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Atrazine is one of the most widely used herbicides in weed management. However,
the widespread use of atrazine has concurrently accelerated the evolution of weed
resistance mechanisms. Resistant weeds were identified early to contribute to crop
protection in precision agriculture before visible symptoms of atrazine application to
weeds in actual field environments. New developments in unmanned aerial vehicle (UAV)
platforms and sensor technologies promote cost-effective data collection by collecting
multi-modal data at very high spatial and spectral resolution. In this study, we obtained
multispectral and RGB images using UAVs, increased available information with the
help of image fusion technology, and developed a weed spectral resistance index,
WSRI = (RE-R)/(RE-B), based on the difference between susceptible and resistant weed
biotypes. A deep convolutional neural network (DCNN) was applied to evaluate the
potential for identifying resistant weeds in the field. Comparing the WSRI introduced
in this study with previously published vegetation indices (VIs) shows that the WSRI is
better at classifying susceptible and resistant weed biotypes. Fusing multispectral and
RGB images improved the resistance identification accuracy, and the DCNN achieved
high field accuracies of 81.1% for barnyardgrass and 92.4% for velvetleaf. Time series
and weed density influenced the study of weed resistance, with 4 days after application
(4DAA) identified as a watershed timeframe in the study of weed resistance, while
different weed densities resulted in changes in classification accuracy. Multispectral and
deep learning proved to be effective phenotypic techniques that can thoroughly analyze
weed resistance dynamic response and provide valuable methods for high-throughput
phenotyping and accurate field management of resistant weeds.

Keywords: atrazine-resistant weed, multispectral reflectance, vegetation indices (VIs), unmanned aerial vehicle
(UAV), deep convolutional neural networks (DCNNs)

Abbreviations: UAV, unmanned aerial vehicle; DCNN, deep convolutional neural network; VIs, vegetation index; WSRI,
weed spectral resistance index; B, blue band; G, green band; R, red band; NIR, near-infrared band; RE, red edge band;
RTK, real-time kinematic; GCPs, round control points; GS, Gram–Schmidt; DOM, digital orthophoto maps; BAD, before
application day; AD, application day; DAA, days after application; RES, resistant weeds; SUP, susceptible weeds.
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INTRODUCTION

Weeds are one of the major factors affecting crop growth and
are the most significant contributors to yield loss globally (Quan
et al., 2021). Overreliance on commonly used chemical herbicides
has resulted in the appearance of several herbicide-resistant weed
biotypes (Colbach et al., 2017). Developing a method that can
indicate herbicide resistance within an acceptable timeframe after
an application can potentially help growers manage their fields
more effectively (Krähmer et al., 2020).

Atrazine (chemical name: 2-chloro-4-ethylamino-6-
isopropylamino-1,3,5-triazine) belongs to the S-triazine
class of herbicides and blocks the electron flow between
photosystems (Foyer and Mullineaux, 1994). Atrazine herbicide
can significantly reduce photosynthesis by reducing photosystem
II (Sher et al., 2021) and is a widely used herbicide in maize fields
to control broadleaf and grassy weeds (Williams et al., 2011).
Its widespread use has also accelerated the evolution of weed
resistance mechanisms (Kelly et al., 1999; Williams et al., 2011;
Perotti et al., 2020).

However, high-throughput herbicide resistance phenotyping
remains a technical bottleneck, limiting the ability to effectively
manage weeds in the field. Before herbicide application, there is
no significant difference in the visual appearance of susceptible
and resistant weeds of the same species (Eide et al., 2021a).
Laboratory determination of various enzymes present within
plant leaves can identify atrazine resistance but is impractical to
use in large-scale applications (Liu et al., 2018). Hyperspectral
systems to detect differences between resistant and susceptible
biotypes have shown potential in controlled environments
(Shirzadifar et al., 2020b), but their effectiveness is drastically
reduced once introduced into field conditions (Shirzadifar et al.,
2020a). The unstable performance of thermal imagery further
suggested that canopy temperature data were likewise not a
reliable predictor of weed resistance (Eide et al., 2021b). Outdoor
resistance identification methods include whole-plant dose–
response assay tests (Huan et al., 2011), but their investigation
area is fixed and limited, resulting in high deployment expense
and poor timeliness. Thus, current phenotypic analysis methods
can hardly satisfy the high-throughput survey requirements for
resistant weeds in the field.

Field-based fast, accurate, and robust phenotyping methods
are essential for atrazine-resistant weed investigation. Atrazine
applications reduce the efficiency of the photosynthetic
mechanism and affect chlorophyll and other pigments, which
change the spectral reflectance of plants in the visible/near-
infrared range (Sher et al., 2021). Therefore, it is assumed that
the spectral characteristics of susceptible weeds should show
different pathways compared to resistant weeds after herbicide
application. These physiological changes induced by herbicide
stress have laid the foundation for monitoring resistance using
vegetation indices (VIs) (Duddu et al., 2019). Multispectral
bands and the normalized difference vegetation index (NDVI)
provide improved glyphosate resistance classification (Eide et al.,
2021a). Therefore, Vis-based high-throughput phenotyping
methods can be reliably applied to atrazine-resistant weed
investigation in the field.

