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Establishment of vegetable soybean (edamame) [Glycine max (L.) Merr.]

germplasms has been highly valued in Asia and the United States owing to

the increasing market demand for edamame. The idea of core collection

(CC) is to shorten the breeding program so as to improve the availability

of germplasm resources. However, multidimensional phenotypes typically

are highly correlated and have different levels of missing rate, often

failing to capture the underlying pattern of germplasms and select CC

precisely. These are commonly observed on correlated samples. To overcome

such scenario, we introduced the “multiple imputation” (MI) method to

iteratively impute missing phenotypes for 46 morphological traits and

jointly analyzed high-dimensional imputed missing phenotypes (ECimpu) to

explore population structure and relatedness among 200 Taiwanese vegetable

soybean accessions. An advanced maximization strategy with a heuristic

algorithm and PowerCore was used to evaluate the morphological diversity

among the ECimpu. In total, 36 accessions (denoted as CCimpu) were efficiently

selected representing high diversity and the entire coverage of the ECimpu.

Only 4 (8.7%) traits showed slightly significant differences between the CCimpu

and ECimpu. Compared to the ECimpu, 96% traits retained all characteristics

or had a slight diversity loss in the CCimpu. The CCimpu exhibited a small

percentage of significant mean difference (4.51%), and large coincidence rate

(98.1%), variable rate (138.76%), and coverage (close to 100%), indicating the

representativeness of the ECimpu. We noted that the CCimpu outperformed

the CCraw in evaluation properties, suggesting that the multiple phenotype

imputation method has the potential to deal with missing phenotypes in
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correlated samples efficiently and reliably without re-phenotyping accessions.

Our results illustrated a significant role of imputed missing phenotypes in

support of the MI-based framework for plant-breeding programs.

KEYWORDS

vegetable soybean, germplasm, phenotypic diversity, core collection, edamame,
multiple imputation, phenotypes, correlated samples

Introduction

Vegetable soybeans are soybeans [Glycine max (L.) Merr.]
harvested in the R6 stage when pods and seeds are full but
still green. The features of vegetable soybeans are large-seeded
and high in nutrients. Although classified as legume crops, they
are also regarded as vegetables with a low-input and a short
life cycle (Zhang et al., 2017). Currently, vegetable soybean
varieties are mainly from Japan and Taiwan for the world’s
commercial production (Han and Gai, 2002). In the Japanese
market, vegetable soybeans are usually sold with stalks and pods.
Therefore, vegetable soybeans are also known as edamame,
which means branched bean. They are rich in proteins, free
amino acids, carbohydrates, vitamins, minerals, phytoestrogens,
and edible oil (Hu and Lin, 2018). Compared to most crops, the
fresh seeds of vegetable soybeans have a relatively higher protein
content (Rao et al., 2002). The soybean protein is seen as a
complete protein because of essential amino acids (Velásquez
and Bhathena, 2007). Therefore, vegetable soybeans have found
its way into the domestic and international market chains
because of edamame’s nutritional properties and the trend for
a healthier lifestyle (Ebert et al., 2017).

The soybean germplasm in different countries encompasses
unique characteristics. For instance, Japanese populations differ
from Chinese germplasm pools, whereas Korean accessions
were involved in both (Abe et al., 2003). On the other
hand, accessions from southeast and south/central Asia have
relatively high genetic diversity (Abe et al., 2003). Therefore,
the genetic diversity of worldwide varieties can bring plentiful
germplasm resources to vegetable soybean breeding (Kaga
et al., 2012). In Taiwan, the National Plant Genetic Resources
Center (NPGRC) has collected and preserved abundant
domestic landraces and germplasm accessions of vegetable
soybeans from abroad. These collections came from the
Taiwan Agricultural Research Institute, the Asian Vegetable
Research and Development Center (AVRDC), National Chung-
Hsing University, National Chiayi University, and many
agricultural research institutes in Taiwan. Many Taiwanese
vegetable soybean accessions (e.g., Ryokkoh, Tzurunoko,
and Jikkoku) mainly originated from Japan, which has
diverse gene pools from Chinese and United States edamame
collections (Cui et al., 2000; Zhou et al., 2000), indicating

