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Light is an important environmental factor which affects plant growth, through changes
of intensity and quality. In this study, monochromatic white (control), red (660 nm),
and blue (430 nm) light-emitting diodes (LEDs) were used to treat tea short cuttings.
The results showed the most adventitious roots in blue light treated tea cuttings,
but the lowest roots in that treated by red light. In order to explore the molecular
mechanism of light quality affecting adventitious root formation, we performed full-
length transcriptome and metabolome analyses of mature leaves under three light
qualities, and then conducted weighted gene co-expression network analysis (WGCNA).
Phytohormone analysis showed that Indole-3-carboxylic acid (ICA), Abscisic acid (ABA),
ABA-glucosyl ester (ABA-GE), trans-Zeatin (tZ), and Jasmonic acid (JA) contents in
mature leaves under blue light were significantly higher than those under white and
red light. A crosstalk regulatory network comprising 23 co-expression modules was
successfully constructed. Among them, the “MEblue” module which had a highly
positive correlation with ICA (R = 0.92, P = 4e-04). KEGG analysis showed that related
genes were significantly enriched in the “Plant hormone signal transduction (ko04075)”
pathway. YUC (a flavin-containing monooxygenase), AUX1, AUX/IAA, and ARF were
identified as hub genes, and gene expression analysis showed that the expression
levels of these hub genes under blue light were higher than those under white and
red light. In addition, we also identified 6 auxin transport-related genes, including PIN1,
PIN3, PIN4, PILS5, PILS6, and PILS7. Except PILS5, all of these genes showed
the highest expression level under blue light. In conclusion, this study elucidated the
molecular mechanism of light quality regulating adventitious root formation of tea short
cutting through WGCNA analysis, which provided an innovation for “rapid seedling” of
tea plants.

Keywords: Camellia sinensis (L.) O. Kuntze, short cutting, adventitious root formation, WGCNA, phytohormone,
plant hormone signal transduction, phytohormone transport, light quality
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INTRODUCTION

Tea [Camellia sinensis (L.) O. Kuntze] is a beverage crop in
the world (Wei et al., 2018). Tea plant propagation includes
sexual and asexual propagation. Asexual propagation is mainly
used in tea propagation, and short cutting is one of the
most commonly used methods. Although short cuttings have
the advantages of large propagation coefficient and good
characters, most short cuttings are carried out under natural
conditions, which have the disadvantages of long seedling
raising cycle and slow emergence speed. This seriously hinders
the breeding and popularization of excellent varieties. The
formation of adventitious roots is an important part of short
cuttings. Accelerating the formation of adventitious roots is very
important for the “rapid seedling” of tea plants.

As an environmental factor, light has an important impact
on plant growth and development. After a long period of
evolution, plants have adapted to broad- spectrum of light in
the natural environment. In plant photosynthesis, red light (650–
760 nm) is the most absorbed by plants, followed by blue
light (430–470 nm). Light is not only an energy source for
plant photosynthesis, but also a regulator of plant physiological
activity. Numerous studies have shown that light quality, light
intensity, and photoperiod have extensive regulatory effects on
plant morphogenesis, physiological metabolism, growth and
development and nutritional quality (Anderson, 1999; Ward
et al., 2005; Qian and Kubota, 2009; Pérez-Balibrea et al., 2010).

Using light quality to regulate plant growth and development
is the most effective and energy-saving way to regulate the light
environment, and it is the core of the formulation of light
environment regulation strategies. At present, the effect of light
quality on the growth and development of agronomic plants has
been widely studied. For example, Lim and Eom (2013) showed
that irradiation of Ocimum bacilicum cuttings with blue LEDs
can significantly shorten the root development time compared
to red LEDs and natural sunlight. In a study of de-rooted Picea
abies seedlings, red light promoted the formation of adventitious
roots (Alallaq et al., 2020). Other studies reported that blue light
stimulated root formation in Betula pendula (Sæbø et al., 1995)
and Chrysanthemum (Chan et al., 2020) cuttings. The above
researches show that different plant species need different light
quality. In addition, there are relatively few reports on the effects
of light quality on the growth and development of tea plants, and
the underlying mechanism of the effects of different light quality
on the growth and development of tea plants is still unclear.

