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MYB transcription factors (TFs) mediate plant responses and defenses to biotic and abiotic 
stresses. The effects of overexpression of MYB37, an R2R3 MYB subgroup 14 transcription 
factors in Arabidopsis thaliana, on chlorophyll content, chlorophyll fluorescence parameters, 
reactive oxygen species (ROS) metabolism, and the contents of osmotic regulatory 
substances were studied under 100 mM NaCl stress. Compared with the wild type (Col-0), 
MYB37 overexpression significantly alleviated the salt stress symptoms in A. thaliana plants. 
Chlorophyll a (Chl a) and chlorophyll b (Chl b) contents were significantly decreased in OE-1 
and OE-2 than in Col-0. Particularly, the Chl a/b ratio was also higher in OE-1 and OE-2 
than in Col-0 under NaCl stress. However, MYB37 overexpression alleviated the degradation 
of chlorophyll, especially Chl a. Salt stress inhibited the activities of PSII and PSI in 
Arabidopsis leaves, but did not affect the activity of PSII electron donor side oxygen-evolving 
complex (OEC). MYB37 overexpression increased photosynthesis in Arabidopsis by 
increasing PSII and PSI activities. MYB37 overexpression also promoted the transfer of 
electrons from QA to QB on the PSII receptor side of Arabidopsis under NaCl stress. 
Additionally, MYB37 overexpression increased Y(II) and Y(NPQ) of Arabidopsis under NaCl 
stress and decreased Y(NO). These results indicate that MYB37 overexpression increases 
PSII activity and regulates the proportion of energy dissipation in Arabidopsis leaves under 
NaCl stress, thus decreasing the proportion of inactivated reaction centers. Salt stress 
causes excess electrons and energy in the photosynthetic electron transport chain of 
Arabidopsis leaves, resulting in the release of reactive oxygen species (ROS), such as 
superoxide anion and hydrogen peroxide, leading to oxidative damage. Nevertheless, 
MYB37 overexpression reduced accumulation of malondialdehyde in Arabidopsis leaves 
under NaCl stress and alleviated the degree of membrane lipid peroxidation caused by 
ROS. Salt stress also enhanced the accumulation of soluble sugar (SS) and proline (Pro) 
in Arabidopsis leaves, thus reducing salt stress damage to plants. Salt stress also degraded 
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INTRODUCTION

Abiotic stress, especially salt stress, has gradually become the 
primary factor affecting the survival and distribution of plants 
due to the change in global climate conditions (Shaheen et  al., 
2013). Salt stress mainly affects plants in three aspects: (I) 
Excessive salt in the soil produces osmotic stress. As a result, 
the water potential becomes lower in soil than in plant root 
cells, thus inhibiting water absorption (Rana and Mark, 2008). 
(II) Gradual accumulation of Na+ inhibits the absorption of 
K+ in plants, thus affecting some physiological and biochemical 
reactions that are dependent on K+, including enzymatic reactions, 
protein synthesis, and photosynthesis. Excessive Na+ and Cl− 
also significantly increase intracellular Ca2+, resulting in metabolic 
disorder and even death (Tsugane et  al., 1999). (III) Salt stress 
causes secondary stresses on plants, including oxidative stress 
and the inhibition of photosynthesis. Excessive reactive oxygen 
species (ROS) can produce oxidative stress on plants, and 
damage DNA, enzymes, and biofilm, thus affecting cell structure 
and metabolism (Dorothea and Ramanjulu, 2005). For instance, 
salt stress decreases the stability of thylakoid membranes by 
increasing the rate of chlorophyll degradation in plants, thus 
hindering the electron transport chain and energy transport 
of the photosynthetic system and inhibiting photosynthesis 
(Zhao et  al., 2019; Zhang et  al., 2020b). Photosynthesis, 
particularly the photoinhibition of photosystem II (PSII) and 
photosystem I  (PSI), is closely related to ROS production (Che 
et  al., 2018). Excessive ROS disturbs the redox balance in 
cells, leading to oxidative damage (Jithesh et al., 2006). Therefore, 
excessive accumulation of ROS in plants under salt stress can 
significantly affect plant biomass (Klaus and Heribert, 2004). 
The adaptation of plants to abiotic stress is a complex process 
involving cell adaptation at the molecular, biochemical and 
physiological levels (Pushp et  al., 2015). The transcriptional 
machinery associated with stress responses maintains the growth, 
metabolism, and development of plants through an intricate 
network of transcription factors (TFs; Agarwal et  al., 2013).

