plot s03 of Supplementary Figure 1.

The visualization in Figure 5D shows that both crop height 
and AGB maintains a positive linear correlation (p < 0.01) in single 
or multiple growth periods, which is consistent with potato crop 

A C E

B D F

FIGURE 6

The relationship between GLCM-based textures and AGB in different directions and different windows: (A) 3 × 3, (B) 5 × 5, (C) 7 × 7, (D) 9 × 9, (E,F) 
scatter plots of G-Dis and B-Cor with AGB under 45° and 5 × 5 windows, respectively.

A B C D

E F G H

FIGURE 7

The relationship between different ground resolution (GDS) GLCM-based textures and AGB. (A) 1, (B) 5, (C) 10, (D) 20, (E) 30, (F) 40, (G) 50, 
(H) 60  cm image textures.
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growth and indicates that potato crop height could be used for 
AGB estimation. The quantitative analysis results in Figure 11 
show that the addition of crop height (R2 increases, RMSE and 
MAE decrease) in different models improves the accuracy of AGB 
estimation and reduces the underestimation of AGB, which also 
confirms the hypothesis that crop height may support AGB 
estimation in multiple growth periods of potatoes. Li et al. (2020b) 
reported that the potato crop height correlates significantly with 
the AGB of early maturing potato varieties (the potato plant and 
canopy branches grow synchronously), whereas the correlation 
with the AGB of late-maturing varieties decreases (when the 
potato plant grows to a certain height, the canopy is not well 
developed). However, the potato varieties Zhongshu 5 and 
Zhongshu 3 planted in this study are both early maturing varieties, 

and the conclusions obtained based on these varieties are 
consistent, namely, that a significant linear relationship exists 
between crop height and AGB (see Figure 5D). This shows that the 
difference in varieties is the key factor restricting the use of crop 
height to estimate AGB. Therefore, relying only on crop height to 
estimate the AGB of different varieties of the same crop seems 
ill-advised.

Response of GLCM-based textures to 
AGB

The results show that the correlation between GLCM-based 
textures and AGB remains basically unaffected by the direction 
and window (Figure 6), which may be related to the principle of 
GLCM generation. It represents the occurrence frequency of a 
pixel pair. Little difference exists in the number of statistics in 
different directions and windows. Fu et al. (2021) and Yue et al. 
(2019) also reported that the correlation between GLCM-based 
textures and winter wheat AGB is largely unaffected by directions 
and windows. In contrast, the correlations between GLCM-based 
textures and AGB at different ground resolutions differ 
significantly (Figure 7), mainly because the amount of information 
contained in the potato canopy structure differs. Taking the 
G-band as an example, Table 3 shows the data range and variance 
statistics for each growth period. Although the range of G-band 
data obtained through the nearest pixel resampling method in 
each growth period remains basically unchanged, the variance 
decreases gradually with decreasing resolution, which is indicative 

A C E
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FIGURE 8

The relationship between Gabor-based textures and AGB in different directions and different scales: (A) 0-degree, (B) 45-degree, (C) 90-degree, 
(D) 135-degree, (E,F) scatter plots of R-S2-Ent and B-S2-Sec with AGB, respectively.

TABLE 1 Selected GLCM-based textures to estimate potato AGB.

Textures Ground 
resolution (cm)

Parameters

GLCM-based 

textures

GDS1 R-Mea, R-Var, R-Con, R-Dis, R-Cor, 

G-Var, G-Con, G-Dis, B-Con, B-Cor

GDS5 R-Mea, R-Cor, G-Con, G-Dis, G-Cor, 

B-Mea, B-Hom, B-Ent, B-Sec, B-Cor

GDS10 R-Mea, R-Hom, G-Var, B-Mea, B-Var, 

B-Hom, B-Con, B-Ent, B-Sec

GDS30 R-Mea, B-Mea, B-Var, B-Hom, B-Con, 

B-Dis,

GDS60 R-Mea, G-Var, G-Con, G-Dis, B-Mea, 

B-Var, B-Dis
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of a decrease in the amount of information contained in the 
canopy image, modifying the correlations between GLCM-based 
textures and AGB at different resolutions.