In recent years, plant factories have developed rapidly, and
light-emitting diodes (LEDs) are the main light sources in plant
factories. LEDs have the characteristics of small size, light weight,
long life, high light efficiency and low energy consumption (Bula
et al., 1991; Brown et al., 1995). LEDs have peak wavelengths from
250 nm (UV) to 1,000 nm (infrared) (Bourget, 2008). Also, it
provides wavelengths (light quality) that match the spectral range
required for plant growth (Massa et al., 2008; Yen and Chung,
2009). In addition, LEDs are “cold light sources,” which will not
attract some pests that like light and heat, and also help to reduce
plant diseases and insect pests. Therefore, LEDs were chosen as
the light source for this experiment.

In this study, white (control), red (660 nm), and blue (430 nm)
LED tubes were used to treat short cuttings of C. Jiukengzaoand
culture for 90 days. It was found that the adventitious root
formation was the best under blue light compared with white
light, while the adventitious root formation was the worst under
red light. However, the mechanism of how light quality regulates
adventitious root formation remains unclear. Therefore, we first
performed transcriptome and hormonal analysis of mature leaves
under white, red, and blue light, and then used weighted gene co-
expression network analysis (WGCNA) to identify co-expressed
gene modules and hub genes for adventitious root formation.
Finally, the expressions of hub genes and auxin transport-related
genes under different light quality were analyzed to elucidate
the regulatory mechanism of light quality on adventitious
root formation, which provided a new idea for the “rapid
seedling” of tea plants.

MATERIALS AND METHODS

Plant Materials and Light Treatment
The experiment was conducted in the artificial climate chamber
of Rizhao Tea Research Institute (Rizhao, Shandong, China,
35◦514 ex 119◦662 ex from June 21 to September 18, 2021. All
LED tubes were purchased from Shenzhen Hongyang Lighting
Co., Ltd. (Shenzhen, China). The short cuttings of C. Jiukengzao
were placed in a seedling box with substrate soil (2:1 volume
mixture with perlite) and exposed to white (control, W), red
(660 nm, R), and blue (430 nm, B) LEDs for light treatment. The
light intensity was 100 µmol m−2 s−1, day (16 h, 8:00 a.m.–23:59
p.m., 28◦C) night (8 h, 0:00–7:59 a.m., 20◦C), and air humidity
85 ± 5%. After 90 days of treatment, the mature leaves were
harvested, and immediately frozen in liquid nitrogen, then stored
at −80◦C for transcriptome sequencing and phytohormone
assays. Three biological replicates were performed under white,
red, and blue light.

Determination of Phenotypic and
Physiological Characteristics of Tea
Cuttings
At 90 days of treatment, the formation status of adventitious roots
under different light quality were observed and photographed.
Six cuttings under different light quality were randomly selected
and the longest root was measured with a ruler of 0.1 cm.
The Fv/Fm values of the mature leaves were measured using
the FP110-LM/D instrument (PSI, Czech Republic), and then
the Soil and plant analyzer development values (SPAD) and
Nitrogen content (N content) of the mature leaves under
white, red and blue light were measured using the TYS-4N
plant nutrient meter (Zhejiang Topo Yunnong Technology
Co., Ltd., China).

Phytohormone Determination
There are no roots in the initial stage of cuttings, the
phytohormones mainly come from the mature leaves. Therefore,
in this study we mainly measured the phytohormone content
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of the mature leaves under 3 light qualities. The mature leaves
under white, red and blue light were immediately frozen in
liquid nitrogen and ground into powder (30 Hz, 1 min).
Then, the hormone content was determined based on the
QTRAP6500+LC-MS/MS platform, MetWare.1 All assays were
performed with three biological replicates.

cDNA Library Construction and Oxford
Nanopore Technoligies RNA-Seq
Total RNA was isolated from mature leaves of differentially
treated short cuttings using the RNAprep Pure Plant Kit
(Tiangen, Beijing, China). Three biological replicates were
included per treatment. RNA size and quality were assessed
by 1.2% agarose gel electrophoresis and spectrophotometer
(NanoDrop 200c, Thermo Fisher Scientific), followed by the
Agilent Bioananlyzer 2100 (Agilent Technologies, Santa Clara,
CA, United States) and RNA Analysis Kits to assess whether
the RNA has been degraded. After RNA quality verification, 9
cDNA libraries were constructed using a PCR-cDNA Sequencing
Kit (SQK-PCS109) and then sequenced on the Nanopore
PromethION plantform. Transcriptome analysis was performed
by Biomarker Technologies Co., Ltd. (Beijing, China).