Unmanned aerial vehicles (UAVs) are a popular remote
sensing platform successfully used to obtain high-resolution
aerial images for weed detection and mapping (Su et al., 2022)
because they can be equipped with various imaging sensors to
collect high-spatial, -spectral, and -temporal resolution images
(Yang et al., 2017, 2020). For example, UAVs have been used
for physiological and geometric plant characterization (Zhang
et al., 2020; Meiyan et al., 2022), as well as for pest and disease
classification (Dai et al., 2020; Xia et al., 2021) and resistant weed
identification (Eide et al., 2021a). In addition, remote sensing
imagery is linked to specific farm problems through deep learning
for the identification of biological and non-biological stresses
in crops (Francesconi et al., 2021; Ishengoma et al., 2021; Jiang
et al., 2021; Zhou et al., 2021), segmentation, and classification
(He et al., 2021; Osco et al., 2021; Vong et al., 2021). These
studies show that the combination of UAV remote sensing and
deep learning provides the scope for large-scale resistant weed
evaluation (Krähmer et al., 2020; Wang et al., 2022).

This study explores the potential for using multispectral
images collected by UAVs in crop fields for identifying resistant
weeds and proposes an effective method to identify resistant
weeds in real field environments. We propose a weed spectral
resistance index called WSRI = (RE-R)/(RE-B) to investigate
resistant weeds by analyzing the canopy spectral response
of barnyardgrass and velvetleaf. The fusion of multispectral
and RGB images combining canopy spectral and texture
feature information and applying a deep convolutional neural
network (DCNN) are carried out to evaluate the potential
for identifying resistant weeds in the field based on their
dynamic response.

MATERIALS AND METHODS

Test Site and Experimental Setup
The weed resistance experiment was conducted at the Xiangyang
Farm, Northeast Agricultural University, Harbin, Heilongjiang,
China (45◦61′ N, 126◦97′ E), as shown Figure 1. The region
has a cold-temperate continental climate, with average annual
precipitation of 400–600 mm and an average annual effective
temperature of 2,800◦C. The experimental soil type is black soil,
with a soil tillage layer, a nitrogen content of 0.07–0.11%, a fast-
acting phosphorous content of 20.5–55.8 mg/kg, and a fast-acting
potassium content of 116.6–128.1 mg/kg.

Two different weed species were selected for this study.
Common broadleaf and grassy weeds in the Heilongjiang region
include barnyardgrass (Echinochloa crusgalli (L.) Beauv) and
velvetleaf (Abutilon theophrasti Medicus). Weed seeds were
collected from 20 different fields in Heilongjiang and confirmed
to be atrazine-susceptible and -resistant biotypes (Liu et al.,
2018). The seeds were air-dried and stored at 4◦C. The field was
treated with glufosinate at 0.45 kg active ingredient (AI) ha−1

plus pendimethalin at 1.12 kg AI ha−1 before planting to kill
existing vegetation and provide residual weed control 1 week
before crop planting.

In this trial, maize seeds were first sown in black soil on
May 13. The weed seeds were mixed with sand, dropped on
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FIGURE 1 | Distribution of test sites and test fields.

the soil surface, and then harrowed immediately after maize
sowing. Weed seed dropping is divided into three densities (low,
40 seeds m−2; moderate, 160 seeds m−2; high, 320 seeds m−2).
After maize germination, slight spray irrigation was applied to
the whole field to accelerate weed germination. The herbicide
atrazine (Ji Feng Pesticide Co., Jilin, China) was then sprayed
at a uniform rate on 1st June when the maize reached the
three-leaf stage.

In the experimental field, 40 plots were divided into three
weed density treatments (Figure 2B). Each treatment consisted
of 12 or 14 plots measuring 3 m × 5 m in six rows with a
0.6-m row spacing. A 1-meter-wide protection plot surrounded
the entire field to reduce edge effects. This study investigated
the ground truthing data before the atrazine application day.

The manual measurements for ground truthing consisted of
the survival status of the two weed types and geographical
coordinates after application.

