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Spermine-mediated metabolic
homeostasis improves growth
and stress tolerance in creeping
bentgrass (Agrostis stolonifera)
under water or
high-temperature stress

Zhou Li†, Bizhen Cheng†, Xing Wu†, Yan Zhang,

Guangyan Feng and Yan Peng*

Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu, China

Plants have developed diverse defense strategies to reduce the detrimental

e�ects of a wide range of environmental stresses. The objectives of this study

were to explore the function of spermine (Spm) on mediating growth and

physiological changes in water homeostasis, photosynthetic performance,

and oxidative damage and to further examine the regulatory mechanism

of Spm on global metabolites reprogramming and associated metabolic

pathways in horticultural creeping bentgrass (Agrostis stolonifera) under

water and heat stresses. The 21-days-old plants were pretreated with or

without 100µM Spm for 3 days and then subjected to water stress (17%

polyethylene glycol 6000), high-temperature stress (40/35◦C, day/night), or

normal condition (control without water stress and heat stress) for 18 days.

Results demonstrated that exogenous application of Spm could significantly

increase endogenous polyamine (PAs), putrescine (Put), spermidine (Spd), and

Spm contents, followed by e�ective alleviation of growth retardant, water

imbalance, photoinhibition, and oxidative damage induced by water and heat

stress. Metabolites’ profiling showed that a total of 61 metabolites were

di�erentially or commonly regulated by Spm in leaves. Spm upregulated

the accumulation of mannose, maltose, galactose, and urea in relation

to enhanced osmotic adjustment (OA), antioxidant capacity, and nitrogen

metabolism for growth maintenance under water and heat stress. Under water

stress, Spmmainly induced the accumulation of sugars (glucose-1-phosphate,

sucrose-6-phosphate, fructose, kestose, maltotriose, and xylose), amino acids

(glutamic acid, methionine, serine, and threonine), and organic acids (pyruvic

acid, aconitic acid, and ketoglutaric acid) involved in the respiratory pathway

and myo-inositol associated with energy production, the ROS-scavenging

system, and signal transduction. In response to heat stress, the accumulation

of alanine, glycine, gallic acid, malic acid, or nicotinic acid was specifically

enhanced by Spm contributing to improvements in antioxidant potency and

metabolic homeostasis. This study provides novel evidence of Spm-induced,
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tolerance to water and heat stresses associated with global metabolites

reprogramming in favor of growth maintenance and physiological responses

in horticultural plants.

KEYWORDS

abiotic stress, metabolites, metabolic pathways, osmotic adjustment (OA), polyamine

(PA), signal transduction

Introduction

Abiotic stresses such as drought and high-temperature

stress cause huge economic losses in horticulture. Predictably,

the frequency and severity of drought and heat stress will

further increase in the future due to global climate change

(Cayan et al., 2010; Sun et al., 2019). Plants adapt to stressful

environments by regulating physiological, biochemical, and

phenotypic responses at molecular, enzymatic, and metabolic

levels (Gong et al., 2020; Jing et al., 2021; Li et al., 2021).

Although the analysis and identification of stress-responsive

genes and proteins are still the mainstream research in plant

species, the role of metabolites in stress tolerance is coming into

notice in recent years (Ghatak et al., 2018). Increasing studies

proved that global metabolites accumulation and transformation

not only affected crop product and quality but also affected

stress tolerance. Some of them are beneficial for enhanced stress

tolerance, such as most of the amino acids and soluble sugars,

but others like quinones and aldehydes overaccumulation are

toxic to plants under stressful environments (Srivastava et al.,

2017; Martínez-Noël and Tognetti, 2018; Batista-Silva et al.,

2019). It has been demonstrated that the global reprogramming

of metabolites was involved in adaptive responses to drought

stress in different Lotus genus species by using comparative

metabolomics (Sanchez et al., 2012). Non-protein amino acids,

such as γ-aminobutyric acid (GABA), could mitigate heat

and drought damage by altering primary and secondary

metabolites in creeping bentgrass (Agrostis stolonifera) based

on the analysis of non-targeted metabolomics (Li et al., 2016a,

2017a). Therefore, the study of the relations between changes

in metabolites and stress tolerance is essential for a better

understanding of the stress-adaptive mechanisms in different

plant species.

