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The plant factory is a form of controlled environment agriculture (CEA) which

is o�ers a promising solution to the problem of food security worldwide.

Plant growth parameters need to be acquired for process control and

yield estimation in plant factories. In this paper, we propose a fast and

non-destructive framework for extracting growth parameters. Firstly, ToF

camera (Microsoft Kinect V2) is used to obtain the point cloud from the top

view, and then the lettuce point cloud is separated. According to the growth

characteristics of lettuce, a geometric method is proposed to complete the

incomplete lettuce point cloud. The treated point cloud has a high linear

correlation with the actual plant height (R2 = 0.961), leaf area (R2 = 0.964),

and fresh weight (R2 = 0.911) with a significant improvement compared

to untreated point cloud. The result suggests our proposed point cloud

completion method have has the potential to tackle the problem of obtaining

the plant growth parameters from a single 3D view with occlusion.

KEYWORDS

plant factory, plant phenotype, plant growth measurement, 3D reconstruction, point

cloud completion

1. Introduction

With the acceleration of urbanization, the urban population is soaring while the

world’s arable land has not increased. Food security faces huge challenges with the

prediction of the global population predicted to reach 9.8 billion, which means need 60%

more food would be needed to feed the world. In the context of the COVID-19 pandemic,

novel coronavirus also occurs on produce that is exposed to farmers infected with the

virus. An efficient automated factorymethod of agricultural production is needed tomeet

global food security demands in the face of uncertainty, such as the COVID-19 pandemic

and a growing population (Saad et al., 2021).

The plant factory is a form of controlled environment agriculture

(CEA) (R Shamshiri et al., 2018) in the production process of leafy vegetables

which can precisely control factors such as the light, water, fertilizer, and carbon dioxide

concentration, etc. (Ting et al., 2016). To achieve precise process management and yield

prediction in plant factories, plant growth parameters such as plant height, leaf area,

and fresh weight need to be measured accurately and non-destructively in real time.
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These plant growth parameters provide effective feedback for

precise control of the plant factory. Manual measurements

are laborious and time-consuming;, therefore new automatic

measurements are required (Li et al., 2020).

There are many ways to extract the growth parameters

of plants, such as methods based on 2D image techniques

and methods based on 3D vision. 2D image, including

RGB image and hyperspectral- based phenotyping, offers

several advantages (Campbell et al., 2015): (1) Quantitative

measurements can be recorded over discrete time points and

various types of spectral imaging provide parameters that the

human eye cannot capture; and (2) For the detection and

monitoring of plant disease, an imaging system combined

with hyperspectral technology is a good approach (Mahlein

et al., 2012). Researchers acquired 2D images with simple

and inexpensive equipment, using pixel counts to estimate

plant growth parameters (Easlon and Bloom, 2014; González-

Esquiva et al., 2017; Tech et al., 2018; Pérez-Rodríguez and

Gómez-García, 2019; Nasution et al., 2021). The fresh weight

of plants can also be estimated by image processing technology

and function model. Jiang et al. (2018) proposed a real-time

image processing and spatial mapping method to estimate

the fresh weights of lettuce individual. The plant weight was

estimated by calibration equations that relate the pixel numbers

of lettuce images to their actual fresh weights with a two-point

normalization method. Ge et al. (2016) processed RGB images

to estimate projected plant area, which are correlated with

destructively measured plant shoot fresh weight, dry weight,

and leaf area. Campbell et al. (2020) modeled shoot growth as

a function of time and soil water content by calculating the

projected shoot area from the RGB images. Bai et al. (2016)

post- processed RGB images to extract canopy green pixel

fraction as a proxy for biomass. In conclusion, 2D image method

has advantages of a simple acquisition system, requiring less

computation resources, which can provide the required results

in real time. However, it cannot handle crops with complex

structures, and the variety of growth information that can be

obtained is limited.

3D vision methods can be used for estimating plant

phenotypic parameters. Building on previous research (Yeh

et al., 2014), Chen et al. (2016) designed and developed

an automated measurement system, includinge a weight

measurement device and an imaging system, which proved

that stereovision can be used to estimate plant weight. But

the proposed method was still unable to solve the occlusion

problem between the blades, and the errors increased with

growingover time. To solve the problem of occlusion, Blok et al.

(2021) estimated the size of field-grown broccoli heads based

on RGB-Depth (RGB-D) images and applied the Occlusion

Region-based Convolutional Neural Network (CNN) (Follmann

et al., 2019). This method could predict the size of broccoli

for different varieties under a high degree of occlusion, but the

shape of broccoli itself is relatively regular, and the measured

size was limited to the diameter. Rose (Rose et al., 2015)

reconstructed tomato plants using the Structure from Motion

(SfM) and Multi-view Stereo (MVS) methods. The point cloud

obtained was highly correlated with the point cloud obtained

by the high-accuracy close-up laser scanner. The multi-view

method partly solved the problem of occlusion, but it is very

time-consuming to calculate point clouds. In conclusion, 3D

vision methods have certain advantages in measuring plant

phenotypic parameters, but there are still inevitable occlusion

problems, and some existing multi-perspective methods are

time-consuming.