Quality Control and Identification of
Full-Length Transcripts
The Oxford Nanopore Technoligies (ONT) RNA-seq raw data
were filtered (read quality > 6, read length > 350 bp) to
remove low quality reads. rRNA was discarded after mapping
to the rRNA database. Next, full-length non-chemical (FLNC)
transcripts were identified by searching for primers at both
ends of the reads. Clusters of FLNC transcripts were obtained
after mapping to the reference genome of Camellia sinensis
“Shuchazao” (CSS_ChrLev)2 with Mimimap2 and consensus
isoforms were obtained after polishing within each cluster
using the Pinfish package.3 Finally, the high-quality isoforms
were mapped to the reference genome of tea plant. The reads
were further folded and mapped by cDNA_ Cupcake package
with minimum coverage = 85% and minimum recognition
rate = 90%. The 5′ differences were not considered when folding
the redundant transcripts. This resulted in full-length non-
redundant transcripts.

Identification of Differentially Expressed
Genes and Annotation of Gene Function
The differentially expressed genes (DEGs) were identified from
reads of nine cDNA libraries that were successfully aligned to
the reference genome. Reads with a match quality higher than
5 were used for further quantification. Gene expression levels
were estimated by counts per million. Differential expression
analysis was performed on the mature leaves of tea cuttings
under different light quality using the DESeq R software package.
P-value≤ 0.05 and | log2 Fold change| > 1 were set as thresholds
for significant differential expression.

1http://www.metware.cn/
2http://tpia.teaplant.org/download.html
3https://github.com/nanoporetech/pinfish

Gene function annotation was performed based on the
following databases: NCBI non-redundant protein sequences
(NR), protein families (Pfam), homology clusters of proteins
(KOG/COG/eggNOG), manually annotated, and reviewed
protein sequence database (Swiss-Prot), Kyoto Encyclopedia of
Genes and Gene (KEGG) and Gene Ontology (GO).

Weighted Gene Co-expression Network
Analysis
Pearson correlation matrix and network topology analysis was
used to calculate the genetic correlations of 9 samples using the R
package WGCNA version 1.42 with the following settings: CPM
value > 1, Fold change value > 1, minimum module size of 30,
and minimum height of the merged modules of 0.055. Then,
the adjacency matrix was transformed into a topological overlap
matrix. A hierarchical clustering tree was constructed using R’s
dynamic tree cutting package. The genes with KME > 0.8 in the
correlation network were defined as hub genes.

Validation of Oxford Nanopore
Technoligies RNA-Seq by qRT-PCR
To verify the accuracy of the transcriptome data, 8 hub genes
were selected for expression level validation. Primers were
designed using Beacon Designer 8, and the primer sequences
are shown in Supplementary Table 1. Quantitative real-time
PCR (qRT-PCR) was performed on an analytikjena-qTOWER2.2
fluorescence quantitative PCR instrument (Germany) using
2 × SYBR R© Green master mix (DF, China). Three biological
replicates were analyzed. Using the glyceraldehyde 3-phosphate
dehydrogenase (CsGAPDH) gene as an internal reference gene,
the relative expression was quantified by the 2−11Ct method.

Statistical Analysis
Statistical analysis was performed using SPSS 20.0 software
(SPSS Inc., Chicago, United States). One-way analysis of variance
(ANOVA) and Duncan’s multiple intervals were used to analyze
significant differences between physiological and hormonal index
data under different light quality, and differences were considered
statistically significant at P-values < 0.05. Graphics were created
using Adobe Photoshop CC 2019.

RESULTS

Differences of Adventitious Root
Formation and Physiological
Characteristics of Tea Cuttings Under
Different Light Quality
At 90 days of treatment, we carried out sampling
statistics on the cuttings. Formation status of adventitious
roots: blue light > white light > red light, the callus
expanded but few roots under red light (Figures 1A,B). In
conclusion, blue light can quickly induce the formation of
adventitious roots.