Related studies have found that TFs play crucial roles in plant 
signal regulatory networks. TFs receive the perceived signals and 
regulate the expression of downstream genes. TFs also act as a 
node to coordinate the interaction between different signaling 
pathways. TFs provide complex control mechanisms for plants 
to manage abiotic and biological stresses, thus regulating 
developmental processes (Mitsuda and Ohme, 2009). Therefore, 
the functional study of stress response of transcription factors 
may provide insights into how plants adapt to severe environments 

at the molecular level. More than 1,600 TFs have been identified 
in Arabidopsis (Riechmann et al., 2000; Chen et al., 2006). These 
TFs can help plants rapidly adapt to changing environments by 
regulating gene transcription (Zhu, 2002; Kazuo et  al., 2003; 
Chinnusamy et al., 2004). The MYB domain TFs are characterized 
by a conserved MYB domain with about 52 amino acids involved 
in DNA binding and are present in all eukaryotes (Yu et  al., 
2016b). The MYB TF family in Arabidopsis contains 200 genes. 
It is the largest TF family in Arabidopsis, accounting for 9% of 
all the TFs in this plant (Riechmann et  al., 2000; Søren et  al., 
2013). Many members of the MYB TF family play a role in 
tolerance to abiotic stress (Li et  al., 2015; Zhang et  al., 2020e), 
regulation of nitrogen absorption and utilization (Liu et al., 2022), 
and defense responses to pathogens (Mengiste et  al., 2003; Liu 
et al., 2013). The MYB proteins are divided into four subfamilies 
based on the number of adjacent repeats in the MYB domain 
(R1-MYB, R2R3-MYB, 3R-MYB, and 4R-MYB; Dubos et  al., 
2010). The R2R3-MYB family is common in plants (Jiang and 
Rao, 2020; Wu et  al., 2022), with about 126 of these TFs found 
in Arabidopsis (Chen et  al., 2006). Many members of the MYB 
TF family participate in Arabidopsis response to salt stress 
(Mengiste et  al., 2003; Xie et  al., 2010; Cui et  al., 2013; Xu 
et  al., 2015; Wang et  al., 2016). However, only a few studies 
have assessed how MYB regulates plant photosynthesis and 
oxidative damage under salt stress. Previous studies have shown 
that MYB37, R2R3 MYB subgroup  14 TF in Arabidopsis, affects 
the phenotypic changes of plant hairy roots by mediating plant 
hormone signaling pathway. MYB37 also positively regulates plant 
response to abscisic acid (ABA) and drought stress, thus improving 
the seed setting rate of Arabidopsis (Dubos et  al., 2010; Yu 
et  al., 2016a; Zheng et  al., 2020). This study evaluated the effects 
of MYB37 overexpression on chlorophyll content, PSII and PSI 
functions in light reactions, ROS metabolism, and osmotic 
regulation in Arabidopsis leaves under salt stress. Therefore, this 
study may provide new insights into how MYB37 alleviates salt 
stress and provides a theoretical basis for improving the genes 
related to stress resistance.

MATERIALS AND METHODS

Experimental Materials
The Arabidopsis seeds were disinfected, then sown on MS 
solid medium. The seeds were vernalized at 4°C for 2 days 
and cultured in a greenhouse at 21°C, light intensity of 
400 μmol·m−2·s−1, photoperiod of 16/8 h (light/dark), and relative 

soluble protein (SP). Furthermore, the accumulation of osmoregulation substances SS and 
Pro in OE-1 and OE-2 was not different from that in Col-0 since MYB37 overexpression 
in Arabidopsis OE-1, and OE-2 did not significantly affect plants under NaCl stress. 
However, SP content was significantly higher in OE-1 and OE-2 than in Col-0. These results 
indicate that MYB37 overexpression can alleviate the degradation of Arabidopsis proteins 
under NaCl stress, promote plant growth and improve salt tolerance.

Keywords: salt stress, Arabidopsis thaliana, transcription factor MYB37, photosynthesis, reactive oxygen species
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humidity of 60%. Agrobacterium tumefaciens containing the 
recombinant plasmid p MDC85-35 s::MYB37-GFP was used 
to genetically transform wild-type A. thaliana (Col-0) via 
inflorescence infection. The positive transgenic lines were 
screened based on their resistance to hygromycin. The transgenic 
plants were verified using PCR and real-time quantitative reverse 
transcription PCR (qRT-PCR). Genotypic lines (OE-1 and OE-2) 
with high expression levels of MYB37  in the third generation 
(T3) homozygous lines were used as the experimental materials. 
NaCl (100 mmol∙L−1) and an equal volume of water were used 
to irrigate Arabidopsis transgenic lines (OE-1 and OE-2) and 
Arabidopsis wild type (Col-0) when the seedlings had grown 
for 4 weeks. A plastic tray was placed under each basin to 
prevent the loss of salt solution. The solution was poured back 
into the tray when the matrix was slightly dry. Arabidopsis 
leaves of each treatment group were randomly sampled on 
after 7 d irrigation for the following analyses.