Deep learning has been widely used in the domain of digital

image processing to solve difficult problems. In the field of

3D shape completion, deep learning was initially applied to 3d

objects represented by voxels (Wu et al., 2015; Li et al., 2016;

Sharma et al., 2016; Dai et al., 2017; Han et al., 2017). Since

point clouds are more portable than voxels, many scholars have

studied how to apply deep learning networks to point clouds

in recent years, such as AtlasNet (Vakalopoulou et al., 2018),

PCN (Yuan et al., 2018), and FoldingNet (Yang et al., 2018).

The benefit of deep learning is that it can achieve the point

cloud completion while reducing the progress of geometrical

modeling. However, the drawback is that a big amount of

data is required to get a well-trained network, meanwhile,

the different type of plant, contributes to an even more

complex data set preparation and network tuning overhead.

Furthermore, the ground truth of the plant point cloud is very

hard to obtain even with multi view 3D vision due to the

complicated occlusion.

This paper addressed the problem to obtainof obtaining

the growth parameters of a plant from a single 3D view with

occlusion. Taken Taking the physical and growth characteristics

of lettuce as an example, the focus of our research is to

complete the point cloud with a geometric method in a

single 3D view. Then the completed point cloud is used

to estimated the growth parameters with regression. The

contributions of this paper are listed as followspaper is organized

as follows,

• A framework is proposed for real-time nondestructive

detection of plant growth parameters in a plant factory.

• A point cloud completion method is proposed based on

a single 3D view. The regression of the plant growth

parameters is obtained with the completed point cloud

instead of using an original single view point cloud.

• The experimental results show the accuracy and feasibility

of the proposed method in the plant factory.

The remainder of the paper is organized as follows: The

proposed method and experimental setup are described in

Section 2. In Section 3, the performance of the proposed method

is evaluated. Finally, Section 4 discusses the advantages and

disadvantages of the proposedmethod and presents future work.
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2. Materials and methods

2.1. The work flow of the proposed
method

The raw plant point cloud was obatinedobtained from the

top view through ToF camera. Preprocessing and segmentation

are carried out first. Through pass-through filtering, the

region of interest was concentrated in the plant location

according to the XYZ coordinate value of the point cloud.

And the region of interest (ROI) was clustered using color-

based region growing segmentation method to obtain the

plant point cloud and soil point cloud respectively. Then the

statistical analysis method was used to filter out the noise

points by: calculatinge the distance distribution between the

point and all the points in the domain, and deletinge the

points whose distance was greater than the standard deviation

threshold.

Afterwards, the completion of the point cloud was carried

out considering the kinds of symmetric leaf and asymmetrical

leaf. With the completed point cloud, the plant parameters,

including plant height, project area, total leaf area, and

fresh weight, are estimated with regression. The overall

workflow of the proposed method is shown in Figure 1. After

completing the point cloud, considering the possible problem

of repeated sampling, the downsampling of the completed

point cloud was carried out according to the set sampling

radius.

2.2. Plant point cloud acquisition

Under experimental setting conditions, the location of the

shooting area relative to the camera was fixed. So, the pass-

through filter can be used to get the point cloud of the region

of interest (ROI) from the original point cloud. The point cloud

of the ROI mainly includes plant point cloud and soil point

cloud:

PROI = Pplant + Psoil, (1)

where PROI is the set of points in ROI, and Pplant and Psoil are

the sets of points of plant and soil, respectively. Because of the

color difference, the color-based region growing segmentation

method can be used to get point clouds of the soil and the

plant. Plant point cloud acquisition workflow is shown in

Figure 2.

2.3. Plant point cloud completion

Since lettuce leaves groew outward from the center of the

root and the ToF camera was located above the lettuce, the

obtained point cloud has a deletion near the root caused by

occlusion. The core of the completion method is to complete the

holes between the root and the known leaf point cloud. However,

since the position of the root cannot be directly obtained

from the camera’s perspective, it needs to be estimated. The

position of the root point in space (proot) can be represented by

three-dimensional coordinates, that is, proot can be represented

by {x, y, z} in the camera coordinate system. The X-axis and

Y-axis are parallel to the X-axis and Y-axis of the camera’s

imaging plane, respectively, and the Z-axis is perpendicular to

the imaging plane.

Because of the flat soil surface, the height of the root point

can be determined by the height of the soil plane. Due to the

uniform lighting in the plant factory, we can consider that lettuce

leaves grow evenly outward. Therefore, the specific position of

the root point in the soil plane can be obtained by calculating

the centroid of the lettuce from the top view. The equations are

as follows:

proot = {x, y, z}

x = xc, y = yc, z =

∑

p∈Psoil
zp

|Psoil|
,

(2)

where xc and yc are the x value and y value of plant centroid

respectively. Psoil represents the soil point cloud.

After the root location coordinates are obtained, the existing

plant point clouds cannot be directly used for completion. It

is necessary to separate the single leaf point cloud (Pleaf ) from

the plant point cloud first. The accuracy of point cloud of

separated leaves will directly affect the accuracy of leaf area

and weight prediction after completion. Color-based region

growing segmentation method can also be used for single

leaf segmentation. Reduce the distance threshold and color

threshold to segment every leaf point cloud.