Polyamines (PAs) including putrescine (Put), spermidine

(Spd), and spermine (Spm) are known as low-molecular-weight

plant growth regulators (PGRs) exhibiting strong biological

activity in plants. Spm is a superlative form of PA which is

synthesized from a lower form of PA, such as Put and Spd, and

Spm can also be degraded into Spd and Put in plants (Chen

et al., 2019). It has been widely reported about the function of

PAs in regulating plant growth, development, senescence, and

stress tolerance in various plant species (Chen et al., 2019).

Put and Spd pretreatment mitigated cadmium damage to wheat

(Triticum aestivum) by maintaining hormonal balance and

antioxidant homeostasis (Tajti et al., 2018). Exogenously applied

Spd enhanced endogenous PAs accumulation and tolerance to

water stress in white clover (Trifolium repens) in relation to the

improvement in antioxidant and proline metabolisms (Li et al.,

2016b), whereas the inhibition of endogenous PAs biosynthesis

could significantly decrease drought tolerance of white clover

(Li et al., 2018). PAs could alleviate high-temperature stress

by modulating starch and PAs accumulation and metabolism

in rice (Oryza sativa) (Fu et al., 2019). Heat tolerance was

established with the application of exogenous Spd in rice closely

related to the enhancement of antioxidative and glyoxalase

systems (Mostofa et al., 2014). However, the contribution of

Spm to drought and heat tolerance associated with changes in

global metabolites and relevant metabolic pathways is poorly

documented in plants.

Mesophytes including most of the horticultural plants, such

as creeping bentgrass, are susceptible to stressful environments,

leading to a decrease in quality and economic losses (Cramer

et al., 2011). In this study, we focused on effects of exogenous

application of Spm on changes in endogenous PAs content,

physiological responses, including photosynthesis, osmotic

adjustment (OA), and oxidative damage, and extensive organic

metabolites based on metabolomics in leaves of creeping

bentgrass under normal, drought, and heat conditions. Current

findings will help to better understand critical roles of PAs and

metabolites in cold-season creeping bentgrass in response to

drought and high-temperature environments.

Materials and methods

Plant material and treatments

Seeds (cv. Penncross at a rate of 6 g·m−2) were germinated

in rectangular plastic containers (25 cm in length, 15 cm in

width, and 10 cm in height) filled with quartz sand in growth

chambers (21/18◦C (day/night), 65% relative humidity, and

700 µmol·m−2·s−1 PAR). After germinating in distilled water

for 8 days, seedlings were irrigated with Hoagland’s solution

(Hoagland and Arnon, 1950) for 14 days. For hydroponic
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cultivation, seedlings were removed from quartz sand and

suspended through small holes in Styrofoam boards that

could float on the nutrient solution. After being transplanted

in Hoagland’s solution for 7 days for the acclimation to

the hydroponic cultivation, seedlings were grown in the

Hoagland’s solution without (as control) or with 100 µmol/L

Spm (as +Spm, purity ≥ 99.0%, Art. No. 85590, Sigma-

Aldrich) for 3 days and then all plants were moved to a

new Hoagland’s solution without Spm. Three conditions were

set up: (1) normal condition: Spm-pretreated and untreated

plants grew in a normal Hoagland’s solution and were placed

in a normal growth chamber (mentioned above) for 18

days; (2) water stress: Spm-pretreated and untreated plants

grew in a Hoagland’s solution containing 17% polyethylene

glycol 6000 (PEG-induced water stress) and were placed

in a normal growth chamber for 18 days; (3) heat stress:

Spm-pretreated and untreated plants grew in the normal

Hoagland’s solution and were placed in a high-temperature

growth chamber [40/35◦C (day/night), 65% relative humidity,

and 700 µmol·m−2·s−1 PAR] for 18 days. All solutions were

refreshed every day. Spm-pretreated and untreated plants were

completely arranged in growth chambers. Four independent

biologic replicates (four containers) for each treatment including

20 plants were used for the analysis of physiological parameters

or metabolome.

