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Drought is significant abiotic stress that affects the development and
yield of many crops. The present study is to investigate the effect of
arbuscular mycorrhizal fungi (AMF) and biochar on root morphological
traits, growth, and physiological traits in soybean under water stress. Impact
of AMF and biochar on development and root morphological traits in
soybean and AMF spores number and the soil enzymes' activities were
studied under drought conditions. After 40 days, plant growth parameters
were measured. Drought stress negatively affected soybean growth, root
parameters, physiological traits, microbial biomass, and soil enzyme activities.
Biochar and AMF individually increase significantly plant growth (plant height,
root dry weight, and nodule number), root parameters such as root diameter,
root surface area, total root length, root volume, and projected area, total
chlorophyll content, and nitrogen content in soybean over to control in
water stress. In drought conditions, dual applications of AMF and biochar
significantly enhanced shoot and root growth parameters, total chlorophyll,
and nitrogen contents in soybean than control. Combined with biochar
and AMF positively affects AMF spores number, microbial biomass, and
soil enzyme activities in water stress conditions. In drought stress, dual
applications of biochar and AMF increase microbial biomass by 28.3%,
AMF spores number by 52.0%, alkaline phosphomonoesterase by 45.9%,
dehydrogenase by 46.5%, and fluorescein diacetate by 52.2%, activities. The
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combined application of biochar and AMF enhance growth, root parameters
in soybean and soil enzyme activities, and water stress tolerance. Dual
applications with biochar and AMF benefit soybean cultivation under water

stress conditions.
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Introduction

Soybean is an important food legume crop globally. Seeds
of soybean contain a higher content of protein (35-40%),
an essential source of oil (18-22%), carbohydrate (34%),
macronutrients [phosphorus (P), nitrogen (N), potassium (K)]
and micronutrients such as iron (Fe), zinc (Zn), and manganese
(Mn) (de Vargas et al., 2018). Soybean contains essential amino
acids [histidine, lysine, threonine, phenylalanine, cysteine,
glycine, ornithine, proline, and serine (Tessari et al., 2016)].
Soybean is known to stimulate soil fertility by symbiotic
biological nitrogen fixation (Ciampitti and Salvagiotti, 2018).

Drought can negatively affect soybean growth, development,
yield, and nitrogen fixation (Basal and Szabo, 2020; Kannepalli
et al, 2021). Water stress reduces the germination of
the plant (Ilyas et al, 2020; Khan et al, 2020), growth
of the plant (Sheteiwy et al, 2021), and yield (Li et al,
2018; Kour et al, 2019) in legumes. Several investigated
that drought stress decreases the number of nodules
per plant, the number of pods in legumes (Yiicel et al,
2010; Shamsizadeh et al, 2014; Ilyas et al., 2020), and
decreases root length, root volume, and yield of grain
(Habibzadeh et al., 2014).

Drought negatively affects plant nutrients (Tuteja and Gill,
2013) and physiological properties such as photosynthesis (Asha
et al, 2021), relative water content (Sinchez-Blanco et al,
2004), and photosynthetic rate (Hashem et al., 2019) in many
plants. The P content of leaves in mungbean (Vigna radiata L.)
decreased by water stress (Habibzadeh et al., 2014). Hashem
et al. (2019) investigated water stress reduced P uptake and
total N in chickpea (Cicer arietinum L.). Drought decreases
total chlorophyll contents in chickpea varieties (Khadraji and
Ghoulam, 2017). Islam et al. (2011) investigated, that drought
tress decreased the transpiration rate and stomatal conductance
in cowpea Vigna unguiculata. Drought strongly affects urease,
pB-glycosidase, and phosphatase of soil and soil microbial
activities (Sardans and Pefiuelas, 2005; Nguyen et al., 2018).

Biochar contains organic matter, nutrients, and biologically

important compounds (Dume et al., 2016). Numerous studies
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on biochar applications enhance bioenergy production, carbon
sequestration, and soil fertility (Ok et al, 2015). Biochar
improved soil structure and water holding capacity in water
stress (Bamminger et al, 2016). It positively impacted on
plant growth and development (Sun et al, 2020; Mannan
et al, 2021), nodulation (Sun et al, 2020), and yield (Liu
et al, 2017) in legume crops under normal conditions and
under drought stress. Biochar application increased N fixation
and total biomass in Trifolium pratense L. (Mia et al,
2014). Numerous studies have informed biochar improved
plant nutrients (Ahmed et al, 2021) and physiological traits
under unstressed and water stress in many crops (Jabborova
et al., 2021a,b,c; Christou et al., 2022). Mannan et al. (2021)
investigated the application of biochar-enhanced soil nutrients
may have enhanced soybean drought tolerance. In addition,
biochar enhanced soil urease, catalase, and urease activities
(Chen et al., 2020).