Lettuce leaves grow from the inside out, so the central part

of the leaves are is less sheltered. If all the leaves were completed,

the estimated leaf area would be larger than the true value.

Therefore, only the outer leaves will be completed. Calculate the

distance between the centroid of every single leaf (Pleaf ) and

the root point (proot). Only when the distance is greater than

the threshold, it isis it considered that the leaf is far from the

center, which has serious occlusion and needs to be completed.

The key steps of plant point cloud completion are shown in

Figure 3.

2.3.1. Symmetric leaf point cloud completion

The core method of leaf point cloud completion is to find

the closest edge of the point cloud to the root point and then

add missing points between the edge and the root point by

uniform sampling. The first step is to determine the closest edge

by distance threshold segmentation. The distance threshold can
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FIGURE 1

The workflow of the completion of plant point cloud and the acquisition of plant growth parameters.

FIGURE 2

Point cloud preprocessing results. (A) The original point cloud obtained by ToF camera from the top view. (B) ROI point cloud obtained by pass-

through filter. (C) Plant and soil point clouds obtained by color-based region growing segmentation. (D) Plant point cloud after segmentation.

be determined by the following equation,

dTH = dmin + var_mul ∗ σ

dmin =
∣

∣p, proot
∣

∣

min , p ∈ Pleaf

σ =

√

√

√

√

√

∑

p∈Pleaf

∣

∣p, proot
∣

∣

∣

∣

∣
Pleaf

∣

∣

∣
− 1

(3)

where
∣

∣p, proot
∣

∣ is the distance from point in single leaf point

cloud Pleaf to the root point proot . dmin is the minimum distance

and σ is the standard deviation. var_mul is an artificially

defined, adjustable parameter. The larger the parameter, the

more points on the closest edge. Segmentation results of

the closest edge points are shown in Figure 4. In order

to solve the problem of repeated sampling caused by edge

points on the same sampling line, edge points need to

be screened.

The leaf tip may be asymmetrical due to the

variety of occlusion conditions. If the segmented leaf

tip is asymmetric, there will be a big gap between

the completed point cloud and the original point

cloud, shown in Figure 4. The completion method of

asymmetric leaves will be explained in the following

section.

2.3.2. Asymmetric leaf point cloud completion

For leaves severely occluded on one side, the occluded part

can be restored from the point cloud features of leaves on

the other side by mirroring. The first step in mirroring is to

determine the axis of symmetry. The axis of symmetry can be
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approximated as the line between the farthest point in single leaf

point cloud (Pleaf ) and root point proot , for example, the yellow

line in Figure 5. The symmetry of the original leaf point cloud

depends on the following inequality,

2× ||Pleft| − |Pright||

|Pleft| + |Pright|
< µ, (4)

where |Pleft| is the number of points on the left side of the line,

and |Pright| is the number on the right side. µ is a set threshold

(we set it as 0.23). When the judgment condition is false, the

leaf is considered to be asymmetric. Only the point cloud at

FIGURE 3

Completion of a single leaf point cloud. (A) Leaf point clouds

were obtained from plant point cloud by color-based region

growing segmentation. (B) Symmetrical leaf point cloud. (C)

According to the calculated threshold, the edge points in the

leaf point cloud are determined. (D) Result of uniform sampling

between edge points and root point.

one side of the symmetry axis with more points is selected

for transformation. The mirror transform result is shown in

Figure 6. Obviously, there may still be holes in the leaf point

cloud after transformation. So, the leaf needs to be checked for

holes and filled.

The proposed method is to find the edge points of the hole

in the point cloud at one side of the symmetry axis, and then

sample evenly between these edge points and their mirror points

to obtain the completed point cloud. The flow to find edge points

is as follows:

(1) Determine the start point: All points in the point

cloud at one side of the axis of symmetry are sorted

according to the relative distance of the root point to obtain

an ordered point set with the number of ns (we set it

as 20) points closest to the root point (PO). In PO, the

point closest to the axis of symmetry is selected as the

start point (p0). Put p0 in the set of boundary points

(Pedge).

(2) Search all edge points: p0 is considered as the first search

point. All points in the same side point cloud with radius r near

the current search point are searched through K-dimensional

tree to obtain the adjacent point set (Pad). Calculate all points

in Pad are calculated and delete points whose distance is less

FIGURE 5

Completion of the asymmetric leaf.

FIGURE 4

The determinate closest edge. (A) Symmetrical leaf. (B) Asymmetrical leaf.
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FIGURE 6

Search the hole boundary of asymmetrical leaf.