Parameter Measurements and Methods
Real-Time PCR Analysis
The 10-day-old seedlings were used to determine the MYB37 
transcript levels in the wild-type Col-0 and the plants 
overexpressing MYB37. Total RNA was extracted from about 
100 mg of plant tissue using a Total RNA Rapid Extraction 
Kit (BioTeke Co., Ltd., Wuxi, China). The total RNA was treated 
with RNase-free DNaseI (NEB, Ipswich, MA, United  States) 
at 37°C for 1 h to degrade the genomic DNA, then purified 
using an RNA Purification Kit (BioTeke Co., Ltd.). The total 
RNA (2 μg) was used to synthesize first-strand cDNA via a 
Roche Transcriptor First Strand cDNA Synthesis Kit (Roche, 
Basel, Switzerland) and an oligo (dT18) primer. A Bio-Rad 
Real-Time System CFX96TM C1000 Thermal Cycler (Bio-Rad, 
Singapore, Singapore) was used for the analysis. ACTIN2/8 
genes were amplified and used as the internal control. The 
cDNA was amplified using SYBR Premix Ex Taq (TaKaRa, 
Dalian, China) with a DNA Engine Opticon 2 thermal cycler 
in a 10 μl. All the experiments were repeated at least thrice. 
The gene-specific primer sequences (5′-3′) were as follows:

MYB37: forward primer: CGACAAGACAAAAGTGAAGCGA.
: reverse primer: TGGCAGCGAAGAGACTAAAAATG.

ACTIN2/8:  forward primer: GGTAACATTGTGCTCAGTGG 
TGG.

: reverse primer: AACGACCTTAATCTTCATGCTGC.

Subcellular Localization of MYB37
The roots of 1-week-old MYB37-overexpressing seedlings (OE-2) 
were immersed in 2 μg/ml 4′,6-diamidino-2-phenylindole (DAPI) 
solution for 10–15 min for nucleus labeling. The roots were 
visualized using fluorescence microscopy (EVOS™ FL Auto; 
Thermo Fisher Scientific, Waltham, MA, United  States).

Determination of the OJIP Curve and 820 nm 
Light Reflection Curve (MR820)
The leaves of Arabidopsis plants were used for a dark adaptation 
experiment for 30 min using a dark adaptation clip. The OJIP 
and 820 nm light reflection curves (MR820) were measured five 

times using a Hansatech multifunctional plant efficiency 
instrument (M-PEA; Hansatech Instruments, Ltd., King’s Lynn, 
United  Kingdom) after dark adaptation. The corresponding time 
points at O, J, I, and P points were 0.01, 2, 30, and 1,000 ms, 
respectively (represented as Fo, FJ, FI, and Fm, respectively). Points 
L and K represent the corresponding points on the curve at 
0.15 ms and 0.3 ms, respectively. O-P and O-J were standardized 
on the OJIP curve. The relative fluorescence intensity (Fo) of 
the O point was set to 0, while the relative fluorescence intensity 
(Fp) of the P, J and K points was set to 1 as follows: 
VO-P = (Ft  –  Fo)  /  (Fp  –  Fo) and VO-J = (Ft  –  Fo)  /  (FJ  –  Fo), where 
Ft represents the relative fluorescence intensity of each time point. 
The relative variable fluorescence intensities of the K and J points 
on the standardization curve were expressed as VK and VJ, 
respectively [VK = (FK – Fo) / (FJ – Fo) and VJ = (FJ – Fo) / (FP – Fo)]. 
A JIP test analysis was conducted as described by Strasser and 
Strasser (1995). The PSII maximum photochemical efficiency 
(Fv/Fm) and photosynthetic performance index were determined 
based on light absorption (PIABS). The slope of the initial section 
of MR820 curve (△I/Io, where Io and △I represent the maximum 
value and the difference between the maximum value and the 
minimum value of the reflected signal in 820 nm light reflection 
curve, respectively) represented the activity of the PSI reaction 
center (Oukarroum et  al., 2018).

Determination of Energy Distribution Parameters 
of the PSII Reaction Center
The maximum fluorescence (Fm) was measured using an FMS-2 
pulse modulated fluorometer (Hansatech) after dark adaptation. 
The steady-state fluorescence (Fs) and maximum steady-state 
fluorescence (Fm′) were treated at light intensity (PFD) of 
1,000 μmol m·−2·s−1 for light adaptation. The data measured were 
used to calculate the energy distribution parameters of the 
PSII reaction center, such as the PSII effective quantum yield 
Y(II), PSII non-regulated energy dissipation Y(NO), and the 
PSII regulated energy dissipation yield Y(NPQ) [Y(II) = (Fm′-
Fs)/Fm′, Y(NO) = Fs/Fm and Y(NPQ) = 1-Y(II)-Y(NO)] (Kramer 
et  al., 2004).

Determination of Chlorophyll Content
Fresh leaves without main veins were soaked in a 1:1 solution 
of acetone and ethanol (v/v) to extract the pigments [Chlorophyll 
a (Chl a), Chlorophyll b (Chl b), total chlorophyll (Chl a + b) 
and chlorophyll a/b (Chl a/b)] (Porra, 2002).