that distinct genetic bases had been preserved in Taiwanese
edamame accessions. For instance, the variety Ryokkoh has
a brighter green pod color and has larger seed size and
better flavor than the variety Tzurunoko (Shanmugasundaram
et al., 1991). The variety Jikkoku was called “Shih Shih”
in Taiwan and used as a multipurpose application in
vegetable soybean variety improvement (Shanmugasundaram,
1976). Several varieties (Y-386, Vesoy #4, PI157424, Houjaku,
Ryokkoh, Yoshida-1, Disoy, BPI #4, and Tzurunoko) are
characterized by large seeds that were introduced from China,
South Korea, the United States, and the Philippines. Improved
varieties, such as Kaohsiung No. 2, No. 3, and Kaorihime,
were characterized by heavier 100-immature seed weight,
higher shelling rate, full of fresh pods, or special aroma
(e.g., taro-flavor) (Arikit et al., 2011; Chou, 2016). The
Taiwanese edamame collection preserved Taiwanese ancestors
and exotic ancestors, which formed a rich and diverse genetic
diversity and had a wide range of phenotypic traits. Hence,
Taiwan has the largest and richest resources of abundant
accessions with diverse genetic materials for phenotypic
diversity, which provides opportunities to improve the breeding
of targeted traits.

Vegetable soybean is mainly planted in Japan, Taiwan,
China, Thailand, and Vietnam (Yinbo et al., 1997), and it
is currently an important worldwide cash crop. However,
collecting and preserving vegetable soybean accessions is
difficult because of specific planting requirements and trade-
off between grain soybean and vegetable soybean (Kao
et al., 2021). Furthermore, phenotypic investigation and data
collection of vegetable soybean germplasms have become
more challenging because of limitations on experiment, labor
cost, and environmental conditions. These reasons all caused
difficulties in the collection of vegetable soybean seeds. This is
why the core collection (CC) of vegetable soybean germplasm is
less studied. The first CC of vegetable soybean was developed by
our laboratory (Kao et al., 2021). A modified Roger’s distance
algorithm was proposed to select 30 accessions (i.e., CC)
for Taiwanese vegetable soybeans. In addition, we established
a CC containing 23 accessions to be representative of five
important traits (large seeds, stay-green pods, high isoflavone
content, cold tolerance, and high yield) of vegetable soybeans
(Chu et al., 2019).
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In recent decades, many crop germplasms have been
established. However, it is particularly difficult for biologists and
breeders to efficiently obtain knowledge and information from
enormous amounts of germplasm materials. Hence, the idea
of CC for germplasms was first proposed by Frankel (1984).
He defined CC as the minimum set of accessions representing
maximum diversity with least redundancy of accessions in the
entire collection (EC). This concept has been applied widely
to construct a CC from a maximum collection of germplasms
for plants, vegetables, and fruits (Pino Del Carpio et al.,
2011; Oliveira et al., 2014; Yun et al., 2015) and capture
the maximum genetic variation of accessions in a germplasm
collection. Diversity investigation and CC establishment for
soybean germplasms have been studied by many countries,
including Canada (Fu et al., 2007), Japan (Kaga et al., 2012),
South Korea (Jo et al., 2021), China (Li et al., 2008), the
United States (Aldrich-Wolfe et al., 2015), and Indonesia
(Sulistyo et al., 2019). However, some of the studies mentioned
above (Li et al., 2008; Kaga et al., 2012) directly removed loci
(single nucleotide polymorphisms and simple sequence repeats)
because of missing genotypes, or discarded accessions because
of missing phenotypes. Deletion methods (including listwise
deletion and pairwise deletion) may result in biased results,
which lead to the CC not being representative of the population.
In view of this, a robust imputation approach is required to
provide valid results and avoid loss of precision and power
resulting from incomplete data.

With the development of sequencing technology, the
efficiency of building a CC has been improved on account of
acquisition of molecular markers to screen accession genotypes
directly and combination of phenotypic data (Khaled and
Hamam, 2015; Zhang et al., 2017). Studies pointed out that
the use of combined phenotypic and genotypic data will have
the best outcome and that using either one of them alone
would yield less favorable results (Kumar et al., 2016). The effect
depends on the quality control of the data (Lee and Simpson,
2014). Most importantly, a precise and accurate dataset is the
primary key to obtaining representative core accessions for
germplasms regardless of phenotype or genotype (Yun et al.,
2015; Kao et al., 2021).