Measurements of physiological
parameters and endogenous
polyamines content

The determination of chlorophyll (Chl) content,

relative water content (RWC), hydrogen peroxide (H2O2),

malondialdehyde (MDA) content, electrolyte leakage (EL),

endogenous PAs, and relative growth rate (RGR) were

performed based on the method of Amnon (1949), Barrs and

Weatherley (1962), Blum and Ebercon (1981), Dhindsa et al.

(1981), Velikova et al. (2000), Duan et al. (2008), and Ma et al.

(2012), respectively. Specific measurement procedures have

been clearly described in our previous study (Li et al., 2016b).

For the determination of OA, fresh leaves were hydrated in

deionized water for 12 h and fully turgid leaves were frozen in

liquid nitrogen for 10min. When frozen leaves were thawed

in an ice bath, the sap in the leaves was pressed and then

inserted (10ml) into an osmometer (Wescor, Inc., Logan, UT)

to get osmolality (mmol kg−1). The osmotic potential (OP)

was calculated based on the formula OP = –([osmolality] ×

[0.001] × [2.58]). The OA was calculated based on the formula

OA = OP (control leaves under the normal condition) –

OP (stressed leaves) (Blum, 1989). A portable photosynthesis

system (CIRAS-3, PP Systems, USA) was used for detecting

net photosynthesis rate (Pn) and water use efficiency (WUE).

The leaf chamber (400 µl L−1 CO2 and 800 µmol photon

m−2 red and blue light) was overspread with a single layer

of leaves and readings were recorded after the readings were

stable. The protein carbonyl content was detected using

the assay kit that was purchased from the Suzhou Comin

Biotechnology Co., Ltd., Suzhou, China, according to the

manufacturer’s instructions.

Metabolite extraction and quantification

The metabolome was detected using GC-TOFMS.

The metabolite extraction, separation, and quantification

were conducted according to the methods of Roessner

et al. (2000) and Qiu et al. (2009) with some

modifications that were clearly described in our previous

study (Li et al., 2020a).

Statistical analysis

The analysis of variance (SAS 9.1, SAS Institute, Cary, NC,

USA) was used to determine the significance of all measured

parameters. Differences between treatment means were tested

using Fisher’s protected least significance (LSD) test at a 0.05

probability level.

Results

E�ects of spermine priming on changes
in endogenous polyamines

Spm priming did not affect PA content in leaves under

normal condition, but Spm-pretreated plants exhibited an

84 or 82% increase in PA content than non-treated control

under water stress or heat stress, respectively (Figure 1A).

The application of exogenous Spm significantly increased

Put content under normal condition, water stress, and heat

stress (Figure 1B). A 29 or 40% increase in Spd content

was observed in +Spm treatment as compared to that

in control under water stress or heat stress, respectively

(Figure 1C). Spm-treated plants exhibited significantly higher

endogenous Spm content than untreated plants under

water stress and heat stress (Figure 1D). For untreated

plants, Spm significantly accumulated under heat stress,

but did not significantly increase under water stress as

compared to the control. For Spm-treated plants, Spm

significantly accumulated under water stress and heat

stress (Figure 1D).
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FIGURE 1

Changes in endogenous (A) polyamines (PAs), (B) putrescine (Put), (C) spermidine (Spd), and (D) spermine (Spm) in response to Spm application

under di�erent conditions. Vertical bars indicate ±SE of mean (n = 4). Di�erent letters above striated or gray columns indicate significant

di�erences for a particular treatment (control or +Spm) for comparison across the normal condition, water stress, and heat stress; the asterisk

“*” indicates significant di�erences between the control and the +Spm treatments under one particular condition (normal condition, water

stress, or heat stress) based on LSD (P < 0.05). Total PA content was calculated by the sum of Put, Spd, and Spm contents.