Histochemical Staining of Superoxide Anion (O2
−) 

and Hydrogen Peroxide (H2O2)
The superoxide anions (O2

−) and hydrogen peroxide (H2O2) 
in fresh leaves were stained using nitro blue tetrazolium chloride 
(NBT) and 3, 3′-diaminobenzidine tetrahydrochloride (DAB), 
respectively, as described by Mostofa et  al. (2015).

Determination of Reactive Oxygen Species (ROS) 
and Malondialdehyde (MDA) Contents
The rate of production of superoxide anion (O2

−) and the 
content of hydrogen peroxide (H2O2) were determined as 
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A B

FIGURE 1 | Detection of MYB37 expression level in Col-0 and overexpressed plants using qRT-PCR (A) and subcellular localization of MYB37 (B).

described by Zhang et  al. (2006) and Alexieva et  al. (2001). 
The content of MDA was determined using thiobarbituric acid 
(TBA) colorimetry (Ernster et  al., 1968).

Determination of Osmotic Regulatory Substances 
Content
The contents of soluble sugar (SS), soluble protein (SP), and 
free proline (Pro) were determined using anthrone colorimetry 
(Bradford, 1976). Coomassie brilliant blue G-250 staining 
(Bradford, 1976), acid ninhydrin colorimetry (Bates et al., 1973), 
respectively.

Statistical Analysis
Microsoft Excel 2016 (Redmond, WA, United  States) and 
GraphPad Prism 6 software (GraphPad, San Diego, CA, 
United  States) were used for statistical analyses. Data are 
expressed as mean ± SD. A one-way analysis of variance (ANOVA) 
and least significant difference (LSD) tests were used to compare 
the treatments.

RESULTS AND ANALYSIS

Expression and Subcellular Localization of 
MYB37 in Arabidopsis
Arabidopsis overexpressing MYB37 was obtained via transgenic 
technology to clarify the function of MYB37 in Arabidopsis 
under NaCl stress. Real-time quantitative reverse transcription 
PCR (qRT-PCR) results showed that MYB37 was significantly 
expressed in the OE-1 and OE-2 lines than in the other 
overexpression lines (the expression was more than 100-fold 
higher than that in Col-0; Figure  1A). Therefore, the OE-1 
and OE-2 lines were selected for further functional verification 

tests. The OE-2 lines with the highest MYB37 expression were 
selected to determine the subcellular localization of MYB37-GFP 
fusion protein. High green fluorescent protein (GFP) activity 
was observed in the nuclear region of the elongation region 
of Arabidopsis root tips (Figure  1B), indicating that MYB37 
is located in the nucleus.

Overexpression of the MYB37 
Transcription Factor Improves Salt Stress 
Tolerance
The growth of taproots was not significantly different among 
Col-0, OE-1, and OE-2 Arabidopsis seedlings in normal media. 
Elongation of the taproots was inhibited in ½ MS media with 
NaCl. Although there were fewer yellow leaves in OE-1 and 
OE-2, the root length and number of leaves in the OE-1 and 
OE-2 plants were significantly higher than Col-0 (Figures 2A,C). 
The crown width of OE-2 line was slightly lower than that 
of Col-0 at the 4-week-old adult stage. However, the crown 
width was not significantly different between OE-1 and Col-0. 
MYB37 overexpression significantly relieved the salt damage 
symptoms of the OE-1 and OE-2 plants aged 4 weeks compared 
with the Col-0 plants. For instance, MYB37 overexpression 
changed the color of the leaves of Col-0 plants from yellow 
to green (Figure  2B).

Effects of MYB37 Overexpression on the 
Chlorophyll Content in Arabidopsis Leaves 
Under NaCl Stress
Quantitative analysis showed that the contents of Chl a, Chl 
b, and Chl a + b and the Chl a/b ratio of Col-0, OE-1, and 
OE-2 Arabidopsis leaves were not significantly different under 
normal conditions (Figure 3). NaCl stress degraded chlorophyll 
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and decreased Chl a/b ratio in Arabidopsis leaves. However, 
the contents of Chl a, Chl b, and Chl a + b were significantly 
higher in OE-1 and OE-2 lines than in Col-0 under NaCl 
stress, except for the Chl b content, which was not significantly 
different between the OE-2 lines and Col-0 (Figures  3A–C). 
Additionally, the Chl a/b ratio was higher in the OE-1 and 
OE-2 lines under NaCl stress [20.97 and 7.52% (p > 0.05), 
respectively] than in Col-0 (Figure  3D).