Arbuscular mycorrhizal fungi (AMF) are the most useful
soil microbes and symbiosis relationship with roots of plant
(Brundrett and Tedersoo, 2018; Jabborova et al., 2021d,f). In
drought stress, AMF helps increase growth, root parameters,
nodulation, and yield in legume crops (Hao et al, 2019
Haghighi and Saharkhiz, 2022). Ahmed et al. (2000) reported
that AMF increased pods number and nodule number in faba
bean (Vicia faba L.). AMF improves physiological properties
(Hashem et al, 2019) and mineral nutrients, especially
P and N. They help tolerate drought stress in legumes
(Hashem et al, 2019). Numerous studies have informed
that AMF improves host plants development, water uptake,
and nutrient in water stress (Baum et al, 2015; Zhao
et al, 2015). The AMF promoted stomatal conductance
and relative water content in host plants under drought
stress (Augé et al, 2015). Dual application with biochar
and AMF inoculation improves the photosynthetic rate,
and plant growth in chickpea under water stress (Hashem
et al, 2019). This study was investigated to evaluate the
impact of AMF and biochar on soybean growth, root
parameters, chlorophyll content, and soil enzymatic activities in
drought conditions.
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Materials and methods

Arbuscular mycorrhizal fungi, biochar,
soil, and seed

The soil was collected from the farms of the Indian
Agricultural Research Institute. The studied soil had the
following agrochemical properties: pH 8.0, EC 0.45 ds/m, SOC
0.41%, nitrogen 167 kg/ha, P 40.3 kg/ha, P 788 kg/ha. Biochar
used in the experiment was produced at 400-500°C from woody
biomass. Soybean seed was procured from the “Division of
Vegetable Science” and AMF from Microbiology, IARI, India.

Experimental design

The effect of AMF and biochar on the growth and root
morphological traits in soybean was investigated in a net house
at the Division of Microbiology, IARI. Four treatments as
control, AMF alone, biochar alone, and combined with AMF
and biochar were used for the experiment. Mixing the soil with
1.0% biochar used a pot experiment. AMF biofertilizer consists
of 100 spores/g and 1,200 IP/g. Seed of soybean was cultivated
into plastic pots, including soil (5.0 kg). Within 40 days of
plant growth in drought conditions (50% of the field capacity)
were maintained. After 40 days, plant height, nodule number,
dry shoot weight, and dry root weight were measured. All the

experiments were performed in triplicates.

Root parameters measurement

Soybean root morphological traits such as total root length,
projected area, root surface area, root volume, and root diameter
were evaluated. All roots were spread out and detected using a
scanning system (Expression 4990, Epson, CA, United States)
with a blue board as a background.

Chlorophyll, N, and C contents of
leaves measurement

Chlorophyll content were analyzed (SPAD-502 meter) using
the leaves of soybean. Elemental Analyzer (CHNS) Eurovictor
determined C and N.

Determination of arbuscular
mycorrhizal fungi spores number and
microbial biomass in soil

The AMF spores number was counted using a

stereomicroscope by Dare et al. (2013). The biomass C
was analyzed on those described by Vance et al. (1987).
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The absorbance of the resulting supernatant liquid was
measured at 280 nm.

Determination of enzymes activities in
soil

Alkaline phosphatase enzyme activities were analyzed
according to the method of Tabatabai and Bremner (1969). The
fluorescein diacetate (FDA) hydrolytic activity was determined
as per the Green et al. (2006) method. The dehydrogenase
activity (DHA) was analyzed by Casida et al. (1964). The
experimental data were analyzed with the StatView Software
using ANOVA. The magnitude of the F value determined the
significance of the effect of treatment (P < 0.05 < 0.001).

Results

In water stress, biochar alone significantly greater the height
of the plant by 28.9%, the dry weight of roots by 51.5%, and
a number of nodules (per plant) by 34.9% than the control
(Table 1). The AMF alone significantly enhances the plant’s
height by 20.0%, the dry weight of roots by 53.8%, and the
number of nodules (per plant) by 69.2% over the control under
water stress. However, the dual application of AMF and biochar
was applied, the plant height by 31.1%, the dry weight of root
by 69.2%, and the number of nodules per plant by 63.9% over
control under drought conditions.