Data Acquisition
Unmanned Aerial Vehicle Image Collection
Multispectral and RGB images were collected with DJI Phantom
4 Multispectral and DJI Phantom 4 RTK UAVs (SZ DJI
Technology Co., Ltd., Shenzhen, China), as shown in Figure 2A.
The UAVs are equipped with centimeter-level navigation and
positioning systems. The DJI Phantom 4 Multispectral camera
simultaneously acquires images in blue (B), green (G), red (R),
red edge (RE), and near-infrared (NIR) bands (Table 1) at a
1600 × 1300 pixel resolutions. The DJI Phantom 4 RTK has a
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FIGURE 2 | Workflow of the unmanned aerial vehicle (UAV) high-throughput field weed resistance approach. (A) DJI Phantom 4 Multispectral, DJI Phantom 4 RTK,
DJI Terra, and RTK GPS instrument for collecting field images. (B) Digital orthophoto maps (DOM) of three maize field densities (low, moderate, high) for weed
resistance research. (C) Gram–Schmidt sharpening for improving spectral image information. (D) Reflectance values of four objects in the orthophoto (soil, maize,
barnyardgrass, and velvetleaf). (E) Soil and maize removal and two types of weed segmentation, including barnyardgrass and velvetleaf. (F) Two weed image
datasets from 6 days after atrazine application (6 DAA) used in the classification models. (G) Deep convolutional neural network (DCNN) architecture.

camera with an FC6310R lens (f = 8.8 mm) and a 4864 × 3648
pixel resolution. Based on a UAV flight test with manually
controlled height varying from 10 to 30 m above ground, the UAV
altitude was finally set to 15 m with no disturbance to the leaves.

The ground sampling distances (GSDs) of multispectral and RGB
images were 0.79 and 0.41 cm pixel−1, respectively. UAV flights
were conducted in the field on 6th and 20th May 2021 to collect
the early season information needed for the study. RGB images
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were acquired first, and then multispectral images were acquired
each day. The mean forward overlap of the photographs was 80%,
and the mean sidelap was 70%. The UAV observations covered
the complete experimental range (Table 2). However, some data
are missing because of weather conditions.

Image Preprocessing
Approximately 2,000 images per flight were used for the
photogrammetry process using DJI Terra software (SZ DJI
Technology Co., Ltd., Shenzhen, China) to obtain images of the
entire experimental area. The global navigation satellite system
(GNSS) real-time motion control measured seven ground control
points (G) to obtain accurate geographical references. The seven
GCPs were measured with a GNSS real-time kinematic (RTK)
receiver (RTK GPS instrument i50, CHC Navigation Co., Ltd.,
Shanghai, China). The reflectance correction and radiometric
calibration use a 3 m2 carpet reference and the Spectron on
software (Resonon Inc., Bozeman, MT, United States). The
empirical line method was then used to convert the image’s digital
number (DN) value to a reflectance value (Figure 2D).

Development of Specific Indices
Identifying Atrazine-Resistant Weeds
Canopy spectral reflectance differs between weed species, and
some spectrum regions may better identify atrazine resistance
status. Sample selection was based on the weed survival 14 days
after application. The reflectance of susceptible and resistant
biotypes of two weed species was counted in the multispectral
images after 2 days of application.

TABLE 1 | Multispectral camera band specifications.

Band Name Center wavelength (nm) Bandwidth (nm)

1 Blue 450 32

2 Green 560 32

3 Red 650 32

4 Near infrared 840 52

5 Red edge 730 32

TABLE 2 | Weather conditions during data collection.

Band** Collection Date Air Temp (◦C) Weather

BAD 2021.05.30 11∼22◦C Clear day

AD 2021.06.01 11∼22◦C Cloudy day

1 DAA 2021.06.02 13∼21◦C Cloudy day

2 DAA 2021.06.03 10∼20◦C Cloudy day

4 DAA 2021.06.05 10∼18◦C Cloudy day

5 DAA 2021.06.06 11∼21◦C Clear day

6 DAA 2021.06.07 12∼25◦C Clear day

7 DAA 2021.06.08 13∼28◦C Clear day

8 DAA 2021.06.09 18∼27◦C Cloudy day

10 DAA 2021.06.11 15∼28◦C Clear day

14 DAA 2021.06.15 18∼29◦C Cloudy day

∗∗BAD, before atrazine application day. AD, atrazine application day; DAA, days
after atrazine application.

Figure 3 shows barnyardgrass and velvetleaf reflectance
density maps for five bands extracted from multispectral images
of susceptible and resistant biotype regions. Slight differences
between susceptible and resistant biotypes were observed in the
green, red, red edge, and near-infrared bands, and the differences
between the red (650 nm) and red edge (780 nm) bands show
greater stability (Jin et al., 2020). Part of the blue (450 nm) band
was observed to reduce the differences in leaf surface reflectance,
thereby improving the correlation between the vegetation index
and leaf pigment content (Sims and Gamon, 2002). Therefore, we
proposed a weed spectral resistance index named WSRI = (RE-
R)/(RE-B) to calculate and evaluate actual field environmental
resistant weeds and tested it in this study (Figure 2F).

Many VIs have similar effects when dealing with classification
problems, differing in their index form expressions. Simple
vegetation index forms, such as the NDVI and ratio vegetation
index (RVI), are universal to the problem and reflect vegetation
information well in many cases. In this study, we entered our
multispectral image data into nine previously published VIs
(Table 3) and the WSRI to evaluate and compare their weed
resistance classification accuracies.