INPUT: Pleaf - Leaf point cloud

pf - Leaf tip point

proot - Root point

OUTPUT: Pcomplete - completed leaf point cloud

function SYMMETRY(Pleaf , pf , proot)

2: for all p such that p ∈ Pleaf do

if (yp − yroot)(yf − yroot)− (xp − xroot)(xf − xroot) > 0 then

Pl ← p ;

4: else Pr ← p ;

end if

6: end for

δ = 2× (|Pl| − |Pr|)/(|Pl| + |Pr|) ;

8: if δ > µ then Pc = Pl ;

else if δ < −µ then Pc = Pr ;

10: else return Pleaf ;

end if

12: Ps ← points obtained by symmetrizing Pc

according to the line pf and proot ;

Pleaf = Pleaf + Ps ;

14: Pnext ← ns p with the shortest distance to proot,

p ∈ Pc ;

while Pnext 6= ∅ do

16: pcurrent = p(min(p, line(proot , p(f ))), p ∈ Pnext) ;

Phole ← pcurrent ;

18: Pnext = ∅ ;

for all p such that |p, proot | > |pcurrent , proot |,

|p, pcurrent | < r, p ∈ Pc do Pnext ← p ;

20: end for

end while

22: for all p such that p ∈ Phole do Uniformly

sampled ground between p and the point of

symmetry of p ;

end for

24: return result

end function

Algorithm 1. Leaf point cloud completion.

FIGURE 7

Comparison of e�ect before and after completion. (A) Sample

before completion. (B) Sample after completion.

than the current search point according to the distance from

root point are deleted. From the remaining points, the closest

point to the axis of symmetry is selected as the next edge

point. Put it in Pedge and make this point is made as the next

search point. Repeat this step until the next search point cannot

be selected.

The pseudo code of the symmetry judgment and completion

of single leaf point cloud is shown in Algorithm 1. Then the

leaf is completed the same as the symmetric leaf through

finding the closest edge and complete the missing points are

completed between the edge and the root point by uniform

sampling. To solve the problem of repeated sampling in the

process of leaf point cloud completion, a down-sampling

is required after the completion of the whole plant. The

comparison of effect before and after completion is shown

in Figure 7.

2.4. Plant parameters estimation

The following four plant growth parameters need to be

estimated, and the estimation method will be presented in

sequence: plant height, plant projection area, plant leaf area, and

plant weight.
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2.4.1. Height estimation

Since the camera was located at the top of the plant, the point

cloud at the bottom of the plant cannot be directly obtained,

so the estimated height of the plant can be divided into the

following two types. Absolute height Habs is the height from the

top of the plant point cloud to the soil point cloud. The relative

height Hrel is the height from the top to the bottom of the plant

point cloud. The equations are as follows:

Absolute height: Habs = Htop −Hsoil

Relative height: Hrel = Htop − Hbottom,
(5)

where Htop and Hbottom are the heights of the highest and

the lowest point calculated by comparing the z value of all the

points. Hsoil is the height of the soil obtained by averaging the

z value of the soil point cloud. Hbottom is the height of the fixed

pot edge.

2.4.2. Projected area estimation

The projected area here refers to the area of the completed

point cloud projected onto the imaging plane of the camera. For

the convenience of calculation, after the projection, the points

with uniform distribution in the plane were obtained by down-

sampling. The projected area Spa can be calculated using the

following equation:

Spa = Npa × δ, (6)

Where Npa is the number of points on the projection plane and,

δ is the proportion of area corresponding to a single point.

2.4.3. Total leaf area estimation

Completed point clouds cannot be directly used to estimate

plant area parameters. In order to facilitate the estimation,

triangulation is required. The method steps are as follows Hu

et al. (2018):

(1) Generate triangles from the plant point cloud. Triangles

need to meet two conditions: Firstly, there are no points in

the minimum enclosing ball of each triangle. Secondly, the

edges of the triangle are less than the threshold, in order to

avoid connecting discontinuous surfaces.

(2) Remove abnormal triangles, including redundant paired

triangles, suspended triangles, multi-connected triangles,

and the triangles nearly perpendicular to surfaces.

After the triangulation, the total area of plant leaves

was obtained by calculating the area of all triangles in the

triangulated point cloud.

2.4.4. Volume and weight estimation

Since there is a high linear correlation between the volume

and weight of lettuce and the total leaf area, it is possible to

estimate the weight from the total leaf area.

2.5. The ground truth measurement

2.5.1. Height

The values to be measured include absolute height, relative

height, projected and total area of the leaves, and weight. The

ground truth of absolute heightHT
abs

and relative heightHT
rel

are

measured by a steel ruler with accuracy of 1 mm. HT
abs

is the

height from the top of the plant to the plane of the pot while

the HT
rel

to the plane of soil.

2.5.2. Projected leaf area

To measure the projected area of the plant, two pieces of

white- paper- printed square markers (the true area is known)

were placed on both sides of the pot at the same height. The

placement is as shown in Figure 8C. In order to better segment

leaves in the image, the RGB image was converted to the excess

green model (Søgaard and Olsen, 2003):

ExG = 2G− R− B, (7)

where R, G, and B are three color channels (red, green, blue,

respectively). The ExG value of each pixel will be used as the

determination criterion for binarization. The binarized result is

shown in Figure 8D. And the projected area can be estimated by

the following formula:

STpa =
Npa

Nm
× Sm, (8)

where Npa and Nm are the number of leaves pixel points and

markers pixel points in the binary graph, respectively. Sm is the

area of the markers.