Light quality has influences on plant leaf color, and the
SPAD value is a parameter that measures the relative chlorophyll
content of the plant, or indicates the degree of greenness of
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FIGURE 1 | Phenotypic and physiological indicators of cuttings under different light quality after culturing for 90 days. (A) Root phenotypes of cuttings under 3 light
qualities. (B) Longest root length (unit:CM). (C) SPAD value of mature leaves. (D) N contents of mature leaves (unit: mg/g). (E) Fv/Fm ratio of mature leaves
(P < 0.05).

the plant. As shown in Figure 1C, the SPAD value under red
light (55.483) was significantly lower than that under white light
(65.317) and blue light (67.583). The N contents of mature leaves
were also measured and the result was consistent with the pattern
of variation of the SPAD values (Figure 1D).

Light quality has a great influence on photosynthesis in
plants. Fv/Fm is the maximum photochemical quantum of
PSII (optical/maximal photochemical efficiency of PSII in the
dark), which reflects the efficiency of light energy conversion
within the PSII reaction center or the potential maximum
photosynthetic capacity of plants (photosynthetic efficiency). As
shown in Figure 1E, Fv/Fm ratio: blue light (0.798) > white light
(0.647) > red light (0.543).

Change Patterns of Phytohormones in
Mature Leaves Under Different Light
Quality
To reveal the underlying mechanism of the differences in
adventitious roots among different light quality, we measured the
phytohormone contents of the mature leaves under different light
quality. As shown in Figure 2, most of the phytohormones were
significantly different under the 3 light qualities. Among them,
five phytohormones, Abscisic acid (ABA), ABA-glucosyl ester
(ABA-GE), Indole-3-carboxylic acid (ICA), trans-Zeatin (tZ),
and Jasmonic acid (JA), showed an overall change pattern similar
to that of root growth, showing blue light > white light > red
light. In addition, there were significant differences in the ratios of
certain phytohormones. For example, the ICA/DHZROG under
blue light was significantly higher than that under white and red
light (Supplementary Figure 1).

Global Expression Analysis of Tea Plants
Under Different Light Quality
To reveal the molecular mechanism of differences in adventitious
root formation among different light quality, 9 samples were
collected from 3 light qualities for ONT RNA-seq. A total
of 52.11 Gb clean data were obtained by high-throughput
sequencing. After removing low-quality reads, a total of 38.6
million clean reads were obtained, and the average number of
reads per library was about 4.3 million. More than 92% of
the reads could be mapped to the reference genome sequence
(Supplementary Table 2).

A total of 1,512 DEGs were identified by red and blue
light compared to white light. Among them, there are 64
common DEGs in red and blue light (Figure 3A). These
genes were searched using KEGG to analyze their possible
functions in adventitious root formation. The results showed
that these genes were significantly enriched in “Plant hormone
signal transduction (ko04075)”and “Plant-pathogen interaction
(ko04626)” (Figure 3B). Above results suggested that these
pathways may be involved in the regulation of adventitious root
formation by light quality.

Co-expression Network Analysis
Between Different Light Quality
To explore the relationship between phytohormone content and
gene expression, we constructed a co-expression network using
WGCNA. Finally, a total of 23 gene co-expression modules
(marked with different colors) were identified in the cluster
dendrogram (Figure 4A). And the soft-thresholding of WGCNA
was 5 (Supplementary Figure 2), this value proved to be reliable
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FIGURE 2 | Phytohormones in mature leaves under 3 light qualities (P < 0.05).

FIGURE 3 | (A) VENN diagram showing the number of differentially expressed genes (DEGs) per comparison between different light quality in mature leaves. (B) Top
20 statistics of KEGG pathway enrichment in mature leaves under 3 light qualities.

(Wu et al., 2021; Harutyunyan et al., 2022). The “MEblue”
and “MEred” modules which had highly positive correlations
with 5 kinds of phytohormones (P < 0.05), including ABA,
ABA-GE, ICA, tZ, and JA, and the correlation coefficients were
all greater than 0.7. Among them, the correlation coefficient
between “MEblue” module and ICA is as high as 0.92. The
“MEgrey60” and “Meroyalblue” modules which had highly
positive correlations with DHZROG (R > 0.7, P < 0.05), the
“MEtan” module had a highly positive correlation with ACC
(R = 0.84, P = 0.004), and the “MEdarkturquoise” module had

a highly positive correlation with GA9 (R = 0.72, P = 0.03). In
addition, the “MEtan” module had highly negative correlations
with ABA, ABA-GE, ICA, tZ, and JA (R < −0.7, P < 0.05), and
the “MEroyalblue” module had highly negative correlations with
ICA and JA (R <−0.75, P < 0.05) (Figure 4B).