E�ects of spermine priming on changes
in growth, water status,
and photosynthesis

Water stress and heat stress significantly decreased the RGR

of the control and +Spm treatments, but the +Spm treatment

showed significantly higher RGR than the control under

normal condition, water stress, and heat stress (Figure 2A).

The application of exogenous Spm significantly alleviated the

decline in leaf RWC induced by water stress and heat stress

(Figure 2B). As compared to untreated control, Spm-pretreated

plants had a 17 or 50% increase in OA under water stress or heat

stress, respectively (Figure 2C). Chl content, Pn, and WUE also

significantly declined in response to water stress and heat stress

in both of Spm-pretreated and non-treated plants, whereas Spm-

pretreated plants showed significantly higher Chl content, Pn,

and WUE than non-treated plants under water stress and heat

stress (Figures 3A–C).

E�ects of spermine priming on changes
in oxidative damage and cell
membrane stability

H2O2, protein carbonyl content, MDA content, and

EL were not significantly affected by Spm priming under

normal condition (Figures 4A–D). Water stress and heat stress

significantly induced increases in these four parameters in

both the control and +Spm treatments; however, Spm priming

significantly decreased stress-induced increases in H2O2,

carbonyl, MDA content, and EL in leaves (Figures 4A–D).

E�ects of spermine priming on change in
metabolites profiling

A total of 61 metabolites were identified in leaves of creeping

bentgrass under normal condition, water stress, and heat stress
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FIGURE 2

Changes in (A) relative growth rate (RGR), (B) relative water

content (RWC), and (C) osmotic adjustment (OA) in response to

Spm application under di�erent conditions. Vertical bars

indicate ±SE of mean (n = 4). Di�erent letters above striated or

gray columns indicate significant di�erences for a particular

treatment (Control or +Spm) for comparison across the normal

condition, water stress, and heat stress; the asterisk “*” indicates

significant di�erences between the control and the +Spm

treatments under one particular condition (normal condition,

water stress, or heat stress) based on LSD (P < 0.05).

(Figure 5A). These metabolites included 16 sugars, 16 amino

acids, 15 organic acids, and 14 other metabolites. A heatmap

of all metabolites showed downregulation and upregulation

as Spm-treated plants compared to untreated plants under

normal condition, water stress, or heat stress, respectively

(Figure 5A). The ratio of no change, a significant increase,

FIGURE 3

Changes in (A) chlorophyll (Chl) content, (B) net photosynthetic

rate (Pn), and (C) water use e�ciency (WUE) in response to Spm

application under di�erent conditions. Vertical bars indicate ±SE

of mean (n = 4). Di�erent letters above striated or gray columns

indicate significant di�erences for a particular treatment

(Control or +Spm) for comparison across the normal condition,

water stress, and heat stress; the asterisk “*” indicates significant

di�erences between the control and the +Spm treatments

under one particular condition (normal condition, water stress,

or heat stress) based on LSD (P < 0.05).

or a significant decline in metabolites was shown in Figure 5B,

when Spm-pretreated plants were compared to untreated plants

under normal condition, water stress, or heat stress. Water

stress or heat stress significantly decreased total metabolites

accumulation, and Spm-pretreated plants exhibited significantly

higher total metabolites content than untreated plants under
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FIGURE 4

Changes in endogenous (A) hydrogen peroxide (H2O2), (B) carbonyl content, (C) malonaldehyde (MDA), and (D) electrolyte leakage (EL) in

response to Spm application under di�erent conditions. Vertical bars indicate ±SE of the mean (n = 4). Di�erent letters above striated or gray

columns indicate significant di�erences for a particular treatment (Control or +Spm) for comparison across the normal condition, water stress,

and heat stress; the asterisk “*” indicates significant di�erences between the control and the +Spm treatments under one particular condition

(normal condition, water stress, or heat stress) based on LSD (P < 0.05).

water stress (Figure 5C). Similarly, total sugars, amino acids,

organic acids, or other metabolites also significantly declined

in all plants under water stress and heat stress (Figures 6A–D).