We classified GLCM-based textures obtained with different 
ground resolutions into five categories: (i) GDS1, (ii) GDS5, (iii) 
GDS10, (iv) GDS20, GDS30, and (v) GDS40, GDS50, GDS60. As 
shown in Figure 7A, the GLCM-based textures of GDS1 remain 
strongly correlated with potato AGB because most pixels 
correspond to pure potato leaves or soil. However, the correlation 
between the GLCM-based textures of GDS5 and GDS10 and 
potato AGB begins to weaken and the sign of the correlation 
coefficient changes (Figures 7B,C) because a small number of 
pixels express potato canopy information in the original image. 
However, when using the nearest-neighbor resampling method, 
these pixels express soil information, so the mixed spectrum was 

extracted based on ROIs. Given that the potato row spacing was 
60 cm, when the GDS changes from 20 to 30 cm, the fraction of 
soil pixels increases in the ROI (e.g., in the GDS30 cm image, the 
ROI may contain half vegetation and half soil, and the final 
extracted canopy spectra are similarly smoothed), which makes 
the correlation between GLCM-based textures of GDS30-cm 
and AGB greater than that between GDS20-cm and AGB 
(Figures 7D,E). However, when the ground resolution exceeds 
half the line spacing, a lower image resolution makes the fraction 
of soil in the pixels in the ROI more significant than vegetation, 
reducing the correlation between GLCM-based textures 
and AGB.

Consider the Dis of the B-band of plot s04 as an example. 
Under the same growth period, the Dis-texture gradually increases 
and then decreases from GDS1- to GDS30-cm. This shows that, 
when the GDS exceeds half the line spacing, the information 
contained in the ROI changes from high frequency (e.g., potato 
leaves) to low frequency (e.g., soil, shadow); that is, the texture 
changes from nonuniform (Supplementary Figure  2; GDS2-, 
GDS5-, GDS10-, GDS20-cm) to uniform (Supplementary Figure 2; 
GDS40-, GDS50-, GDS60-cm), which explains why the image 
resolution affects the correlation between GLCM-based texture and 
potato AGB. Potato AGB first increases and then decreases from the 
P1- to the P3-growth period, whereas the Dis-texture value of GDS1 
(pure pixel; Supplementary Figure  2) maintains a significant 
positive correlation with AGB as the growth period changes 
(Figure 7A; Supplementary Figure 2; GDS1-cm). However, other 
ground resolution Dis-textures correlate negatively with AGB 
because most pixels in the ROI contain soil. Therefore, selecting an 
appropriate GDS is helpful for monitoring crop growth.
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FIGURE 9

The fitted scatter plot of measuring and estimating potato AGB (kg/hm2) using GLCM-based textures from GDS1, GDS5, GDS10, GDS30, GDS60 
and all, respectively. (A–F) LSSVM; (G–L) ELM; (M–R) PLSR. “All” represent texture combinations of different ground resolutions. Cali and Vali 
represent calibration (repeat 2 and 3) and validation data sets (repeat 1), respectively. The estimation results of Cali and Vali are shown in 
Supplementary Table A1.

TABLE 2 Selected Gabor-based textures to estimate potato AGB.

Textures Scales Parameters

Gabor-based 

textures

S1 R-S1-Var, R-S1-Ent, R-S1-Cor, G-S1-Var, B-S1-

Var, B-S1-Cor

S2 R-S2-Hom, R-S2-Con, R-S2-Dis, R-S2-Ent, R-S2-

Sec, R-S2-Cor, G-S2-Var, B-S2-Cor

S3 R-S3-Mea, R-S3-Hom, R-S3-Con, R-S3-Dis, 

R-S3-Sec, B-S3-Var, B-S3-Cor

S4 R-S4-Hom, R-S4-Con, R-S4-Dis, B-S4-Hom, 

B-S4-Var

S5 R-S5-Mea, R-S5-Hom, R-S5-Con, R-S5-Dis, 

R-S5-Sec, B-S5-Var
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Response of Gabor-based textures to 
AGB

The Gabor filter produces an effect very similar to the human 
visual response and is not sensitive to local illumination, making it 
highly suitable for extracting fine texture features. Following the 
work of others (Fu et al., 2020), we set four orientations and five 
scales to form a total of 20 filters (Figure 3). Based on these filters, 
we extract multiscale Gabor-based textures. The results show that 
the correlation between Gabor-based textures and potato AGB are 
significantly more affected by scale than by direction, which differs 
significantly from the results obtained from GLCM-based texture 
(Figures 8A–D). This was also confirmed by Fu et al. (2021).

Consider as an example the B-band of the n01 plot for the 
P1-P3 growth period. The results show that the amplitude images 
generated by the convolution of Gabor wavelet kernels of different 
scales with the RGB images have different spatial characteristics 
(Supplementary Figure 3). As mentioned earlier, potato AGB first 
increases and then decreases as the growth period advances, 
whereas B-S1-Con, B-S2-Ent, B-S4-Cor change with changing 
AGB, which means that the three correlate positively with AGB 
(Figures 8C; Supplementary Figure 2). Conversely, B-S3-Hom and 
B-S5-Sec maintain a negative correlation with AGB (Figures 8C; 
Supplementary Figure 2).