To further understand the functions of genes in the “MEblue”
module, we performed KEGG and GO enrichment analyses.
The results of KEGG enrichment analysis showed that most
genes were enriched in the “Plant hormone signal transduction
(ko04075),” “Plant-pathogen interaction (ko04626)” and “Starch
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FIGURE 4 | Weighted gene co-expression network analysis of the genes in mature leaves under 3 light qualities. (A) Hierarchical clustering tree representing
co-expression modules identified by WGCNA. The main branches marked with different colors make up 23 modules. (B) WGCNA analysis between DEGs and
phytohormones under 3 light qualities. Each row represents a module. The color and number of each cell represents the correlation coefficient between modules
and phytohormones.

and sucrose metabolism (ko00500)” pathways (Figure 5A). GO
enrichment analysis showed that most genes were enriched
in “metabolic processes,” “cellular processes” and “single-cell
processes” in biological processes; most genes were enriched in
“membranes,” “membrane components” and “cells” in cellular
components; most genes were enriched in “combined” and
“catalytic activity” in molecular functions (Figure 5B). The above
results indicated that these pathways were highly correlated with
phytohormones and played an important role in the regulation of
adventitious root formation by light quality.

Identification of Hub Genes and Auxin
Transporter-Related Genes
To gain insight into the regulatory mechanisms of
phytohormone-related genes associated with adventitious
root formation of the cuttings, hub genes with high connectivity
in the network were selected based on KME values (KME > 0.8).
The correlation network graph of some genes is shown in
Figure 6D. The results showed that several genes were involved
in auxin synthesis, transport and response, including 2 flavin
monooxygenases YUC (a flavin-containing monooxygenase)
(CSS0012245, CSS0008867), 1 auxin influx carrier AUX1
(CSS0016609), 1 auxin early responsive protein AUX/IAA
(CSS0000235), and 1 auxin response factor ARF (CSS0001727).
In addition, DELLA protein (ONT.11249) involved in GA
signaling, and PP2C (CSS0021166, CSS0031264, CSS0037814), a
negative regulator of ABA signaling, were also identified as hub
genes in the network (Supplementary Table 3).

The expression profiles of these hub genes were analyzed
under 3 light qualities. As shown in Figures 6A,B, compared
with white light, all genes were up-regulated under blue light,
while most were down-regulated under red light. Among them,

YUC, DELLA, and PP2C were more significantly up-regulated
under blue light.

Additionally, we identified 6 auxin transport-related genes,
including two major categories, PIN and PIN-LIKES (PILS).
PIN includes PIN1 (CSS0005048), PIN3 (CSS0044702), and
PIN4 (CSS0006843). PILS includes PILS5 (CSS0008291), PILS6
(CSS0006341), and PILS7 (CSS0041860) (Supplementary
Table 4). Except for PILS5, which had the lowest expression
under blue light, all others had the highest expression under blue
light (Figure 6C).

qRT-PCR Analysis
To demonstrate the reliability of the ONT RNA-Seq data, we
performed qRT-PCR to validate the expression profiles of the
eight hub genes identified by WGCNA. Expression profiles
between white and red light, and between white and blue light
were compared by qRT-PCR. For all these selected genes, the
expression trends by qRT-PCR were consistent with those of the
ONT RNA-Seq data, which proved that the ONT RNA-Seq data
were reliable (Figure 7).

DISCUSSION

Red and Blue Light Affected Adventitious
Root Formation by Regulating the
Expression of YUC Genes
Previous studies reported that auxin is the master regulator
of adventitious roots and plays a key role in the formation
of adventitious roots in plants (Negishi et al., 2014; Kreiser
et al., 2016; Pan et al., 2020). ICA belongs to auxin, and
the content of ICA under blue light is significantly higher
than that under red light (Figure 2). It has been reported
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FIGURE 5 | (A) KEGG pathway annotation of genes in the “MEblue” module. Numbers next to the bar graph indicate gene enrichment for this pathway. (B) GO
annotations of genes in the “MEblue” module.