The Spm-pretreated plants accumulated significantly more total

amino acids and organic acids under water stress (Figures 6B,C).

Supplementary Figures S1–S4 showed the relative content

of 61 metabolites. Among these metabolites, Spm upregulated

the accumulation of 10 sugars (kestose, maltotriose, maltose,

galactose, fructose, xylose, tagatose, mannose, glucose-

1-phosphate, and sucrose-6-phosphate), 5 amino acids

(serine, threonine, methionine, histidine, and glutamic

acid), 7 organic acids (pyruvic acid, ketoglutaric acid,

aconitic acid, glyceric acid, itaconic acid, maleic acid,

and quinic acid), and 5 other metabolites (ribitol, myo-

inositol, urea, mannosylglycerate, and nicotinoylglycine)

under water stress (Supplementary Figures S1–S4). Under

heat stress, Spm application improved the accumulation

of maltose, galactose, mannose, alanine, glycine, malic

acid, ketobutyric acid, gallic acid, urea, nicotinic acid,

and nicotinoylglycine (Supplementary Figures S1–S4). As

seen in Figure 7, Spm regulated 21 metabolites under

water stress. A total of 14 metabolites responded to Spm

application under heat stress (Figure 7). Spm induced

changes in 19 metabolites in leaves under water and heat

stress (Figure 7). Pathway enrichment analysis showed

45 identified metabolites involved in the tricarboxylic

acid (TCA) cycle, GABA shunt, and other metabolic

pathways (Figure 8).

Discussion

Increases in endogenous PAs biosynthesis and catabolism

were propitious to achieve tolerance to water stress in

Arabidopsis thaliana (Sen et al., 2018; Sen andMohapatra, 2022).

However, enhanced PA metabolism could also improve the

risk of oxidative damage, because PA catabolism was known

to generate ROS (Mohapatra et al., 2009). Our current study
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FIGURE 5

Changes in (A) the heatmap of all identified metabolites, (B) percentage of upregulated, downregulated, and unchanged metabolites, and (C)

relative content of total metabolites in response to Spm application under di�erent conditions. Vertical bars indicate ±SE of mean (n = 4).

Di�erent letters above striated or gray columns indicate significant di�erences for a particular treatment (Control or +Spm) for comparison

across the normal condition, water stress, and heat stress; the asterisk “*” indicates significant di�erences between the control and the +Spm

treatments under one particular condition (normal condition, water stress, or heat stress) based on LSD (P < 0.05).

showed that Spm pretreatment did not significantly affect the

accumulation of total PAs, Spd, or Spm and physiological

parameters, including RWC, Chl content, Pn, WUE, H2O2

content, carbonyl content, MDA content, and EL level in

leaves of creeping bentgrass under the normal condition, but

significantly improved RGR. These findings indicated that an

appropriate dose of Spm pretreatment did not cause deleterious

effects in creeping bentgrass under the normal condition,

and Spm could be catabolized for maintaining growth during

18 days of normal cultivation. In addition, alterations of

endogenous PA content under stress conditions are evident in

many plant species in relation to drought and heat tolerance.

For example, declines in endogenous Put, Spd, and Spm

content by the application of a biosynthetic inhibitor of PAs

significantly weakened the adaptive response of white clover

to water stress (Li et al., 2015b). Significant increases in
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FIGURE 6

Changes in the relative content of (A) sugars, (B) amino acids, (C) organic acids, and (D) other metabolites in response to Spm application under

di�erent conditions. Vertical bars indicate ±SE of mean (n = 4). Di�erent letters above striated or gray columns indicate significant di�erences

for a particular treatment (Control or +Spm) for comparison across the normal condition, water stress, and heat stress; the asterisk “*” indicates

significant di�erences between the control and the +Spm treatments under one particular condition (normal condition, water stress, or heat

stress) based on LSD (P < 0.05).

endogenous Spd and Spm levels induced by exogenous Spd

enhanced the heat tolerance of rice (Zhou et al., 2020). Better

maintenance of water balance and photosynthesis was associated

with Spd-regulated tolerance to water stress in white clover

(Li et al., 2015a). The study of Fu et al. (2014) also proved

that Spm pretreatment conferred combined heat and drought

tolerance in trifoliate orange (Poncirus trifoliata) by alleviating

oxidative damage. Similar results were found in this study.