2.5.3. Total weight and volume

The ground truth weight was obtained by cutting the plant

above the soil surface and weighing it with an analytical balance

with accuracy of 0.1 mg. Considering the irregular shape of

the lettuce, the total volume cannot be obtained directly. In

this paper, we used the drainage method to measure the lettuce

reference total volume. First, we prepared a measuring cylinder

with a quantitative amount of water, then put the lettuce into the

cylinder to read the change of the water volume in the cylinder,

which is the total volume of the lettuce.
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FIGURE 8

Measurement of the ground truth of the projected area and total leaf area. (A) Total leaf area. (B) Binarization result. (C) Projected area. (D)

Binarization result.

FIGURE 9

Indoor static plant information collection platform.

2.5.4. Total leaf area

The ground truth of total area was measured by the sum of

all the cut leaves. The method is similar to the projected area: all

the leaves were tiled on the white paper with markers printed,

and the top view photo (Figure 8A) was taken by camera. The

result of binarized ExG image is shown in Figure 8B. And the

leaf area can be estimated by the following formula:

STa =
Na

Nm
∗ Sm, (9)

whereNa andNm are the number of pixel points of the cut leaves

and markers in the binary graph respectively. Sm is the true area

of the markers.

2.6. Experimental setup

The ToF camera was fixed above the experimental setup to

obtain point cloud from the top view (shown in Figure 9). The

relative height from the plant to ToF camera was 0.6–0.7m. In

order to ensure uniform illumination and reduce the influence

on the color of plant point clouds from the shadow of the

camera, shading cloth was placed on the top and sides of the

device. Reference calibration plates with four 20× 20mm black

squares were placed on both sides of the plant. The experimental

subjects were 54 lettuces grown in plant factories. The lettuces

were divided into six groups of nine plants, with growing periods

ranging from 28 to 63 days, 7 days apart.

2.7. Hardware devices

The ToF camera used in the experiment is Microsoft Kinect

V2 (specifications in Table 1; Fankhauser et al., 2015). The

point cloud data obtained by the ToF camera is processed by a

laptop computer. The configuration parameters of the computer

(MECHROVO X8Ti) are: CPU i7-8500H, GPU GTX 1060, and

OS Ubuntu 16.04.

2.8. Camera calibration

Before using the camera, the checkerboard correction

method (Zhang, 2000) was used to correct it. A tripod was

used to fix the ToF camera, and another tripod was used to fix

the calibration checkerboard. The distance and angle between

the camera and checkerboard were adjusted for calibration.

From 0.5m to 4.5m, 100 pictures were taken from the different

positions in the field of camera view with the checkerboard

arranged at different angles to calculate the internal reference for
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TABLE 1 Kinect v2 specifications.

Camera Resolution Field of view Operating range Frame rate

Infrared/depth camera 512× 424 px 70.6◦ × 60.0◦ 0.5− 4.5m 30 Hz

Color camera 1, 920× 1, 080 px 84.1◦ × 53.8◦ 30 Hz

infrared camera and color camera. The spatial transformation

relationship between two camera and the distortion were

calculated. The results are shown as follows:

Color camera:







fα 0 u0

20 fβ v0

0 0 1






=







1065 0 947

20 1068 549

0 0 1






(10)

Depth camera:







fα 0 u0

20 fβ v0

0 0 1






=







362 0 251

20 363 208

0 0 1






(11)

Rotation matrix:R =






9.999× 10−1 −2.901× 10−3 2.396× 10−3

2.396× 10−3 2.928× 10−3 9.999× 10−1

−2.375× 10−3 −7.413× 10−3 9.999× 10−1






(12)

Translation matrix:t =
[

−5.203× 10−2 − 1.823× 10−2 − 1.904× 10−1
]

(13)

Where fα and fβ are the focal length in x and y directions,

respectively. u0 and v0 are the coordinates of primary point.

The primary point is the point where the optical axis intersects

the image plane. Rotation matrix and translation matrix

guide how to transpose the color map axes to the depth

map axes.

3. Results

As shown in Figure 10, linear correlation between the

estimated relative height and the actual value (R2 = 0.961

and 80% of relative error concentrated in the interval of 2.0–

6.0%) is better than estimated absolute height (R2 = 0.887

and 80% of relative error concentrated in the interval

of 0–10.0%).

After completing the point cloud, the estimation accuracy

of projected leaf area was greatly improved (R2 increased from

0.741 to 0.911, in Figures 11A,B). The relative error distribution

has been shown in Figure 11C. The range of relative became

more concentrated (0% - 9.8%) because of the point cloud

completion (0.1–20.0% before).

Point cloud completion was effective for the estimation

of total leaf area compared with a single view point cloud

(R2 increased from 0.338 to 0.964, shown in Figures 12A,B).

Especially in the range greater than 500 cm2, the estimation

based on raw data has a large relative error (40.0–90.0%) in

Figure 12C. And the relative error decreased to the range of

0–20.0% (80% of relative error is less than 10.0%) after the

completion.