FIGURE 6 | (A) Auxin, GA and ABA signaling pathways. (B) Auxin synthesis pathway. (C) Expression of auxin transport-related genes. (D) Correlation network graph
of genes in “MEblue” module.

that YUC, as a flavin monooxygenase, catalyzes the irreversible
oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to
create IAA, which is the core of auxin formation (Zhao et al.,
2001; Zheng et al., 2013), and up-regulation of YUC genes can
promote IAA biosynthesis (Han et al., 2020). There are also
reports certificated that the YUC gene family orchestrated the
biosynthesis of endogenous auxin required for adventitious root
induction (Chen et al., 2016; Sang et al., 2016). In addition,
study has shown that YUC6 is positively correlated with the

formation of adventitious roots in Arabidopsis (Rovere et al.,
2016). Meanwhile, Pan et al. (2019) showed that enhanced
YUC1 gene expression in mature leaves could rescue the rooting
defects caused by leaf maturation Yamamoto et al. (2007) also
demonstrated that antisense expression of YUC in rice inhibited
root formation and elongation, similar to the root phenotype
of auxin-insensitive mutants The above results indicated that
YUC genes play an important role in auxin biosynthesis and
adventitious root formation. Moreover, YUC genes are widely
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FIGURE 7 | Validation of 8 hub genes by qRT-PCR. The left Y-axis represents counts per million (CPM) values for Oxford Nanopore Technoligies (ONT) RNA-Seq,
and the right Y-axis represents relative qRT-PCR expression levels. In the figure, the bars represent ONT RNA-Seq, and the lines represent qRT-PCR.

present and highly conserved in the plant kingdom (Liu et al.,
2014). In the study of cucumber, the expression of YUC gradually
increased with the adding of the proportion of blue light.
In this study, as a hub gene, expression of YUC significantly
increased under blue light compared with red light (Figure 6B).
The higher expression of YUC gene augmented the content of
ICA under blue light. Therefore, we speculated that blue light
promotes the synthesis of ICA by up-regulating the expression
of YUC gene, thereby promoting the formation of adventitious
roots of cuttings.

Red and Blue Light Affected Adventitious
Root Formation by Regulating the
Expression of Auxin Transport-Related
Genes
During the induction phase of adventitious root formation,
auxin was synthesized in the mature leaves and transported to
the cutting base. In the study of Arabidopsis, light affects IAA
synthesis during seedling germination, and IAA transport from
developing leaves to roots (Bhalerao et al., 2002). Auxin transport
is usually mediated by auxin influx and efflux vectors, which are
encoded by the AUX1/LAX, PIN, and PILS (PIN-LIKES) genes,
respectively (Zhao et al., 2021). Members of the AUX1/LAX
gene family are major auxin influx carriers, and mutations in its
gene cause auxin-related developmental defects and are involved
in the regulation of key plant processes, including root, and
lateral root development, root gravitation and hair development,
vascular patterns, seed germination, leaf morphogenesis, and
embryo development (Swarup and Bhosale, 2019). In this study,
AUX1 was also identified as a hub gene. It has been shown

that AUX1 promotes auxin transport between leaves and root
tissues through the phloem, thereby regulating root development
(Marchant et al., 2002). In Liriodendron hybrids, AUX1 is highly
expressed in adventitious roots, and the expression of AUX1 and
ARF1 is increased during adventitious root development (Zhong
et al., 2015), suggesting that AUX1 plays an important role in
adventitious root formation, AUX1 and ARF may also play a
synergistic role in regulating plant root development. In this
study, AUX1 and ARF were expressed at the highest levels under
blue light, which proved that this synergistic effect may exist. In
Arabidopsis, PIN1 and AUX1 coordinate to promote auxin flux,
thereby inducing auxin levels sufficient to touch off adventitious
root initiation. On the other hand, LAX3 is also active during
adventitious root formation (Rovere et al., 2016). In addition, Fan
et al. (2021) showed that the AUX1/LAX family was considered to
be the key gene for adventitious root formation by studying the
cuttings of three varieties of tea with different rooting abilities.
Meanwhile, Yousef et al. (2021) investigated the effect of different
light qualities on graft union formation in grafted tomatoes and
showed that the expression levels of both AUX1 and ARF were
higher in blue LEDs than in red LEDs and white fluorescence.
In our study, the expression level of AUX1 under blue light
was higher than that under red light (Figure 6A). Based on the
above results, we believed that AUX1 plays a crucial role in the
formation of adventitious roots in cuttings induced by blue light.