The biochar exhibited a significant positive impact on
the root morphological traits of soybean (Table 2). Over
the control, root surface area and total root length were
suddenly promoted by biochar alone, which was significantly
enhanced by 56.8% and 54.9% under drought stress. Biochar
alone substantially increases the projected area by 26.2%, root
volume by 35.2%, and the root diameter by 45.8% more
than the control. Over to the control, total root length and,
surface area were enhanced due to the application of AMF
alone by 27.4 and 32.5% in drought conditions. In drought
stress, AMF alone visibly increased projected area by 18.5%
and root diameter by 22.9%. However, AMF and biochar
significantly developed root morphological parameters under
drought conditions. The maximum values of total root length
were observed in dual applications with AMF and biochar
in water stress. Combined biochar application with AMF
treatment significantly increases the root volume by 85.2%, root
diameter by 72.9%, root surface area by 66.7%, and total root
length by 61.9% more than the control. While in water stress
conditions, this treatment discernible improved the projected
area by 35.4% over the control.

Generally, water stress decreased the N and C content of
leaves in soybean (Table 3). Biochar treatment increases the N
content by 15.7% and the C content by 52.8% of leaf under water
stress. Over the control under drought stress, the application
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TABLE 1 The plant height, shoot dry weight, root dry weight, and nodule number in soybean as affected by biochar and AMF under

drought condition.

Treatments Plant height (cm) Shoot dry weight (g) Root dry weight (g) Nodule number
Control 30.00 £ 0.57 156 £ 0.01 0.13 £ 0.01 16.67 + 1.52
Biochar 38.67 % 0.58* 162 £0.01 0.21£0.01* 24.00 £ 1.00*
AMEF 36.00 £ 1.00* 159 £ 0.01 0.20 £ 0.01* 2167 £ 1.53*
Biochar + AMF 39.33 £ 0.18* 1.70 £ 0.01 022 £0.02* 2733 £ 0.58*

Data are means of three replicates (n = 3). Asterisk differed significantly at *P < 0.05, **P < 0.01, ***P < 0.001.

TABLE 2 Root morphological traits in soybean as affected by biochar and AMF under drought condition.

Treatments Total root Projected area Root surface Root volume Root diameter
length (cm) (cm?) area (cm?) (cm3) (mm)
Control 109.54 % 12.72 14.57 £ 0.96 5.66 % 0.29 0.88 % 0.03 0.48 £ 0.01
Biochar 171.76 = 1.53* 18.40 £ 0.5* 8.77 £0.94* 1.19 % 0.02** 0.70 £ 0.01*
AMF 139.57 £ 13.77* 17.27 £0.11* 7.50 £ 0.08* 0.96 % 0.01* 0.59 £ 0.06*
Biochar + AMF 177.44 £ 5.75* 19.74 £ 0.99% 9.44 £ 0.81* 1.63 = 0.07* 0.83 £ 0.03**
Data are means of three replicates (n = 3). Asterisk differed significantly at *P < 0.05, **P < 0.01, ***P < 0.001.
of AMF alone promoted the N content by 10.0% and the C
content by 48.4%. The C and N content reached a maximum at 50 1 *
dual applications with AMF and biochar than to all treatments. E 40 - = b
In water stress, dual AMF and biochar treatment suggestively g
promoted the C content by 59.3% and N content by 16.5% more .—;'.’ 30 -
than the control. ‘§
. . = 20 A

Water stress declines total chlorophyll content in soybean. 2
In water stress, biochar alone significantly enhances the © 10 4
chlorophyll content in soybean by 12.9%. The application

. 0 - T T T

of AMF alone increased chlorophyll content by 14.9% over C BC AME  BC+AMF
the control. Highest values of the chlorophyll content were -
observed at the dual application of AME, and biochar increased The chlorophyll content of leaves in soybean as affected by
significantly by 16.5% (Figure 1). biochar and AMF under drought conditions. C, control; BC,

Th . . o biochar; AMF, arbuscular mycorrhizal fungi; BC + AMF,

e number of spores in AME increases from 34.7% in . .
biochar + arbuscular mycorrhizal fungi. *P = 0.01.

drought stress. The application of applying biochar treatment

stimulated the number of spores significantly in AMF under
water stress conditions. The biochar alone increases the number
of spores of AMF considerably by 20.6%, respectively. The
dual application of AMF and biochar was more beneficial in
enhancing the number of AMF spores in the soil. However,
dual AMF and biochar meaningfully improved the number
of AMF spores by 52.0% over the control under drought
conditions (Figure 2).