Effects of MYB37 Overexpression on the 
PSII and PSI Activities in Arabidopsis 
Leaves Under NaCl Stress
Although the relative fluorescence intensity from point J to 
point P on the OJIP curve was lower in Col-0 Arabidopsis 
leaves than in OE-1 and OE-2 lines (Figure  4A), Fv/Fm was 
not significantly different (Figure 4C). The relative fluorescence 
intensity of point O slightly changed in Col-0 Arabidopsis 
leaves. However, the relative fluorescence intensity from point 
J to point P significantly decreased, and the OJIP curve became 
relatively flat. The relative fluorescence intensity of OE-1 and 
OE-2 lines slightly changed (Figure 4B). Compared with OE-1 
and OE-2 lines, NaCl stress significantly decreased Fv/Fm in 
Col-0 (Figure  4C). Similarly, although the amplitude of MR820 
curve was slightly lower in Col-0 Arabidopsis leaves than in 
the OE-1 and OE-2 lines under non-stress conditions 
(Figure  4D), △I/Io was not significantly different. Moreover, 
the amplitude of MR820 curve and △I/Io of Arabidopsis leaves 

decreased under NaCl stress (Figure  4E). However, △I/Io was 
significantly decreased in Col-0 compared with OE-1 and OE-2 
lines under salt stress (Figure  4F).

Effects of MYB37 Overexpression on the 
PSII Receptor Side and Donor Side 
Electron Transport in Arabidopsis Leaves 
Under NaCl Stress
O-P normalization of the original OJIP curve showed that 
the relative fluorescence intensity of each point on the 
OJIP curve was not significantly different among Col-0 
Arabidopsis leaves, OE-1, and OE-2 lines under non-stress 
conditions (Figure  5A). However, the relative fluorescence 
intensity of point J on the OJIP curve of Col-0 Arabidopsis 
leaves substantially changed under NaCl stress compared 
with OE-1 and OE-2 lines (Figure 5B). The O-P normalized 
curves of Col-0, OE-1, and OE-2 leaves under NaCl stress 
were compared with the O-P normalized curves under 
non-stress. The relative fluorescence intensity at point J on 
Col-0 curve significantly increased, while it decreased on 
OE-1 and OE-2 curves (Figure  5C). However, the relative 
fluorescence intensity was not significant in the quantitative 
analysis of VJ. Only the VJ of Col-0 increased by 26.12% 
under NaCl stress (p < 0.05; Figure  5G). Furthermore, the 
O-J normalized curve of the Col-0, OE-1, and OE-2 leaves 
were not significantly different under non-stress and NaCl 
stress conditions (Figures  5D,E). The O-J standardization 

A

C

B

FIGURE 2 | Effects of MYB37 overexpression on phenotypes of Arabidopsis seedlings (A) and 4-week-old adult (B) under NaCl stress. Figure 2A shows the 
phenotype of Arabidopsis seedlings grown on MS medium for 3 days, then transferred to 1/2MS medium with 0 mm or 100 mM NaCl for 7 days. Figure 2B shows 
the phenotype of Arabidopsis seedlings cultured in the soil after watering with an equal volume of distilled water and 100 mM NaCl solution for 2 weeks. Figure 2C 
shows statistics of the primary root lengths of the plants as described in (A). Student’s t-test was used to compare the primary root lengths of transgenic line with 
WT plants (with significant differences at **p < 0.01).
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A B

C D

FIGURE 3 | Effects of MYB37 overexpression on Chl a content (A), Chl b content (B), Chl a + b content (C), and Chl a/b ratio (D) in Arabidopsis leaves under NaCl 
stress. Data are expressed as means ± SE of three replicated experiments (n = 3). Different small letters indicate significant differences (p < 0.05).

A B C

D E F

FIGURE 4 | Effects of MYB37 overexpression on OJIP curve (A, B), MR820 curve (D, E), Fv/Fm (C), and ∆I/Io (F) in Arabidopsis leaves under NaCl stress. Data are 
expressed as means ± SE of three replicated experiments (n = 3). Different small letters indicate significant differences (p < 0.05).
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curves of Col-0, OE-1, and OE-2 Arabidopsis leaves under 
NaCl stress were compared with those under non-stress 
conditions. The relative fluorescence intensity at point K 
of Col-0, OE-1, and OE-2 curves slightly decreased under 
NaCl stress (Figures  5F,H).

Effects of MYB37 Overexpression on the 
Energy Distribution Parameters of the PSII 
Reaction Center in Arabidopsis Leaves 
Under Salt Stress
Compared with Col-0, MYB37 overexpression did not 
significantly affect the energy allocation parameters Y(II), Y(NO), 
and Y (NPQ) of the PSII reaction center in Arabidopsis leaves 
under non-stress conditions (Figure  6). NaCl stress reduced 
the proportion of Y(II) in Arabidopsis leaves while it increased 
the proportion of Y(NO) and Y(NPQ). However, Y(II) and 
Y(NPQ) were significantly higher in the OE-1, and OE-2 
Arabidopsis leaves than in Col-0 under NaCl stress. In contrast, 

Y(NO) was significantly lower in OE-1, and OE-2 Arabidopsis 
leaves than in Col-0.