PIN protein acts as an auxin efflux carrier, and its
polar orientation corresponds well with the direction of
auxin movement, which indicates that PIN protein is mainly
responsible for the asymmetric distribution of auxin in
plants (Benková et al., 2003; Swarup and Bennett, 2003;
Swarup and Péret, 2012). Also, PIN is involved in plant growth
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and development by regulating auxin flow and distribution
(Petrásek and Friml, 2009). Among them, PIN1 and PIN3
act as major auxin transport promoters, mediating the polar
redistribution of auxin from stem to root (Blilou et al., 2005;
Krecek et al., 2009; Adamowski and Friml, 2015). This indicates
that PIN1 and PIN3 contribute to the transport of auxin from
above ground to below ground, thereby regulating root growth.
Other study has shown that the promoters of PIN1 and PIN4 bind
XAL2/AGL14 to upregulate the expression of PIN1 and PIN4,
which is necessary for the overproduction of auxin transport to
roots and participates in auxin-mediated root development in a
PIN4-dependent manner (Garay-Arroyo et al., 2013). In the study
of maize, overexpression of ZmPIN1a was found to promote the
transport of auxin from the stem to the root system, resulting
in a well-developed root system with longer primary roots (Li
et al., 2018). In the study of Arabidopsis, AtPIN1 was found to
play a role in auxin polar transport and promote auxin efflux
from cells (Gälweiler et al., 1998). Another study reported that
blue light-induced Arabidopsis adventitious root formation was
regulated by PIN3-mediated auxin transport (Zhai et al., 2021).
In this study, the formation of adventitious roots was the best
under blue light, and PIN1, PIN3 and PIN4 were all expressed
at the highest levels under blue light (Figure 6C), so we believe
that PIN1, PIN3, and PIN4 promoted the transport of ICA from
mature leaves to the base of cuttings, and play a key role in the
formation of adventitious root induced by blue light.

PILS are a newly discovered class of auxin transporters that
assist the polar transport of auxin. PILS protein has certain
similarity with PIN protein in protein sequence and contributes
to the homeostasis of intracellular auxin (Feraru et al., 2012;
Sun et al., 2020). Currently, little is known about the effects of
PILS proteins on plant growth and development. Previous studies
have shown that PILS transcription integrates environmental
signals such as light and temperature to play an important role
in the process of auxin-dependent growth, and affects de novo
organogenesis and the growth rates of root and stem (Béziat
et al., 2017; Feraru et al., 2019). In study of Arabidopsis, it was
shown that PILS2 and PILS5 have redundant roles in regulating
root growth, with significantly longer roots in pils2 single mutant
and pils2 pils5 double mutant seedlings compared to wild type,
and root systems in PILS5 seedlings were shorter (Barbez et al.,
2012). Additionally, AtPILS1-7 in Arabidopsis has been shown
to contribute to intracellular auxin transport (Barbez et al., 2012;
Béziat et al., 2017; Feraru et al., 2019). In this study, PILS6 and
PILS7 had the highest expression under blue light, while PLS5
had the lowest expression under blue light (Figure 6C). So we
think PILS5,6,7 may play an important role in auxin transport,
and then play an important role in formation of adventitious root
induced by blue light.

Red and Blue Light Affected Adventitious
Root Formation by Regulating the
Expression of Hormone Signal
Transduction Genes
Auxin plays a crucial role in the formation of adventitious
roots. Plants can quickly sense and respond to changes in auxin