TABLE 3 The nitrogen and carbon content of leaf in soybean as
affected by biochar and AMF under drought condition.

Treatments N (%) C (%)

Control 2.459 £ 0.09 28.789 £ 2.01
Biochar 2.846 = 0.05* 43.998 + 1.22*
AMF 2.705 % 0.02* 42.749 + 5.36*
Biochar + AMF 2.867 + 0.03* 45.889 + 1.34*

Data are means of three replicates (n = 3). Asterisk differed significantly at *P < 0.05,
**P < 0.01, P < 0.001.
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In drought stress, AMF and biochar alone significantly
improved the microbial biomass, it increased 14.1 and
20.7%, respectively under drought conditions over the control
(Figure 3). In drought stress, dual with biochar and AMF
increase microbial biomass by 28.3% in soil compared with the
control. The combined application of AMF and biochar under
drought stress led to the maximum microbial biomass compared
to all treatments.

Under drought stress, a single biochar application
(Table 4). The
dehydrogenase, alkaline phosphomonoesterase, and FDA
activities were enhanced by 23.6, 27.7, and 30.8% when the soil
was amended by biochar under water stress. Compared to the

significantly enzyme activities of soil

control, the application of AMF alone enhanced significantly by
34.0% under water stress. Under water stress, the application
of AMF alone, dehydrogenase, and FDA activities increased
by 31.5 and 38.1% over the control. In drought conditions,
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FIGURE 2

The AMF spore numbers in soil affected by biochar and AMF
under drought conditions. C, control; BC, biochar; AMF,
arbuscular mycorrhizal fungi; BC + AMF, biochar + arbuscular
mycorrhizal fungi. *P = 0.01.

200

x%

S 180 - z

<

2 160

= 140

@

¢ 120 |

£ 0

2 80 1

©

s 60 -

°

o 40 -

2 20 ~

0 : : .
Control Biochar AMF  Biochar+AMF
FIGURE 3

The microbial biomass in soil affected by biochar and AMF
under drought conditions. *P = 0.01 and **P = 0.05.

TABLE 4 Soil enzymes activities in soil affected by biochar and AMF
under drought condition.

Treatments  Alkaline = Dehydrogenase FDA
phosphomon- activity (fluorescein
(sterie,  (hggThTh  dlaceute)
(hgg™'h71)
Control 45.67 £ 0.59 38.00 £ 1.01 4033 £0.58
Biochar 58.33 £ 0.58* 47.00 £ 1.00* 52.77 £ 2.08*
AMF 61.20 £ 2.63* 50.00 + 2.20* 55.73  1.00*
Biochar + AMF  66.67 & 1.53* 55.67 £ 2.30% 61.40 £ 1.10%

Data are means of three replicates (n = 3). Asterisk differed significantly at *P < 0.05,
**P < 0.01, ***P < 0.001.

dual applications with AMF and biochar increase soil enzyme
activities were greatly better than all treatments. In drought
stress, the dual applications of biochar and AMF treatments
resulted in 45.9% more alkaline phosphomonoesterase activities
than the control. The dual applications with AMF and biochar
treatment promote significant dehydrogenase enzyme activity
by 46.5% and FDA enzyme activity by 52.2% in soil over the
control in drought conditions.
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Discussion

Drought decreases plant growth parameters and nodule
number. Several researchers have reported drought stress
reduced plant growth, nodulation, and legume yield (Du et al,,
2020; Jabborova et al., 2021e). Rusmana et al. (2020) informed
that the growth and yield in Glycine max L. Merr. were decreased
by water stress.

Numerous studies found that water stress reduced K, P,
and N contents in plants (Dimkpa et al., 2017; Hashem et al,,
2019) and physiological traits such as relative water content,
carotenoids, and chlorophyll contents in legumes (Chowdhury
et al., 2016; Kenawy et al.,, 2022). Ohashi et al. (2006) reported
that the photosynthetic pigments in soybean decreased in
drought. Geng et al. (2015) and Mariotte et al. (2015) informed
water stress declined microbial activity and fungal traits in soil.