As shown in Figures 13A,C, the ground truth leaf area is

highly correlated with plant volume (R2 = 0.912) and fresh

weight (R2 = 0.971), which offers the feasibility makes it a

feasible tool for the weight prediction. Based on the distribution

of relative error (Figures 13B,D), mast samples’ predictions

are close to the ground truth. And the result of the weight

prediction based on the estimated total leaf area showed the

high accuracy of the proposed method. Linear regression result

has been showed shown in Figures 13E,G (R2 were 0.922 and

0.934, respectively). Based on the distribution of relative error

(Figures 13F,H), the prediction for small size plants (less than

20 g) has a larger relative error (up to 70%), which means low

accuracy. But 80% of the relative error concentrated on the range

of 0–10.0%, which is acceptable.

4. Discussion

In the estimation of projection area and total leaf area,

point cloud completion shows considerable effectiveness. In the

estimation of projected area, R2 was raised from 0.741 to 0.911,

while in the estimation of total leaf area, R2 was increased from

0.338 to 0.964. Correlating the weight with the projected area

and total leaf area after point cloud completion, it was found that

the total leaf area had a good linear relationship with the weight,

and it was better to estimate the weight by the total leaf area. The

good linear relationship between total leaf area and weight may

be due to: (1) the weight of leaves per unit area is being relatively
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FIGURE 10

(A) Linear relationship between estimated absolute height and ground truth of absolute height. (B) Linear relationship between estimated relative

height and ground truth of relative height. (C) Relative error of absolute height. (D) Relative error of relative height.

FIGURE 11

(A) Linear regression result of estimated projected area before completion. (B) Linear regression result of estimated projected area after

completion. (C) Relative error of projected area before and after completion.

constant for this kind of leaf vegetables; (2) the total weight is

being mainly concentrated on leaves.

The average point number of the plant point cloud used

in the experiment was 8,336, and the processing time of point

cloud was 1.048 s on average, with the longest time being 2.071

s. The average time of parameter extraction from the model was

0.579 s, and the longest time was 1.068 s. Therefore, in the whole

process of data collection and extraction parameters, it will take

no more than 4 s for a single plant, which can meet the demand

application.

However, some problems are also found which can be

addressed in the future work: (1) First, the linear correlation

between true and predicted values of absolute plant height was

poor. The reason is that the soil plane was not completely

horizontal, and the selected soil position might affect the

measured value, leading to the increase of error. (2) Also,

the error between the real value and the projected area

calculated after completion was very small, but it was generally

slightly lower than the real value. The problem may lie in

the simplification of the calculation of projected area. (3) In

addition, the total leaf area obtained by point cloud calculation

after completion is was still smaller than the real value, because

the completion algorithm is was aimed at partially occluded

leaves, which is was insufficient for more complex cases.

However, there is was a good linear relationship between the

total leaf area calculated after completion and the actual leaf area,

and the total leaf area can still be estimated effectively through

linear fitting after the linear equation is constructed in advance.
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FIGURE 12

(A) Linear regression result of estimated total area before completion. (B) Linear regression result of estimated total area after completion. (C)

Relative error of total area before and after completion.

FIGURE 13

(A) Linear regression result of volume and ground truth of total area. (B) Relative error of volume (regressed by ground truth of total area). (C)

Linear regression result of weight and ground truth of total area. (D) Relative error of weight (regressed by ground truth of total area). (E) Linear

regression result of volume and estimated total area. (F) Relative error of volume (regressed by estimated total area). (G) Linear regression result

of weight and estimated total area. (H) Relative error of weight (regressed by estimated total area).

Finally, (4) Our proposed method completed the 3D model

of individual plant and got more accurate growth parameters.

While plants grow in dense clusters in plant factoriesy, it’s it is

necessary to conduct segmentation first. At an early stage of the

plant growth, it’s it is feasible to segment an individual plant, b.

Because there is space between plants and all the overlaps come

from the plant itself. However, when plants clusters are too dense

to segment as an individual plant, our method will encounter

challenges. More effort is needed to address this problem in the

future.

In this paper, we proposed a method to obtain and complete

the point cloud of lettuce from a single perspective. Then we

collected the data and measured the truth value of about 50

lettuces. After filtering, segmentation, and completion of the
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original point cloud data, the plant height, projected leaf area,

and total leaf area were calculated, and linear regression was

carried out with the actual values. It was found that there was a

good correlation between them. In addition, we also conducted

linear regression between total leaf area and actual volume and

fresh weight, and found a good correlation as well, which means,

after obtaining the linear equation of the corresponding plant,

the plant height, leaf area, volume, and fresh weight can be

estimated through the point cloud. In the future work, more

considerations will be taken for small- sized plants to obtain a

better performance and also the improvement of usability for the

plant factory scenario.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

ML and JL contributed the analysis of data and design

of the study. LW provided the data set and constructed

environment platform. HJ supervised the research and guided

the research aims. MZ guided the paper writing and revised the

manuscript. All authors contributed to the article and approved

the submitted version.