The above results show that extracting multiscale Gabor-
based textures more finely describes variations in potato canopy 
structure. The results show that the sign of the correlation 
coefficients of the Ent-, Cor-, Sec-texture (GLCM-based) and 
AGB change (analogous to Gabor-based textures), which indicates 
that estimates of potato AGB made by using Gabor-based textures 

may differ from estimates of potato AGB made by using CLCM-
based textures. Furthermore, the results shown in Figures 7E,F 
show that the multiscale Gabor-based texture is linear in both the 
potato single- and multi-growth period AGB. Unlike the results 
in Figures 6E,F, when the AGB exceeds 1,000 kg/hm2, the Gabor-
based textures remain sensitive to AGB, which means that using 
multiscale Gabor-based textures to estimate AGB over multiple 
potato growth periods may produce more accurate result than 
GLCM-based textures, which is similar to the above hypothesis. 
The results in Supplementary Figure 3 show that the Gabor-based 
textures at different scales reflect the details of the potato canopy, 
which reminds us that the accuracy of Gabor-based textures must 
be evaluated at different scales to estimate potato AGB.

Evaluation of accuracy of AGB estimation 
model

RGB images of the potato canopy typically consist of soil, 
stems, leaves, weeds, and shade (Supplementary Figure 1), and the 
fraction of each component changes with the advancement of the 
potato growth period. During the tuber formation period (P1), 
potatoes gradually close the ridge, and the shadow between the 
ridges appears clearly on RGB images. During the tuber growth 
period (P2), the branching of the potato canopy becomes 
maximal, as is the vegetation coverage, so the potato canopy 
almost covers the background soil. During the starch-storage 
period (P3), the distribution and transfer of assimilates on the 
ground causes the leaves to yellow and fall off, and the soil and 
weeds become apparent. These changes in the potato canopy can 
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FIGURE 10

The fitted scatter plot of measuring and estimating potato AGB (kg/hm2) using Gabor-based textures from S1, S5, S3, S4, S5 and all, respectively. 
(A–F) LSSVM; (G–L) ELM; (M–R) PLSR. “All” represent texture combinations of different scales. The estimation results of Cali and Vali are shown in 
Supplementary Table A2.
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be captured by image texture features. In addition, given different 
varieties, planting densities, and fertilization treatments, 
significant differences appear in the potato canopy, even in the 
same growth period. Therefore, describing this change based 
solely on single-scale textures would be difficult. Figures 9, 10 
show that using only a single type of texture to estimate AGB with 
different regression techniques is less effective than using multi-
type textures (multi-resolution GLCM-based and multiscale 
Gabor-based textures).

The use of GLCM-based textures of GDS1 produces the most 
accurate AGB estimates when the ground resolution ranges from 
1 to 5 cm. While the ground resolution ranges from 10 to 60 cm, 
the use of GLCM-based textures of GDS30 produces the most 

accurate AGB estimate (Figure 9; Supplementary A1). This differs 
somewhat from the results of Yue et al. (2019), who report that the 
textures GDS1 and GDS30 produce the most accurate AGB 
estimates of winter wheat. This discrepancy may be related to the 
difference in crop canopy structure and image down-sampling. 
The width of potato leaves (greater than or equal to about 5 cm for 
vigorous growth) far exceeds that of winter wheat leaves, which 
allows fine GLCM-based textures to be extracted from GDS5-cm 
images. In the present study, the information on the potato canopy 
structure obtained by the nearest pixel resampling method (the 
ROI spectrum is smoothed only at low resolution, such as less 
than 30 cm) differs significantly from the information on the 
winter wheat canopy structure obtained by Yue et  al. (2019) 
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FIGURE 11

The fitted scatter plot of measuring and estimating potato AGB (kg/hm2) using different ground resolution GLCM-based textures, different scales 
Gabor-based textures and crop height. (A–C) LSSVM; (D–F) ELM; (G–I) PLSR. GLCM-all textures, Hdsm represent combination of different ground 
resolution GLCM-based textures and crop height. The estimation results of Cali and Vali are shown in Supplementary Table A3.
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through the average method (the degree of smoothness differs at 
different resolutions, and the smoothness increases as the image 
resolution decreases). Therefore, the estimation of potato AGB 
based on GDS30 cm images is inferior to that based on GDS5 cm 
images. Combining different ground resolution textures to 
estimate AGB is more accurate, so we conclude that textures with 
different GDS could provide complementary information from 
different perspectives to estimate AGB.