Image Fusion
The multispectral images with low spatial resolution used
for classification lost almost all texture features. However,
susceptible and resistant biotype differences are expressed in
the texture information. The high spatial resolution of RGB
images compensated for the lost texture information in the
multispectral images, so image fusion using the Gram–Schmidt
pan-sharpening method in ENVI 5.4.1 (EXELIS, Boulder, CO,
United States) was used (Figure 2C). The fusion images have five
bands: blue, green, red, red-edge, and near-infrared.

The Gram–Schmidt pan-sharpening method is based on
Gram–Schmidt (GS) orthogonalization. GS orthogonalization is
performed to orthogonalize matrix data or digital image bands
(Laben and Brower, 2000). It first created a simulated low-
resolution panchromatic band as a weighted linear combination
of multispectral bands. Then, GS orthogonalization is performed
using all bands, including the simulated panchromatic and
multispectral bands. The simulated panchromatic band is the
first band in GS orthogonalization. After making all bands
orthogonal by using GS orthogonalization, the high-spatial
resolution panchromatic band replaces the first GS band. Last, an
inverse GS transform creates the pan-bands (Laben and Brower,
2000; Ehlers et al., 2010).

Background Removal and Weed
Segmentation
Because of the reflectance differences between soil and plants
(Figure 2D), Otsu’s thresholding algorithm (Ostu et al., 1979) was
used to separate vegetation from the soil, find an optimal value to
be used for segmentation, and then adjust the threshold value,
if necessary, to improve separation of the plants from the soil
(Figure 2E; Liao et al., 2020).

Manual segmentation of maize and weeds has higher accuracy
but is expensive and time-consuming. UAV multispectral and
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FIGURE 3 | Reflectance density maps of two weed resistant and susceptible biotypes.

RGB images were segmented for maize, barnyardgrass, and
velvetleaf using the support vector machine (SVM) classifier
(Cortes et al., 1995). The four-leaf stage of maize did not shade
the weeds significantly and separated the maize and weeds better.
A binary mask layer was created to segment the maize and the two
weed types from the UAV images’ extracted spectral and texture
features for further processing (Figure 2E). The binary mask layer
was generated in ENVI based on manually tagged template data.

The performance of the SVM classifier was evaluated
using the confusion matrix and accuracy statistics, with the
overall accuracy based on randomly selected independent
test samples. The overall accuracy of SVM classification is
94.4%, which meets the experimental requirements. The zonal
statistics were obtained using ArcPy and the Python 2.7
programming language to remove soil and maize and segment
the barnyardgrass and velvetleaf.

Dataset Production
Different application effects were observed in the experimental
area, and a training template was created for individual velvetleaf
plants based on survival status 14 days after application

(Figure 4A). The training template contained two classes:
susceptible velvetleaf and resistant velvetleaf (Figure 4B).

Because barnyardgrass grows densely and is mostly
aggregated, it is not easy to separate them into individual
plants (Maun and Barrett, 1986). In this study, the resistance
level was set according to the death rate of barnyardgrass in
the same area 14 days after application. Figure 4A shows the
example plants from blocks at different resistance levels (example
of barnyardgrasses in high-density areas). Resistance level 1 is
defined as 0–25% death of barnyardgrasses; resistance level 2 is
26–50% death of barnyardgrasses; resistance level 3 is 51–75%
death of barnyardgrasses; resistance level 4 is 76–95% death of
barnyardgrasses; and resistance level 5 indicates an entirely dead
barnyardgrass block. Blocks with resistance levels less than or
equal to 3 were considered resistant (Figure 4B) because these
blocks exceeded the threshold for weed control in farmland
weeds (Anru and Cuijuan, 2014).

The image patch of each weed plot must be cropped from
the barnyardgrass WSRI fusion segmentation image to build the
dataset for DCNN modeling. Thus, a region of interest (ROI)
shapefile was created in ArcMap 10.3 (Esri Inc., Redlands, CA,

Frontiers in Plant Science | www.frontiersin.org 6 July 2022 | Volume 13 | Article 938604

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-938604 July 14, 2022 Time: 15:6 # 7

Xia et al. Multispectral Resistant Weed Research

TABLE 3 | Vegetation indices used in this study.

Category Features Expression** References

DVI Difference
vegetation index

NIR-R Jordan, 1969

MTCI MERIS terrestrial
chlorophyll index

(NIR-RE)/(RE-R) Dash and Curran,
2004

NDVI Normalized
differential
vegetation index

(NIR-R)/(NIR + R) Tucker et al., 1979

GNDVI Green normalized
difference
vegetation index

(NIR-G)/(NIR + G) Gitelson and
Merzlyak, 1998

NDRE Normalized
difference red-edge
index

(NIR-
RE)/(NIR + RE)

Sims and Gamon,
2002

RENDVI Red-edge
normalized
difference
vegetation index

(RE-R)/(RE + R) Sims and Gamon,
2002

RVI Ratio vegetation
index

NIR/R Birth and Mcvey,
1968

RERVI Red-edge ratio
vegetation index

NIR/RE Vincini and Frazzi,
2009

PSRI Plant senescence
reflectance index

(R-G)/NIR Merzlyak et al.,
1999

WSRI Weed Spectral
Resistance Index

(RE-R)/(RE-B) This paper

∗∗B, G, R, RE, and NIR represent blue, green, red, red-edge, and near-infrared
bands, respectively.