Spm pretreatment induced significant increases in endogenous

Put, Spd, and Spm under water or heat stress, followed by

the mitigation of detrimental effects of water stress or heat

stress, such as growth inhibition, photoinhibition, water loss,

and oxidative damage in creeping bentgrass. Evidently, PA-

regulated tolerance to water stress and heat stress were closely

related to OA, photosynthetic maintenance, and oxidation-

reduction equilibrium in plants. Some common or particular

organic metabolites contributing to OA and redox homeostasis

in creeping bentgrass in response to water and heat stress are

discussed below.

Regulatory effects of Spm on sugar accumulation and

metabolism have been reported in many plant species under

drought since sugars exhibit the important function of OA,

signal transduction, and energy supply (Hasan et al., 2021).

For example, exogenous application of Spm improved total

soluble sugars accumulation in favor of water relation in

soybean (Glycine max) (Dawood and Abeed, 2020), white clover

(Li et al., 2015a), or bermudagrass (Cynodon dactylon) (Shi

et al., 2013) under water deficit condition. In addition, Spm-

induced accumulation of total available carbohydrates improved

OA and metabolic homeostasis, which alleviated heat-induced

leaf senescence (Liang et al., 2021). However, Spm-regulated

specific sugars, such as monosaccharides, disaccharides, and

polysaccharides, have not been well reported in plants under

drought or heat stress. In the current study, the Spm jointly

regulated the accumulation of mannose, maltose, and galactose

in leaves of creeping bentgrass under water and heat stress.

Mannose, maltose, and galactose are not only important

osmolytes and energy matters but also have other potential
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FIGURE 7

Common and di�erential metabolites regulated by spermine under water stress and heat stress in leaves of creeping bentgrass.

functions for stress adaptation in plants. It has been found

that mannose was a negative regulator of senescence and also

responsible for the improvement in redox homeostasis and

growth under water deficit or high-temperature conditions

(Wang et al., 2011; Zhao et al., 2020; Guo et al., 2022).

The study of Ma et al. (2014) found that drought tolerance

of transgenic Arabidopsis overexpressing the alfalfa (Medicago

Sativa) GME gene that catalyzed the conversion of GDP-D-

mannose to GDP-L-galactose was significantly improved and

was associated with a significant increase in antioxidant capacity.

Maltose is a compatible-solute stabilizing factor that has the

ability to protect proteins, membranes, and photosynthetic

electron transport chains under high-temperature stress (Kaplan

and Guy, 2004). Maltose also exhibited a positive effect on

alleviating drought-induced wheat growth inhibition (Ibrahim

and Abdellatif, 2016). These studies together with our

current findings indicated that Spm-regulated tolerance to

water stress or heat stress could be related to enhanced

OA, osmoprotection, and antioxidant capacity by improving

the accumulation of mannose, maltose, and galactose in

creeping bentgrass.

Interestingly, exogenous application of Spm significantly

induced a 27, 100, 19, 77, 47, or 53% increase in glucose-1-

phosphate, sucrose-6-phosphate, fructose, kestose, maltotriose,

or xylose content when creeping bentgrass suffered from

water stress. Sucrose-6-phosphate and glucose-1-phosphate play

important roles in sugar metabolism, carbon flux, and the

energy cycle in plants (Engels et al., 2008; Poonam et al., 2016).