Effects of MYB37 Overexpression on the 
Contents of ROS and MDA in Arabidopsis 
Leaves Under Salt Stress
NBT and DAB staining were used to detect the accumulation 
of O2

− and H2O2 in Arabidopsis leaves. Less blue sediment 
accumulated in the OE-1 and OE-2 leaves than in Col-0 under 
NaCl stress, similar to the accumulation of H2O2 (yellowish-
brown sediment; Figures  7A,B). However, the rate of O2

−/H2O2 
production and MDA contents was not significantly different 
among Col-0, OE-1, and OE-2 lines under non-stress conditions. 
In contrast, NaCl stress significantly increased the rate of O2

− 
and H2O2 production and MDA contents of Arabidopsis. 
Nevertheless, O2

−, H2O2, and MDA contents were significantly 
lower in OE-1 and OE-2 lines than in Col-0 (Figures  7C–E), 
consistent with the in situ staining results of O2

− and H2O2.

A B C

D E F

G H

FIGURE 5 | Effects of MYB37 overexpression on standardized O-P curve (A, B), △VO-P curve (C), standardized O-J curve (D, E), △VO-J curve (F), VJ (G), and VK 
(H) in Arabidopsis leaves under NaCl stress. Data are expressed as means ± SE of three replicated experiments (n = 3). Different small letters indicate significant 
differences (p < 0.05).
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Effects of MYB37 Overexpression on 
Osmotic Regulatory Substances in 
Arabidopsis Leaves Under Salt Stress
The SS, SP, and Pro contents of OE-1, OE-2, and Col-0 were 
not significantly different under non-stress conditions 
(Figures  8A–C). However, NaCl stress significantly increased 

the contents of SS and Pro in Arabidopsis leaves, while it 
significantly decreased SP contents. Moreover, SS and Pro 
contents were significantly lower in OE-1 and OE-2 Arabidopsis 
leaves than in Col-0 under NaCl stress (Figures  8A–C), while 
SP content was significantly higher than that of Col-0 
(Figure  8B).

DISCUSSION

The ability of transgenic overexpression lines or the loss of 
function mutants to tolerate abiotic stress is associated with 
reduced growth or loss of seed productivity (Yu et  al., 2016a, 
2016b). For instance, although MYB52/MYB96 overexpression 
confers a dwarf phenotype, while MYB44/MYB61 overexpression 
reduces seed productivity, the overexpression of these genes 
improves tolerance to drought or salt stress (Jung et  al., 2008; 
Seo et  al., 2009; Park et  al., 2011; Romano et  al., 2012). In 
this study, the crown width was slightly lower in Arabidopsis 
OE-2 line overexpressing MYB37 than in the wild type. However, 
MYB37 overexpression in A. thaliana maintained green leaves 
under NaCl stress and significantly alleviated salt stress symptoms. 
Photosynthesis promotes plant growth and development by 
providing energy. The photosynthesis of green plants primarily 

A

C D E

B

FIGURE 7 | Effects of MYB37 overexpression on histochemical staining of O2
− and H2O2 in fresh leaves (A, B), generation rate of O2

− (C), H2O2 content (D), and 
MDA content (E) in Arabidopsis leaves under NaCl stress. Data are expressed as means ± SE of three replicated experiments (n = 3). Different small letters indicate 
significant differences (p < 0.05).

FIGURE 6 | Effects of MYB37 overexpression on PSII reaction center energy 
distribution parameters in Arabidopsis leaves under NaCl stress.
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depends on the absorption of light energy by chlorophyll. 
Therefore, chlorophyll degradation directly reduces the 
photosynthetic capacity of plants (Zhang et al., 2020d; Siddiqui 
et  al., 2022). Studies have shown that salt stress can inhibit 
chlorophyll synthesis or degradation in plant leaves (Alaghabary 
et  al., 2005; Ahanger et  al., 2019). Herein, salt stress reduced 
the chlorophyll content of Arabidopsis leaves. Yang et al. (2011) 
showed that salt stress reduces chlorophyll content in plants 
through the disruption of Na+ ion balance and activity of 
some proteases. Tulay et al. (2015) also found that salt stress 
increases the activity of chlorophyllase in Spergularia marina 
(Caryophyllaceae), decreases the content of Mg2+ ions, accelerates 
the degradation of chlorophyll, inhibits the function of pigment 
protein complex, and the leaves become yellow or even fall 
off. Herein, MYB37 overexpression delayed chlorophyll 
degradation under salt stress and alleviated chlorophyll reduction 
effect, especially Chl a, similar to the results of Bundó et  al. 
(2022). MYB37 overexpression can exhume or compartmentalize 
Na+ in the cytoplasm into vacuoles, regulate the concentration 
of Na+ in cells and maintain intracellular ion homeostasis by 
increasing the expression of Na+/H+ antiporter NHX1  in the 
vacuolar membrane, thus delaying chlorophyll degradation and 
enhancing salt tolerance (Zhao et  al., 2019). The MYB 
transcription factor also reduces chlorophyll degradation in 
birch (Betula sp.) leaves (Zhou and Li., 2016) and tobacco 
(Nicotiana benthamiana) leaves (Pushp et  al., 2015).