United States), and rectangles measuring around 0.5 m × 0.5 m
were drawn. The cropped patch sizes were approximately
100× 100 pixels. All data sets are four bands with a combination
of WSRI images and RGB images.

The other UAV images throughout and after application
were also processed to generate time-series image patches
for dynamic weed resistance classification. Rotated image
enhancement was applied to display the different shapes and
directions of the weeds in the field. Four clockwise rotations
(0◦, the original data; 90◦; 180◦; and 270◦) were performed

for image enhancement. For the barnyardgrass dataset, the
original 1,750 observations were increased four times, with 3,128
observations representing resistant blocks and 3,872 observations
representing susceptible blocks for 7,000 observations each day
and 28,000 total observations. For the velvetleaf dataset, the
original 480 observations were increased four times, with 1,136
observations representing resistant plants and 784 observations
representing susceptible plants for 1,920 observations each day
and 7,680 total observations. Before the data augmentation,
all data were randomly split into training and validation
sets in an 8:2 ratio. The model performance was tested
using a validation area (Figure 4B) to illustrate model’s the
generality and robustness.

Deep Convolutional Neural Network for
Resistant Weed Classification
A DCNN (Figure 2G) for classifying resistant weeds was
constructed using MATLAB R2021a (MathWorks Inc., Natick,
MA, United States). The model was trained and tested on an
NVIDIA 2080Ti GPU with 48-GB RAM and on a 64-bit Windows
10 operating system. CUDA version is 11.4.

The network was built based on the ResNet-50 model (He
et al., 2016) and transfer learning (Kieffer et al., 2017). This
study used the Resnet-50 model pre-trained on ImageNet
(Krizhevsky et al., 2012) without fully connected (FC)
layers for transfer learning. The input size was changed
to 100 × 100 × 4 to match the size of the image patches.
Then a convolutional layer (size of 3 × 3 × 3) was added
behind the input 4-band images for reduced dimension on
data. The ReLU activation layer was appended behind the
convolutional layer to add non-linear characteristics. The
dropout regularization method was deployed after the FC layer
to reduce overfitting (Srivastava et al., 2014), and the dropout
rate was set at 30%.

An Adam optimizer (Kingma and Ba, 2014) was used with
a 10−4 learning rate and 10−3 decay to adaptively optimize
the training process. The batch size was set to 128, and
the data generator generated each batch with real-time data

FIGURE 4 | Two weeds belonging to blocks were evaluated as susceptible and resistant. (A) Manual resistance level and label based on weed death coverage
14 days after atrazine application. (B) Visualization of the data labels on other days.
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augmentation. The model was trained for 300 epochs with
10 batches per epoch. The accuracy of each classification was
observed using a confusion matrix. Accuracy metrics were
averaged from five repeats of randomized holdback cross-
validation.

RESULTS

The DCNN was applied to classify weed resistance using the
canopy spectral and textural information extracted from the UAV
multispectral and RGB sensors, and the results are shown in
Table 4.

Contribution of Spectral Bands and
Vegetation Indices in the Resistant Weed
Classification
The susceptible and resistant biotype reflectance densities of
barnyardgrass and velvetleaf after atrazine application are shown
in Figure 3. Spectral band differences between susceptible and
resistant biotypes are related to the chlorophyll content and cell
wall structure of the weed species.

Atrazine-resistant weed biotypes showed a slightly lower
reflectance than susceptible weed biotypes in the visible light

TABLE 4 | Resistant weed classification performance summary.

Species Feature type Metrics 2DAA 4DAA 6DAA 8DAA

Barnyardgrass RGB Accuracy 0.554 0.609 0.692 0.772

WSRI 0.571 0.634 0.724 0.796

DVI 0.533 0.583 0.641 0.717

MCTI 0.526 0.559 0.619 0.693

NDVI 0.556 0.591 0.654 0.746

GNDVI 0.548 0.570 0.635 0.712

NDRE 0.551 0.587 0.655 0.737

NDVI-RE 0.564 0.597 0.657 0.759

RVI 0.559 0.584 0.681 0.755

RVI-RE 0.543 0.576 0.646 0.722

PSRI 0.527 0.566 0.624 0.709

5 BANDS 0.551 0.582 0.652 0.776

WSRI + RGB 0.602 0.665 0.761 0.811

Velvetleaf RGB Accuracy 0.529 0.596 0.753 0.905

WSRI 0.541 0.604 0.767 0.914

DVI 0.532 0.573 0.691 0.867

MCTI 0.526 0.562 0.677 0.822

NDVI 0.547 0.578 0.705 0.894

GNDVI 0.539 0.567 0.686 0.875

NDRE 0.545 0.562 0.679 0.871

NDVI-RE 0.528 0.583 0.711 0.907

RVI 0.539 0.571 0.700 0.891

RVI-RE 0.537 0.576 0.694 0.898

PSRI 0.525 0.559 0.652 0.834

5 BANDS 0.558 0.598 0.702 0.902

WSRI + RGB 0.551 0.634 0.798 0.924

DAA, days after application; WSRI, weed spectral resistance index.