Biochar increased plant growth and root morphological
traits in soybean under drought in the present study
(Tables 1, 2). Similarly, Hashem et al. (2019) and Batool
et al. (2015) found that biochar enhanced plant growth
parameters in chickpea in water stress. In addition, de
Melo Carvalho et al. (2013) reported biochar increased rice
biomass in drought conditions. Addition of biochar significantly
promotes chlorophyll, N, and C contents in soybean in drought
conditions. Several studies show that biochar improved nutrient
uptake (Akhtar et al., 2014) and plant physiological traits (Lyu
et al,, 2016) in various plants under drought stress. The present
experiment investigated that biochar improves a significant
number of AMF spores, microbial biomass, enzyme activities in
soil in a significant number of AMF spores, microbial biomass,
and enzyme activities in soil under water stress. Li and Cai
(2021) investigated that biochar promoted microbial biomass by
38.0 and 65.9% in water stress. Identical observations recorded
by Ahmad et al. (2014) found a helpful impact of biochar on
microbial biomass activity.

Numerous studies have demonstrated that inoculation of
microorganisms help plants to overcome drought stress and
grow well under drought conditions (Kalam et al., 2020; Basu
et al,, 2021; Hamid et al., 2021; Khan et al.,, 2021; Sagar et al,,
2022). Islam et al. (2022) reported the abundance of mycorrhizae
in various host plants and rhizosphere soil. Bastami et al. (2021)
reported positive impacts of mycorrhizal fungi and organic
fertilizers on quantitative and qualitative traits in Satureja
species. Researchers have established that AMF improves host
plants’ development and water uptake in water stress conditions
(Quiroga et al, 2017; Vafa et al,, 2021). Identical data were
informed by Hashem et al. (2019). Under drought-stressed
conditions, AMF improved growth and biomass production,
nutrient and water acquisition (Fallah et al., 2021; Jabborova
et al., 2021e; Najafi et al., 20215 Saboor et al,, 2021). Inoculated
with AMF to maize plants significantly increased height by
36.32% and dry weight by 75.73% than the control in water stress
(Begum et al., 2019; Rawat et al., 2019).
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Arbuscular mycorrhizal fungi inoculation improved plant
nutrients in plants under water stress (Baum et al., 2015; Zhao
et al, 2015). AMF-inoculated enhanced uptake of minerals
“Mg, N, and K” in cucumber in drought conditions (Wang
et al,, 2008). AMF enhances the significant P content of maize
in water stress (Zhao et al., 2015). Similarly, as confirmed by
Abdel-Salam et al. (2018), AMF improved damasKk’s chlorophyll
content under water stress. Similarly, Gong et al. (2013) reported
that inoculated AMF significantly enhances chlorophyll content
and stomatal conductance compared with non-mycorrhizal
seedlings in drought. AMF alone considerably promoted the
number of AMF spores number, the microbial biomass, and
soil enzyme activities in a previous study. Similar findings were
reported by Li and Cai (2021) AMF stimulated soil microbial
biomass and promoted spores number of AMF in water stress
(Hashem et al., 2019).

Combining biochar and AMF under drought stress
promoted plant growth and root parameters in plants under
drought conditions (Gujre et al, 2021; Mesbah et al,, 2021;
Ndiate et al., 2021). Budi and Setyaningsih (2013) reported
that AMF and biochar promote shoot dry weight in Melia
azedarach Linn. Harun et al. (2021) informed that combined
with AMF and biochar improved “shoot and root biomass”
and root length in Annona muricata L. Dual applications of
AMF and biochar enhance N, C, and chlorophyll content in
drought conditions. Similarly, Li and Cai (2021) investigated
dual biochar, and AMF improved the P content of maize
in water stress. Dual applications with AMF and biochar
improve the significant number of AMF spores, microbial
biomass, and soil enzyme activities in drought. Hashem
et al. (2019) and He et al. (2020) informed that combined
application of biochar, and AMF meaningfully stimulated the
total number of AMF spores under drought stress conditions.
Li and Cai (2021) combined with AMF and biochar greatly
improved soil microbial activity and phosphatase activity in soil
under water stress.

Conclusion

Biochar could improve plant growth, root morphological
parameters, and soil enzyme activities in water stress conditions.
Applications of biochar alone and AMF alone affected soybean
tolerance to drought stress. AMF alone promoted plant growth,
root morphological traits, chlorophyll content, AMF spores
number, and microbial biomass under drought conditions. Dual
applications with AMF and biochar showed the best results
in drought stress. Combined with AMF and biochar improved
plant growth, root morphological traits, and microbial biomass
in drought conditions. The dual applications with biochar
and AMF can decrease the effects of water stress, helping to
improve soybean growth, yield, and soil enzyme activities under
drought conditions.
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