levels, which involves several types of auxin response factors,
such as the Auxin/Indole-3-acetic acid (AUX/IAA) family, the
auxin response factor (ARF) family, and the small auxin up-
regulated RNA (SAUR) family (Luo et al., 2018). In this study,
AUX/IAA and ARF were identified as hub genes. It has been
reported that IAA18 and IAA28 transcripts can be transported
from mature leaves to roots through the phloem to regulate
root growth (Notaguchi et al., 2012), suggesting that IAA may
have an important role in long-distance communication between
leaves and roots. Studies have reported that IAA17 is involved in
some typical phenotypes controlled by auxin signaling, such as
hypocotyl elongation, root gravitation, root hair, and adventitious
root formation (Leyser et al., 1996; Rouse et al., 1998). Moreover,
some studies have shown that IAA is also involved in lateral
root formation by interacting with ARF proteins (Tatematsu
et al., 2004; Sorin et al., 2005; Gutierrez et al., 2009), indicating
that IAA and ARF have a synergistic effect in regulating plant
root development. In our study, AUX/IAA and ARF were up-
regulated under blue light, which also demonstrated the existence
of this synergy. Previous studies have shown that ARF6 and ARF8
are positive response factors for adventitious root formation
(Sorin et al., 2005; Gutierrez et al., 2009). Meanwhile, some
studies have demonstrated that certain auxin signaling genes
may play a role in both lateral root and adventitious root
formation. For example, ARF9 and ARF17 can regulate lateral
root and adventitious root formation in Arabidopsis (Okushima
et al., 2005; Vanneste et al., 2005; Lee et al., 2009; Smet et al.,
2010; Wilmoth et al., 2010). In Eucalyptus globulus, far-red
light domestication of donor plants promoted adventitious root
formation in cuttings compared with white light domestication,
which was associated with higher expression levels of ARF6
and ARF8 during adventitious root formation (Ruedell et al.,
2015), indicating that light quality can affect root formation by
regulating the expression of ARF. In addition, single mutants
of arf7 and arf19 reduced the number of lateral roots and
adventitious roots, and the double mutants of arf7 and arf19
showed more obvious (Okushima et al., 2007; Wilmoth et al.,
2010). Ma et al. (2021) treated tea seedlings with supplemental
red light and found that IAA26 was upregulated under red light.
However, Ouyang et al. (2015) showed that AUX/IAA and ARF
were significantly up-regulated in Norway spruce under blue
light compared to red light. In our study, the expression of
both AUX/IAA and ARF also was higher in blue light than in
red light (Figure 6A). These results suggested that blue light
may promote the formation of adventitious roots in cuttings
by inducing the expression of AUX/IAA and ARF genes and
coordinating their expression.

In addition to the auxin pathway, other hormone signal
transduction pathways are also involved in the formation of
adventitious roots in cuttings. DELLA and PP2C were also
identified as hub genes in our study. DELLA proteins are negative
regulators of GA signaling (Olszewski et al., 2002). In poplar, the
expression level of DELLA gene increased continuously during
adventitious root formation (Liu et al., 2016), indicating that
DELLA plays an important role in adventitious root formation.
The PP2C gene has been shown to be a negative regulator
of ABA signaling (Park et al., 2009). The root elongation
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of the TaPP2C-a10 transgenic line in Arabidopsis was not
affected by high concentrations of ABA (Yu et al., 2020). In this
study, ABA and ABA-GE contents were highest under blue light
(Figure 2), but adventitious root formation was optimal, which
may be attributed to the high expression of PP2C. Additionally,
in a study by Zheng et al. (2019) that treated tea plants with blue
and green light, PP2C was up-regulated under blue light, which is
similar to our findings (Figure 6A). The above results indicated
that DELLA and PP2C may also play a key role in the formation
of adventitious roots in cuttings induced by blue light.

CONCLUSION

In this study, the molecular mechanism of the difference in the
formation of adventitious roots in tea plants under white, red,
and blue light were investigated for the first time. The results
showed that, compared with white light, blue light promoted
the formation of adventitious roots, while red light showed
inhibition. Phytohormone analysis showed that the content of
ICA in mature leaves under blue light was significantly higher
than that under white light and red light. Transcriptome results
revealed that genes involved in auxin formation and signal
transduction were expressed at different levels under different
light qualities. The hub genes YUC, AUX/IAA, ARF, and AUX1
were the key genes in the regulation of adventitious root
formation in tea cuttings by light quality, and their expression
levels were the highest under blue light. The auxin transport-
related genes PIN1, PIN3, PIN4, PILS6, and PILS7 showed the
highest expression levels under blue light, while PILS5 showed the
lowest expression level under blue light. In conclusion, in actual
production, certain amount of blue light could be supplied to
promote the formation of adventitious roots of tea cuttings This
study provides a new idea for the “rapid seedling” of tea plants
in the future.
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