region. The differences between susceptible and resistant biotypes
were more significant in the red edge and near-infrared regions,
and the resistant biotypes showed increased spectral reflectance.
These effects are related to the low chlorophyll content of
susceptible biotypes, corresponding to plant stress response
(Gomes et al., 2016). The main reason is that the application
of atrazine reduces photosynthesis and destroys the pigments
(Hess, 2000; Zhu et al., 2009). The red band is the central
band of chlorophyll, which is the specific chlorophyll absorption
band (Tros et al., 2021). The red edge position, which is the
slope inflection point between red absorption and near-infrared
reflectance, is usually used to correlate the chlorophyll content
(Horler et al., 1983; Zarco-Tejada et al., 2019). Thus, the red
and red edge bands are stable for the classifying atrazine-
resistant weed biotypes.

This study selected the most commonly used VIs to include
some stress indices and compare their results from the DCNN
with the WSRI (Table 4). Among these, stress and pigmentation
changes resulted from atrazine herbicide application. To further
explore the differences in the vegetation index distributions
for observing susceptible and resistant biotypes, violin plots of
barnyardgrass and velvetleaf for 10 VIs 2 days after application
are shown in Figure 5.

The results in Figure 5 show that WSRI, DVI, NDVI, NDVI-
RE, and RVI VIs distinguish between susceptible and resistant
barnyardgrasses, with a common trait of these indices being that
they all contain red bands. The difference vegetation index (DVI)
and the RVI have little differences in susceptible and resistant
biotypes because they do not integrate multi-band information
well. The NDVI-RE used the red-edge bands to replace the NIR
bands, resulting in a slightly better classification than the NDVI.

The WSRI retained the numerator structure of the NDVI-
RE index and added the blue bands to the denominator to
eliminate the spectral interference between pigments to achieve
a better classification result. However, the WSRI classification
of susceptible and resistant velvetleaf was very poor compared
with barnyardgrass at the early stage of application, and the
NDVI-RE and WSRI provided only partial classification. The
WSRI makes the resistant weed data more concentrated and
the susceptible weed data more dispersed, widening their
differences. The average spectral response of barnyardgrass
shows a more prominent separation than velvetleaf, possibly
via lower herbicide uptake at the cuticular level, causing it
to respond more slowly to herbicide stress (Couderchet and
Retzlaff, 1995). In addition, velvetleaf has a higher reflectance
than barnyardgrass, resulting in spectral changes that are more
difficult to represent effectively.

Contribution of Spectra and RGB in
Resistant Weed Classification
Spectral information with the DCNN resulted in the highest
weed resistance classification accuracy when using a single
sensor. The single-band WSRI vegetation information surpasses
the RGB texture information, even though the RGB image
resolution is about 10 times higher than that of the spectral
images. The difference in accuracy between them was largest
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FIGURE 5 | Violin plots of different vegetation indices for susceptible and resistant biotypes of barnyardgrass and velvetleaf 2 days after application, where
*p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001 indicate significant differences between the susceptible and resistant biotypes, and ns indicates no
significance differences.

6 days after application, while the difference was smallest 8 days
after application.

As shown in Table 4, the combination of WSRI spectral
and RGB structural information improved accuracy, compared
to using only a single sensor. RGB-derived detailed texture
features, such as slight leaf discoloration and rolling, are
not obtained from spectral features (Rischbeck et al., 2016;
Stanton et al., 2017). In addition, canopy structure information
can overcome the asymptotic saturation problems inherent to
spectral features to some extent (Wallace, 2013; Maimaitijiang
et al., 2020). Therefore, the combination of spectral and
textural information improves classification accuracy. It should
be noted that the accuracy improvement was not substantial, and
combining multispectral and RGB information is likely attributed
to information homogeneity and redundancy among canopy
spectral and textural features (Pelizari et al., 2018; Maimaitijiang
et al., 2020).

Impacts of Different Times in Resistant
Weed Classification
The time-series NDVI image patches of barnyardgrass and
velvetleaf during the atrazine application stage are visualized

in Figure 6. NDVI images reflect vegetation health status and
nutrient information (Eide et al., 2021a). The color of the plant
areas in the NDVI images represent the plant health status,
where NDVI values close to 1 and redder plant regions mean
healthier plants. As time increased, herbicide stress became
more severe, and differences in resistance levels among weed
blocks were increasingly evident. As shown in Figure 6A for
barnyardgrass, the susceptible biotypes changed rapidly under
herbicide application. About 3 days after application, the NDVI
image of the leaves changed from red to yellow or even green,
meaning that the vital characteristics of the susceptible biotypes
gradually diminished.