Similarly, we estimate potato AGB using single-scale Gabor-
based textures (Figure 10; Supplementary A2). The results show 
that the estimation accuracy deteriorates with increasing scale 
(Figure 10; Supplementary A2), but samples with AGB exceeding 
1,000 kg/hm2 are less underestimated, which is consistent with the 
results of Fu et al. (2021). As shown in Figure 3, an increased scale 
would make the Gabor convolution kernel larger, and the final 
Gabor-based textures are like the textures after down-sampling. 
As shown earlier, GLCM-based textures down-sampled from 
GDS1 to GDS5 and used to estimate AGB produce less accurate 
results. Fortunately, combining Gabor-based textures with 
different scales leads to more accurate AGB estimates than 
combining GLCM-based textures with different ground 
resolutions, which confirms the assumption of Section 3.3. The 
Gabor filter can be seen as a microscope sensitive to orientation 
and scale (it has good spatial resolution and direction selectivity); 
it can capture local structural information corresponding to 
spatial frequency and is robust against illumination and pose. 
These advantages show that Gabor filtering is a powerful tool to 
describe the local gray distribution of the image (i.e., variations in 
texture). Therefore, Gabor filtering at different scales could 
be used to extract finer textures from images.

We estimated AGB using the LSSVM, ELM, and PLSR 
techniques by combining all GLCM-based textures, all Gabor-based 
textures, and the combined textures with crop height (Figure 11; 
Supplementary A3). The results show that all models combined 
with crop height significantly improve the estimation accuracy, 
which confirms the importance of crop height for estimating potato 
AGB and confirmed the speculation in the introduction (Figure 5) 
that high-frequency information combined with vertical structure 
information may improve AGB estimates. Note that different 
textures combined with crop height produce the most accurate AGB 
estimates, and the samples are closer to a 1:1 line (Figure 11). Taking 
the 1,000 kg/hm2 AGB sample as the splitting point, we counted the 
NRMSE of the different models (Supplementary Figure 4). Using 

high AGB (1000–3,000 kg/hm2) samples as benchmarks, the 
accuracy of the AGB estimation model improves (i) by 22.97% 
(NRMSE) when using different types of textures combined with 
crop height (GLCM-all and Gabor-all, Hdsm) with the LSSVM 
technique as opposed to using only GLCM-all textures, (ii) by 
14.63% compared with using only Gabor-all textures, (iii) by 9.74% 
compared with GLCM-all textures combined with crop height 
(GLCM-all, Hdsm), and (iv) by 8.18% compared with Gabor-all 
textures combined with crop height (Gabor-all, Hdsm). This study 
used one-year data to estimate potato AGB based on crop 
morphological characteristics accurately, but it lacked validation 
analysis of multi-year experiments. In future research, we  will 
collect potato data from different places and years to evaluate 
the model’s performance, enhancing the reliability of the 
research results.

Conclusion

This work evaluates the performance of GLCM-based textures 
of differing resolutions and Gabor-based textures of differing 
scales and their combination with crop height for estimating 
potato AGB. The results lead to the following conclusions:

 1. The correlation between GLCM-based textures and AGB is 
unaffected by the direction and window, but it is more 
affected by the ground resolution. The correlation between 
Gabor-based textures and potato AGB is significantly more 
affected by scale than by direction.

 2. The GLCM-based textures of GDS1and GDS30 produce 
the most accurate AGB estimates when the ground 
resolution ranges from 1 to 5 cm and 10 to 60 cm, 
respectively. However, the accuracy of potato AGB 
estimates based on Gabor-based textures gradually 
deteriorates upon increasing the convolution kernel scale.

 3. Both multi-resolution GLCM-based textures and 
multiscale Gabor-based textures are better than single-type 
textures for estimating AGB, and multiscale Gabor-based 
textures are the best for estimating AGB.

 4. Gabor-based textures combined with crop height 
produce more accurate AGB estimates than GLCM-
based textures. Optimistically, combining two different 
types of textures with crop height solves the problem 

TABLE 3 Statistical analysis of G band DN values at each growth period.

Images P1 P2 P3

Data range Variance Data range Variance Data range Variance

GDS1 255 66.92 255 60.72 255 53.74

GDS5 254 50.52 255 57.39 255 53.71

GDS10 254 50.61 243 57.34 250 43.32

GDS30 254 49.10 254 39.67 253 33.68

GDS60 252 48.54 241 37.64 252 32.75
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whereby potato samples with high AGB are 
underestimated, which is especially important for 
monitoring crop growth and advancing the development 
of precision agriculture.
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