Chlorophyll fluorescence can be  used to analyze the 
absorption and utilization of light energy by photosynthesis 
(Dimitrova et  al., 2020; Zhang et  al., 2020c). In this study, 
chlorophyll fluorescence curves (OJIP and MR820 curves) were 
used to study the PSII and PSI activities of wild-type Arabidopsis 
Col-0 and Arabidopsis overexpressing MYB37 under salt stress. 
Fv/Fm and ΔI/Io are key indexes of photochemical activity in 
PSII (Giannakoula and Ilias, 2007) and the activity of PSI 
(Wang et al., 2019), respectively. Herein, salt stress significantly 
reduced the Fv/Fm and ΔI/Io levels in wild-type A. thaliana 
Col-0 compared with normal growth conditions. However, 
Fv/Fm and ΔI/Io levels were not significantly changed in the 
OE-1 and OE-2 lines of A. thaliana overexpressing MYB37. 
Additionally, Fv/Fm and ΔI/Io were significantly higher in the 
OE-1 and OE-2 lines than in Col-0 under salt stress. Salt 

stress inhibits the activities of PSII and PSI in the leaves of 
sorghum (Sorghum bicolor L.; Zhang et al., 2018b) and halophytic 
soybean (Glycine soja; Yan et  al., 2020). Sudhir and Murthy 
(2004) showed that salt stress inhibits PSII and PSI activities 
in leaves due to the accumulation of Na+ in chloroplasts. In 
this study, Fv/Fm and ΔI/Io were significantly higher in the 
OE-1 and OE-2 lines than in the wild type, indicating that 
MYB37 can improve photosynthesis by increasing the activities 
of PSII and PSI, thus enhancing salt tolerance. Pushp et  al. 
(2015) also found that SbMYB15 improves salt tolerance and 
dehydration in Salicornia brachia (highly tolerant to salt) by 
increasing PSII activity. The electron donor and acceptor sides 
of the PSII reaction center inhibit photosynthetic electron 
transport in plants under adverse environmental conditions 
(Zhang et  al., 2020a). VJ on the OJIP curve can reflect the 
accumulation of QA. The enhancement of VJ indicates that 
the electron transfer from QA to QB on the PSII receptor side 
is blocked (Zhang et  al., 2016). The change of VK is a specific 
marker of whether the oxygen-evolving complex (OEC) activity 
of the PSII electron donor side oxygen release complex is 
damaged (Zhang et  al., 2020d). In this study, salt stress only 
increased the VJ value of wild-type Arabidopsis Col-0 curve 
while slightly changing the VK value, indicating that salt stress 
inhibited the electron transfer from QA to QB on the PSII 
receptor side of wild-type Arabidopsis leaves. Salt stress did 
not affect the activity of OEC on the PSII electron donor 
side. Zhang et  al. (2019) also found that salt stress affects 
OEC activity on the electron donor side of PSII in leaves of 
mulberry (Morus alba L.) after salt and alkali stress treatment. 
Lu and Vonshak (2002) also found that salt stress reduces 
the reception of upstream QA electrons by plastoquinone QB 
(connecting the PSII and PSI reaction centers) in cyanobacteria 
(Spirulina platensis), thus decreasing the electron transfer speed 
of the entire photosynthetic electron transport chain. Previous 
studies have also shown that increased Na+ content in the 
cytoplasm and extracellular tissues under salt stress affects 
the activity of the photosynthetic electron transport chain 
(Kao et  al., 2003). Herein, MYB37 overexpression alleviated 
the electron transfer from QA to QB on the PSII receptor side 
of Arabidopsis under salt stress. Pushp et  al. (2015) also 
proposed that SbMYB15 could improve the photoprotection 

A B C

FIGURE 8 | Effects of MYB37 overexpression on SS content (A), SP content (B), and Pro content (C) in Arabidopsis leaves under NaCl stress. Data are expressed 
as means ± SE of three replicated experiments (n = 3). Different small letters indicate significant differences (p < 0.05).
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mechanism of transgenic lines under salt stress by enhancing 
electron transfer from the PSII reaction center to the primary 
quinone receptor. Although stress inhibits the activity of PSII 
and even leads to the inactivation of PSII response centers, 
plants adapt to stress by regulating the energy distribution 
of PSII response centers, such as by increasing energy dissipation 
(Dimitrova et  al., 2020; Sun et  al., 2021). In this study, salt 
stress significantly decreased Y(II) of leaves of A. thaliana, 
while it significantly increased Y(NO) and Y(NPQ). These 
results indicate that A. thaliana adapts to salt stress by increasing 
its energy dissipation mechanisms. Bashir et al. (2021) showed 
that salt stress decreases Y(II) in moringa (Moringa oleifera), 
while it increases Y(NO) and Y(NPQ), consistent with this 
study. Herein, MYB37 overexpression increased Y(II) and 
Y(NPQ) of Arabidopsis under salt stress but decreased the 
Y(NO). These results indicate that MYB37 overexpression 
increases the activity of PSII and regulates energy dissipation 
in Arabidopsis leaves under salt stress, thus decreasing the 
proportion of inactivated reaction centers.