By contrast, the resistant biotypes changed slowly with low
amplitudes under the herbicide application. About 5 days after
application, the NDVI image of the leaves changed slightly from
red to yellow. The higher the resistance level, the smaller the
change toward yellow. The highest resistance level showed only
signs of stopping the growth and then completely recovered to
normal growth about 4 days after application.

The change rate under herbicide stress conditions and the
recovery speed after the application reflect resistance at different
stages. The higher the resistance level of the barnyardgrass plots,
the later the changes appeared. The large number of resistant
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FIGURE 6 | UAV-based visualization of two weed species with dynamic changes in NDVI images. (A) Image patches of five resistance levels of barnyardgrass under
herbicide stress, where dashed black borders around the patches indicate significant changes. (B) Image patches of two susceptible and two resistant velvetleaf
under herbicide stress, where dashed black borders around the patches indicate significant changes. BAD is before application day; AD is application day; DAA is
days after application.

barnyardgrasses surrounding susceptible barnyardgrasses made
it difficult to observe changes in high-resistance level plots.
A significant difference between susceptible and resistant plots in
later stages is that the recovery of many resistant barnyardgrasses
in the resistant plots compensated for the death of susceptible
barnyardgrasses.

The dynamics of velvetleaf herbicide stress are easier to
analyze because of their individual plant growth characteristics.
Velvetleaf had longer herbicide stress response times than
barnyardgrass, and the susceptibility and resistance of velvetleaf

TABLE 5 | Resistant weed classification performance summary of
different densities.

Densities Metrics 2DAA 4DAA 6DAA 8DAA

Low Accuracy 0.617 0.649 0.725 0.821

Moderate Accuracy 0.611 0.673 0.708 0.746

High Accuracy 0.547 0.614 0.742 0.794

were not directly related to size, as shown in Figure 6B. The
mechanism of prolonged plant death generated by sink tissue
toxicity in velvetleaf may be the main reason (Fuchs et al., 2002).
Atrazine caused gradual inhibition of photosynthesis in velvetleaf
leaves that increased over several days and was nearly complete by
5 days (Qi et al., 2018). Therefore, the difference in the spectral
response of velvetleaf is smaller than that of barnyardgrass 2 days
after application.

About 5 days after application, the susceptible velvetleaf began
to change significantly. The NDVI images show large red leaf
area reductions with relatively little activity. By contrast, the
NDVI images of the resistant velvetleaf leaves changed slightly
from red to yellow about 5 days after application. However,
the formerly red areas began recovering about 7 days after
application, sometimes even before the herbicide application,
indicating that the resistant velvetleaf had resumed growth.

Both susceptible and resistant velvetleaf biotypes showed
growth inhibition at the beginning of herbicide stress, but
the spectral information was still better classified by inhibition
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FIGURE 7 | Classification of susceptible and resistant barnyardgrass biotypes at different densities (high, moderate, low) by the WSRI. DAA is days after application.

FIGURE 8 | Confusion matrices for barnyardgrass and velvetleaf in the validation area. RES are resistant weeds. SUP are susceptible weeds.

differences, demonstrating the potential of spectral information
for the study of resistant weeds.

Impacts of Different Densities in
Resistant Weed Classification
The distribution of barnyardgrass in a real farmland environment
shows a clustered distribution (Maun and Barrett, 1986).

Therefore, studies were conducted for different weed densities.
The classification model was applied to different barnyardgrass
densities to evaluate their reliability and adaptability. As shown
in Table 5, the classification accuracy after herbicide application
had maximum accuracies of 0.794 for low-density weeds,
0.736 for medium-density weeds, and 0.821 for high-density
weeds. However, the velvetleaf distribution was rarely clustered,
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and different velvetleaf densities had almost no effect on the
classification model.

The performance of the WSRI was evaluated for each plot
random samples on different densities. Figure 7 shows the WSRI
density plots for susceptible and resistant barnyardgrass in the
sample areas at different times after application and the box
plots at different weed densities. The results show gaps between
susceptible and resistant biotypes at different densities, and the
gaps gradually increased over time.

In summary, atrazine spraying would encounter problems
such as shading and uneven spraying under high-density
barnyardgrass conditions, potentially overestimating resistance
levels in susceptible areas. Moreover, symbiotic areas of resistant
and susceptible barnyardgrass would affect the spectral response
value, resulting in a low-classification accuracy model at early
application. The low- and moderate-density areas contain few
weeds. Some susceptible weeds died with increasing time
after application, resulting in small fluctuations in spectral
response gaps and small improvements in accuracy rates. In
addition, the massive death of susceptible weeds over time
in high-density areas widened the gap and improved the
classification accuracy.