Nano-zinc oxide promoted the synthesis of glucose-1-phosphate

that was a benefit for drought tolerance in maize (Zea mays)

(Sun et al., 2021). It has been found that the accumulation

of fructose as a common osmolyte for OA or precursor in

cellular respiration helped drought-tolerant Thymus serpyllum

and sensitive Thymus vulgaris plants to tolerate drought stress

(Ashrafi et al., 2018). Exogenous application of chitosan and

mannose enhanced drought tolerance of white clover and

creeping bentgrass associated with the accumulation of fructose

and xylose (Li et al., 2017b, 2019). In addition, the study by Liu
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FIGURE 8

Pathway enrichment analysis of 45 identified metabolites in leaves of creeping bentgrass regulated by spermine under the normal condition,

water stress, and heat stress.

et al. (2019) found that kestose accumulation likely functioned

as a storage carbohydrate that provided energy for rhizosheath

formation of switchgrass (Panicum virgatum) under drought

stress. Maltotriose was a common trisaccharide among rice

genotypes in response to drought stress (Da Costa et al., 2022).

Spm-induced accumulation of these sugars could play positive

Frontiers in Plant Science 10 frontiersin.org

https://doi.org/10.3389/fpls.2022.944358
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.944358

roles in drought tolerance, but an individual function of these

sugars deserved to be further investigated in our further study.

Amino acids are critical primary metabolites for plant

growth and development, reproduction, and stress adaptation

(Hildebrandt Tatjana et al., 2015). A previous study proved that

upregulation of Put metabolism affected the accumulation of

almost all amino acids in cells (Mohapatra et al., 2010). For the

possible function of various amino acids, alanine and glycine

could induce heat shock protein 70 (HSP70) expression in cells

associated with the improvement in thermotolerance (Nissim

et al., 1992). Significant increases in alanine and glycine were

also related to improved heat tolerance of creeping bentgrass

(Li et al., 2016a), which was consistent with our current finding

in Spm-treated creeping bentgrass. It was noteworthy that

Spm expressly induced the accumulation of glutamic acid,

methionine, serine, and threonine in leaves of creeping bentgrass

under water stress. Glutamic acid not only acts as a signal trigger

and nitrogen resource for plant growth but also is involved

in chlorophyll biosynthesis for photosynthetic performance

(Forde and Walch-Liu, 2009; Toyota et al., 2018). Exogenous

application of glutamic acid could suppress heat-induced leaf

senescence and chlorophyll degradation by improving amino

acid metabolism in creeping bentgrass (Stephanie et al., 2021).

In addition, it was found that drought stress decreased the

methionine biosynthesis pathways in plants (Larrainzar et al.,

2014). However, exogenous application of methionine mitigated

oxidative damage and growth retardation of bitter gourd

(growth retardation) under drought stress (Akram et al., 2020).

Enhanced accumulation of serine and threonine induced by

exogenous application of chitosan improved stress adaptation

of white clover to water deficit (Li et al., 2017b). In response

to water stress, Spm-regulated accumulation of amino acids

as mentioned above could maintain metabolic and growth

homeostasis in creeping bentgrass.