Photosynthesis inhibition produces excess electrons and 
energy in the photosynthetic electron transport chain, resulting 
in an ROS burst and peroxidation damage (Kalaji et  al., 2014; 
Wang et  al., 2021b). Wang et  al. (2021a) found that salt stress 
significantly increases O2 production rate and the contents of 
H2O2 and MDA of alfalfa (Medicago sativa) leaves. Zhang et al. 
(2018a) also found that salt stress increases the rate of O2 
production and H2O2 content of mulberry leaves. In this study, 
salt stress significantly increased the rate of O2 production 
and the contents of H2O2 and MDA of Arabidopsis leaves. 
However, ROS and MDA contents were lower in Arabidopsis 
OE-1 and OE-2 overexpressing MYB37 than in the wild type 
under salt stress, consistent with the results of Zhang et  al. 
(2020e) and Huang et al. (2018) in Arabidopsis, tobacco (Pushp 
et  al., 2015) and Tamarix hispida (Liu et  al., 2021). The 
overexpression of stress tolerance genes can inhibit membrane 
damage and significantly reduce the accumulation of ROS and 
MDA under stress conditions. The content of osmotic regulators 
changes under osmotic stress, thus improving plant tolerance 
to abiotic stress (Li et  al., 2019). Plants adapt to saline-alkali 
stress by regulating the accumulation of proline (Pro) and 
soluble sugar (SS; Ren et  al., 2020). Previous studies have 
shown that Pro and SS regulate plant osmotic balance and 
improve salt or alkali tolerance (Kanu et  al., 2019). Guo et  al. 
(2011, 2017) showed that Pro is significantly accumulated in 
maize (Zea mays L.) under salt stress. Wang et  al. (2021a, 
2021b) also found that alfalfa leaves can adapt to salt stress 
by increasing the content of SS and Pro. This experiment also 
found similar findings described above. In summary, the contents 
of SS and Pro were significantly increased in Arabidopsis leaves 
under salt stress, thus reducing salt stress damage to plants. 
Moreover, MYB37 overexpression enhanced Arabidopsis OE-1 
and OE-2 resistance to salt stress and decreased SS and Pro 
contents. Pushp et  al. (2015) also found similar results in 
tobacco overexpressing SbMYB15 under salt stress. Soluble 
protein (SP) is also a key osmoregulatory substance. Relevant 
studies have shown that the SP content is substantially 
accumulated in plant leaves under salt stress (Zhuang et  al., 

2010; Bai et  al., 2013; Hong et  al., 2014). In this experiment, 
salt stress degraded SP in Arabidopsis leaves, similar to Gulen 
et al. (2006) (strawberry, Fragaria x ananassa), Liu et al. (2006) 
(rice and Oryza sativa). However, the accumulation of SP was 
higher in OE-1 and OE-2 leaves than in the wild type under 
salt stress, indicating that MYB37 overexpression promotes 
protein synthesis of Arabidopsis plant under salt stress and 
maintains water transport and photosynthetic function of leaves, 
thus promoting plant growth and salt tolerance (Cernusak 
et  al., 2007).

CONCLUSION

Compared with the wild-type (Col-0) Arabidopsis, the 
overexpression of MYB37 significantly alleviated the symptoms 
of salt injury in plants under NaCl stress and alleviated 
chlorophyll degradation (particularly Chl a) under NaCl stress. 
MYB37 overexpression also alleviated the photoinhibition of 
PSII and PSI in Arabidopsis under NaCl stress, particularly 
by alleviating the electron transfer from QA to QB on the PSII 
receptor side. MYB37 overexpression increased the PSII activity, 
and regulated energy dissipation in Arabidopsis leaves under 
salt stress, thus decreasing the proportion of inactivated reaction 
centers. MYB37 overexpression also reduced the accumulation 
of ROS and MDA in Arabidopsis leaves under NaCl stress, 
thus alleviating the oxidative damage. In addition, MYB37 
overexpression alleviated SP degradation in Arabidopsis leaves 
under salt stress. However, MYB37 overexpression did not 
enhance plant adaption to NaCl stress by accumulating SS 
and Pro due to the strong resistance to NaCl stress.
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