Model Validation
A robust model should be able to generalize to new datasets
and still perform well. Therefore, the model validation used the
DCNN model to classify the susceptible and resistant weeds in the
validation area, and the confusion matrices of the classification
results are shown in Figure 8. At 8 days after application, the
DCNN provided the highest classification accuracy, with 81.8%
for barnyardgrass and 89.3% for velvetleaf. At 6 days after
application, the DCNN provided better classification accuracy,
with 71.6% for barnyardgrass and 78.6% for velvetleaf. The test
results also confirmed the WSRI and DCNN model’s robustness
and generality for further application.

DISCUSSION

Impacts of Different Information in
Resistant Weed Classification
Spectral information can reflect the physiological properties
of the plant (Rajcan and Swanton, 2001), and physiological
properties express differences between resistant and susceptible
biotypes faster than appearance. Therefore, multispectral images
can assess weed resistance faster and better than RGB images
at the early stage of application. As reported in many previous
works, spectral information such as VIs has become the primary
remote sensing indicator for plant phenotypes because of their
stable and superior performance (Ballester et al., 2017). RGB
canopy structure information yielded slightly lower, but still
comparable, performance than spectral information, indicating
that canopy structure information is a promising alternative to
commonly used VIs.

The results of this study indicate that the choice of the
band is critical when establishing the vegetation index. The
red and red edge bands had a significant influence on the

classification of resistant weeds, and the reflectance changes
of these two bands correlated with the degree of herbicide
stress. The study results confirmed that the WSRI (RE-R)/(RE-
B) performed well in classifying resistant weeds. The WSRI
combines the effects of blue, red, and red-edge wavelengths
to provide a comprehensive picture of weed dynamics after
application and displayed better performance than other indices.
Therefore, it provides powerful support for monitoring and
investigating resistant weeds over a large canopy area using
UAVs or satellites.

Time series of susceptible and resistant weed biotypes are
dynamic expressions of herbicide stress. In this study, 4 days
after application (4DAA) was the watershed timeframe for
studying resistant weeds. The accurate timing of resistant weed
investigation affects effective farmland time management. The
rate of change and recovery after herbicide stress begins is key
to classifying susceptible and resistant weed biotypes. Different
weed species mean that differences in susceptible and resistant
biotypes are expressed at different times. The classification
effect of barnyardgrass was better than that of velvetleaf at the
beginning of the application because of differences in their shape,
physiology, and distribution characteristics. As the application
time increased, the classification effect of velvetleaf became better
than that for barnyardgrass.

Weed density is another factor influencing the research
of resistant weeds. It is better to investigate the resistance of
clustered weeds using different weed densities. The DCNN
trained separately for different weed densities may increase
the accuracy of susceptible and resistant barnyardgrass
classifications. It is worth noting that higher densities mean
the possibility of more resistant weeds, and untimely treatment
multiplies the damage to the crop (Alipour et al., 2022).

Effectiveness and Limitations of
Unmanned Aerial Vehicle Traits in
Resistant Weed Investigation
This study first proposed the multispectral image-derived WSRI
to classify susceptible and resistant weeds in real farmland
environments. For resistant weed investigation, it took at least 2 h
for three raters to manually measure the distribution of resistant
weeds in 40 plots. The UAV field flights took less than 15 min,
which was fast enough to capture accurate data while avoiding
fluctuations in environmental factors such as cloud or wind.
More importantly, the high efficiency of UAV phenotyping makes
dynamic monitoring with high temporal resolution possible.
Therefore, UAVs have shown great potential in the emerging
study of field-resistant weeds.

However, there are some limitations for the WSRI. First,
changes at the early application stage may not adequately reflect
the overall weed resistance because resistant weeds grow slowly
during herbicide stress conditions. This is supported by the
fact that differences between susceptible and resistant biotypes
were not significant at the early stages, so 4 days after herbicide
application is the optimal time to investigate resistant weeds.
Additionally, the WSRI is an unstable measure easily affected
by temperature, humidity, and light conditions in the field.
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Therefore, resistant weeds in the field should continue to be the
subject of in-depth study and discussion.

CONCLUSION

The proposed UAV–WSRI phenotypic method investigates
the potential of fused multispectral and RGB image data
combined with deep learning for resistant weed identification
in the field. Compared with imaging chambers and expensive
unmanned ground vehicle platforms, the UAV platform is more
flexible and efficient to deploy for high-throughput phenotyping
under field conditions. In addition, the timeliness of UAVs
guarantees the reliability of phenotypic traits for resistant weed
identification in the field.

The WSRI introduced in this study showed better consistency
than previously published spectral VIs, with actual data for
atrazine-resistant weed in maize fields. The WSRI provides
better classification results than high-resolution RGB data, and
the fusion of the two data types further improves the results.
The robust deep learning model (DCNN) makes it possible to
monitor the dynamic response to resistant weeds in the field
precisely, regardless of complex environmental factors.

Our results also show that time series and weed density are
closely related to resistant weed identification. The UAV–WSRI
phenotypic method could be extended to evaluate the resistance

response of other field weeds under herbicide stress, providing a
valuable step for further field weed resistance studies.
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