In addition to sugars and amino acids, multiple organic

acids were also significantly regulated by Spm in creeping

bentgrass under water stress or heat stress. Pyruvic acid

acts as an intermediate compound during the metabolism of

carbohydrates and proteins and is also metabolized into the

TCA cycle to produce energy in plants (Tovar-Méndez et al.,

2003). Aconitic acid and ketoglutaric acid are two intermediates

of the TCA cycle (Sweetlove et al., 2010). It was found that

the maintenance of accumulation of TCA cycle intermediates

was one of the important regulatory mechanisms for plant

growth and stress tolerance under drought stress (Merewitz

et al., 2011; Guo et al., 2018; Li et al., 2019). In the current

study, water stress extremely decreased the accumulation of

pyruvic acid, aconitic acid, and ketoglutaric acid in leaves of

Spm-pretreated and untreated creeping bentgrass plants, but the

application of Spm could significantly alleviate the deficit of

these metabolites under water stress. This could indicate Spm-

regulated growth and tolerance to water deficit associated with

better maintenance of the TCA cycle for energy production

in creeping bentgrass. However, Spm pretreatment did not

enhance the accumulation of intermediates of the TCA cycle

but increased the accumulation of other organic acids such as

gallic acid and malic acid under heat stress. Previous studies

proved that the antioxidant potency of gallic acid is associated

with the amelioration of tolerance to high temperature, salt

stress, and osmotic stress in plants (Ozfidan-Konakci et al.,

2015; Farhoosh and Nyström, 2018). The study of Du et al.

(2011) found that heat-tolerant hybrid bermudagrass (Cynodon

transvaalensis × Cynodon dactylon) accumulated more malic

acid than heat-sensitive Kentucky bluegrass (Poa pratensis)

during long-term heat stress, suggesting that the malic acid

could play an important role in hybrid bermudagrass adaptation

to heat stress.

Other metabolites including myo-inositol, nicotinic

acid, and urea were also related to stress adaptation in

plants. Beneficial effects of myo-inositol on ameliorating

drought damage have been widely studied in plants. For

example, foliar application of myo-inositol effectively alleviated

drought damage to creeping bentgrass through detoxifying

reactive oxygen species (ROS) and improving OA (Li et al.,

2020b). Transgenic sweet potato (Ipomoea batatas) plants

overexpressing a myo-inositol-1-phosphate synthase (MIPS)

gene encoding myo-inositol biosynthesis exhibited better

drought tolerance than wild type associated with stronger

ROS-scavenging system and sensitive signal transduction

pathways in response to drought stress (Zhai et al., 2016).

Nicotinic acid known as vitamin B3 has also been reported to be

propitious to plants’ survival and growth under abiotic stress.

Overexpression of a nicotinamidase 3 (NIC3) gene involved

in nicotinic acid biosynthesis exhibited similar effects with

exogenous application of nicotinic acid on improving stress

tolerance and biomass of Arabidopsis thaliana under drought

stress (Ahmad et al., 2021). Exogenous application of nicotinic

acid could also effectively alleviate salinity-induced damage and

biomass loss of onion (Allium cepa) plants (Hussein et al., 2014).

In addition, urea as the main nitrogen source has dual functions

of growth promotion and stress tolerance in plants (Witte,

2011). Urea application could delay the senescence of creeping

bentgrass by stabilizing proteins and cell membranes under

heat stress (Jespersen and Huang, 2015). These studies together

with our current findings indicated that Spm-induced a 59%

increase in myo-inositol under water stress, a 321% increase in

nicotinic acid under heat stress, and a 184 or a 29% increase in

urea under water stress or heat stress could contribute to growth

maintenance and better stress tolerance in creeping bentgrass.

Conclusion

Exogenous application of Spm could effectively alleviate

growth retardant and damage effects induced by water and

heat stress by increasing endogenous PAs, Put, Spd, and Spm
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contents. The physiological analysis found that Spm regulated

water homeostasis, photosynthetic performance, oxidative

damage, and cell membrane stability when creeping bentgrass

responded to water or heat stress. Metabolites profiling

showed that a total of 61 metabolites were differentially or

commonly regulated by Spm in leaves of creeping bentgrass

under water stress and heat stress. Under water stress, Spm

mainly induced the accumulation of glucose-1-phosphate,

sucrose-6-phosphate, fructose, kestose, maltotriose, xylose,

glutamic acid, methionine, serine, threonine pyruvic acid,

aconitic acid, ketoglutaric acid, and myo-inositol. In response

to heat stress, the accumulation of alanine, glycine, gallic

acid, malic acid, and nicotinic acid was specifically regulated

by Spm. Spm also commonly enhanced the accumulation

of mannose, maltose, galactose, and urea under water and

heat stress. The current study provides novel evidence

of global metabolites reprogramming associated with

Spm-induced tolerance to water stress and heat stress in

horticultural plants.
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