Funding

This work was supported by the National Natural Science

Foundation of China with Grant Nos. 31870347 and 32101626.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Bai, G., Ge, Y., Hussain, W., Baenziger, P. S., and Graef, G. (2016).
A multi-sensor system for high throughput field phenotyping in
soybean and wheat breeding. Comput. Electron. Agric. 128, 181–192.
doi: 10.1016/j.compag.2016.08.021

Blok, P. M., van Henten, E. J., van Evert, F. K., and Kootstra, G. (2021). Image-
based size estimation of broccoli heads under varying degrees of occlusion. Biosyst.
Eng. 208, 213–233. doi: 10.1016/j.biosystemseng.2021.06.001

Campbell, M. T., Grondin, A., Walia, H., and Morota, G. (2020). Leveraging
genome-enabled growth models to study shoot growth responses to water deficit
in rice. J. Exp. Bot. 71, 5669–5679. doi: 10.1093/jxb/eraa280

Campbell, M. T., Knecht, A. C., Berger, B., Brien, C. J., Wang, D., and Walia,
H. (2015). Integrating image-based phenomics and association analysis to dissect
the genetic architecture of temporal salinity responses in rice. Plant Physiol. 168,
1476–1489. doi: 10.1104/pp.15.00450

Chen, W.-T., Yeh, Y.-H. F., Liu, T.-Y., and Lin, T.-T. (2016). An automated and
continuous plant weight measurement system for plant factory. Front. Plant Sci. 7,
392. doi: 10.3389/fpls.2016.00392

Dai, A., Ruizhongtai Qi, C., and Nießner, M. (2017). “Shape completion
using 3d-encoder-predictor cnns and shape synthesis,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (Honolulu, HI: IEEE),
5868–5877.

Easlon, H. M., and Bloom, A. J. (2014). Easy leaf area: Automated digital
image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci.
2, 1400033. doi: 10.3732/apps.1400033

Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., and
Siegwart, R. (2015). “Kinect v2 for mobile robot navigation: Evaluation and
modeling,” in 2015 International Conference on Advanced Robotics (ICAR)
(Istanbul: IEEE), 388–394.

Follmann, P., König, R., Härtinger, P., Klostermann, M., and Böttger, T. (2019).
“Learning to see the invisible: End-to-end trainable amodal instance segmentation,”

in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
(Waikoloa, HI: IEEE), 1328–1336.

Ge, Y., Bai, G., Stoerger, V., and Schnable, J. C. (2016). Temporal dynamics
of maize plant growth, water use, and leaf water content using automated high
throughput rgb and hyperspectral imaging. Comput. Electron. Agric. 127, 625–632.
doi: 10.1016/j.compag.2016.07.028

González-Esquiva, J., Oates, M. J., García-Mateos, G., Moros-Valle, B.,
Molina-Martínez, J. M., and Ruiz-Canales, A. (2017). Development of a visual
monitoring system for water balance estimation of horticultural crops using low
cost cameras. Comput. Electron. Agric. 141, 15–26. doi: 10.1016/j.compag.201
7.07.001

Han, X., Li, Z., Huang, H., Kalogerakis, E., and Yu, Y. (2017). “High-resolution
shape completion using deep neural networks for global structure and local
geometry inference,” in Proceedings of the IEEE International Conference on
Computer Vision (Venice: IEEE), 85–93.

Hu, Y., Wang, L., Xiang, L., Wu, Q., and Jiang, H. (2018). Automatic non-
destructive growth measurement of leafy vegetables based on kinect. Sensors 18,
806. doi: 10.3390/s18030806

Jiang, J.-,s., Kim, H.-J., and Cho, W.-J. (2018). On-the-go image processing
system for spatial mapping of lettuce fresh weight in plant factory. IFAC
PapersOnLine 51, 130–134. doi: 10.1016/j.ifacol.2018.08.075

Li, D., Shao, T., Wu, H., and Zhou, K. (2016). Shape completion
from a single rgbd image. IEEE Trans. Vis. Comput. Graph. 23, 1809–1822.
doi: 10.1109/TVCG.2016.2553102

Li, Z., Guo, R., Li, M., Chen, Y., and Li, G. (2020). A review of computer
vision technologies for plant phenotyping. Comput. Electron. Agric. 176, 105672.
doi: 10.1016/j.compag.2020.105672

Mahlein, A.-K., Oerke, E.-C., Steiner, U., and Dehne, H.-W. (2012). Recent
advances in sensing plant diseases for precision crop protection. Eur. J. Plant
Pathol. 133, 197–209. doi: 10.1007/s10658-011-9878-z

Frontiers in Plant Science 12 frontiersin.org

https://doi.org/10.3389/fpls.2022.947690
https://doi.org/10.1016/j.compag.2016.08.021
https://doi.org/10.1016/j.biosystemseng.2021.06.001
https://doi.org/10.1093/jxb/eraa280
https://doi.org/10.1104/pp.15.00450
https://doi.org/10.3389/fpls.2016.00392
https://doi.org/10.3732/apps.1400033
https://doi.org/10.1016/j.compag.2016.07.028
https://doi.org/10.1016/j.compag.2017.07.001
https://doi.org/10.3390/s18030806
https://doi.org/10.1016/j.ifacol.2018.08.075
https://doi.org/10.1109/TVCG.2016.2553102
https://doi.org/10.1016/j.compag.2020.105672
https://doi.org/10.1007/s10658-011-9878-z
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lou et al. 10.3389/fpls.2022.947690

Nasution, I., Satriyo, P., Yolanda, S., and Alma, A. (2021). “Non-destructive
measurement of leaf area and leaf number of hydroponic pak-choy plants (brassica
rapa),” in IOP Conference Series: Earth and Environmental Science, Vol. 644 (Banda
Aceh: IOP Publishing), 012004.

Pérez-Rodríguez, F., andGómez-García, E. (2019). Codelplant: regression-based
processing of rgb images for colour models in plant image segmentation. Comput.
Electron. Agric. 163, 104880. doi: 10.1016/j.compag.2019.104880

Rose, J. C., Paulus, S., and Kuhlmann, H. (2015). Accuracy analysis of a multi-
view stereo approach for phenotyping of tomato plants at the organ level. Sensors
15, 9651–9665. doi: 10.3390/s150509651

Saad, M. H. M., Hamdan, N. M., and Sarker, M. R. (2021). State of the art of
urban smart vertical farming automation system: advanced topologies, issues and
recommendations. Electronics 10, 1422. doi: 10.3390/electronics10121422

Shamshiri, R. R., Kalantari, F., Ting, K., Thorp, K. R., Hameed, I. A., Ahmad,
D., et al. (2018). Advances in greenhouse automation and controlled environment
agriculture: A transition to plant factories and urban agriculture. Int. J. Agri. Biol.
Engg. 11, 1–22. doi: 10.25165/j.ijabe.20181101.3210

Sharma, A., Grau, O., and Fritz, M. (2016). “Vconv-dae: deep volumetric
shape learning without object labels,” in European Conference on Computer Vision
(Amsterdam: Springer), 236–250.

Søgaard, H. T., and Olsen, H. J. (2003). Determination of crop rows by
image analysis without segmentation. Comput. Electron. Agric. 38, 141–158.
doi: 10.1016/S0168-1699(02)00140-0

Tech, A. R. B., da Silva, A. L. C., Meira, L. A., de Oliveira,
M. E., and Pereira, L. E. T. (2018). Methods of image acquisition

and software development for leaf area measurements in pastures.
Comput. Electron. Agric. 153, 278–284. doi: 10.1016/j.compag.2018.
08.025

Ting, K. C., Lin, T., and Davidson, P. C. (2016). “Integrated urban
controlled environment agriculture systems,” in LED Lighting for Urban Agriculture
(Singapore: Springer), 19–36.

Vakalopoulou, M., Chassagnon, G., Bus, N., Marini, R., Zacharaki, E. I., Revel,
M.-P., et al. (2018). “Atlasnet: Multi-atlas non-linear deep networks for medical
image segmentation,” in International Conference onMedical Image Computing and
Computer-Assisted Intervention (Granada: Springer), 658–666.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., et al. (2015). “3D
shapenets: a deep representation for volumetric shapes,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (Boston, MA), 1912–1920.

Yang, Y., Feng, C., Shen, Y., and Tian, D. (2018). “Foldingnet: Point cloud
auto-encoder via deep grid deformation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (Salt Lake City, UT: IEEE), 206–215.

Yeh, Y.-H. F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C., and
Lin, T.-T. (2014). An automated growth measurement system for leafy
vegetables. Biosyst. Eng. 117, 43–50. doi: 10.1016/j.biosystemseng.2013.
08.011

Yuan, W., Khot, T., Held, D., Mertz, C., and Hebert, M. (2018). “PCN:
point completion network,” in 2018 International Conference on 3D Vision (3DV)
(Verona: IEEE), 728–737.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans.
Pattern Anal. Mach. Intell. 22, 1330–1334. doi: 10.1109/34.888718

Frontiers in Plant Science 13 frontiersin.org

https://doi.org/10.3389/fpls.2022.947690
https://doi.org/10.1016/j.compag.2019.104880
https://doi.org/10.3390/s150509651
https://doi.org/10.3390/electronics10121422
https://doi.org/10.25165/j.ijabe.20181101.3210
https://doi.org/10.1016/S0168-1699(02)00140-0
https://doi.org/10.1016/j.compag.2018.08.025
https://doi.org/10.1016/j.biosystemseng.2013.08.011
https://doi.org/10.1109/34.888718
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Growth parameter acquisition and geometric point cloud completion of lettuce
	1. Introduction
	2. Materials and methods
	2.1. The work flow of the proposed method
	2.2. Plant point cloud acquisition
	2.3. Plant point cloud completion
	2.3.1. Symmetric leaf point cloud completion
	2.3.2. Asymmetric leaf point cloud completion

	2.4. Plant parameters estimation
	2.4.1. Height estimation
	2.4.2. Projected area estimation
	2.4.3. Total leaf area estimation
	2.4.4. Volume and weight estimation

	2.5. The ground truth measurement
	2.5.1. Height
	2.5.2. Projected leaf area
	2.5.3. Total weight and volume
	2.5.4. Total leaf area

	2.6. Experimental setup
	2.7. Hardware devices
	2.8. Camera calibration

	3. Results
	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