Studies on germplasm are the basis of crop breeding
and improvement. However, the existence of missing values
in phenotypes would severely affect the population structure
and grouping of germplasms, and limits the investigation of
germplasm diversity and establishment of CCs in germplasm
accessions. Missing values have three forms, namely, missing
completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR). As seen in most germplasms,
the phenotypes in our vegetable soybean germplasms also
suffered from missingness because of cultivation problems
in field trials and natural causes. Missing values mostly are
unobserved or unrecorded data, which can be classified as MAR.
In order to deal with missing data, many researchers use deletion

methods such as listwise deletion and pairwise deletion or single
imputation. Although these approaches are easily implemented,
they may bias the result of diversity in interpreting germplasms
(Taugourdeau et al., 2014; Poyatos et al., 2016). Incomplete
phenotypic data and reduced level of genetic diversity would
limit breeding progress (Wang et al., 2017).

Often accessions are missing or difficult in determining
phenotypic traits limiting the diversity in collection and
application of CCs. Accessions with missing phenotypes will
under- or overestimate diversity, which is often complicated
by missingness (Newman and Sin, 2009). The best way is
to re-phenotype accessions. However, it is typically costly,
infeasible, and time-consuming. Instead, multiple imputation
(MI) is an algorithm for efficiently dealing with missing
phenotype accessions. Several predictive datasets are created,
and the estimates obtained from each imputed dataset are
pooled (Sterne et al., 2009; Lee and Simpson, 2014). MI
procedures can account for different sources of uncertainty
computationally that arise from the imputation approach itself,
model parameters, and residuals. If MAR is presented in
data, MI will enable all accessions to be included in the
analysis and provide valid results (Royston, 2004; Lee and
Simpson, 2014). Also, the MI method is a better approach
for missing data that are a mixture of MAR and MNAR.
We noted that the reliability and accuracy of imputed
values are inversely proportional to the missing rate. Taken
together, MI has the potential to improve statistical validity in
agricultural research, and is an efficient alternative solution for
incomplete phenotypes.

To explore the population structure of vegetable soybean
germplasms, a cluster analysis is required to reveal the
distribution of germplasm accessions and determine whether
the CC captures the most diversity richness and evenness
of the EC. Weighted k-means clustering is an unsupervised
algorithm to iteratively search for the solution to clustering
multiple correlated phenotypes across multiple correlated
accessions (Foss and Markatou, 2018). Also, it is able to handle
mixed-type quantitative and qualitative traits simultaneously.
With unsupervised learning algorithms, pairwise similarities
(or dissimilarity) across accessions can be determined to
ascertain an appropriate number of clusters having a good
partition among clusters.

Many indices of summary statistics and statistical criteria
were developed to characterize genetic diversity and to evaluate
CC quality in a species. These indices use frequency-based
data to numerically describe diversity in terms of number
of different traits (i.e., richness) and relative abundance of
traits (i.e., evenness) present in a particular species. Five
diversity indices were commonly used for species diversity
investigation, namely, the Shannon–Weaver, Nei’s diversity,
Simpson’s diversity, Margalef, and Pielou’s indices. Among
them, the Shannon–Weaver diversity index was the best index to
assess the richness and diversity of a species (Kumar et al., 2022).
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Nei’s diversity index was used widely in studies on the literature
as a criterion for evaluating phenotypic or genetic diversity of
the CC in a species (Zhang et al., 2012; Odong et al., 2013;
Schafleitner et al., 2015; Mahmoodi et al., 2021). In addition,
Jain et al. (1975) and Yan et al. (2010) demonstrated the
effectiveness of both diversity indices in exploring germplasm
resources and geographical patterns. Hence, monitoring of plant
species diversity, evenness, and richness are essential for a better
understanding of diversity patterns and complex phenological
phenomena for plant breeding.

Incomplete phenotypic information directly affects the
results of CCs and low resource usage efficiency of germplasms.
Since there is a varying degree of missing values in the
vegetable soybean phenotypic trait data, it could impact the
result of germplasm cluster analysis, and CC construction
could be impacted. In order to minimize the influence, this
study mainly focused on dealing with missing values in
phenotypic traits (i.e., incomplete entire collection, ECraw),
and we created a complete (i.e., observed plus imputed
values) collection (ECimpu). Then, we used the advanced M
strategy algorithm to construct a CC (including the CCraw

and CCimpu) with the PowerCore software. Furthermore, we
conducted difference tests, clustering analyses, and diversity
investigation for both each and overall individual traits
to evaluate the representativeness of the CC. The five
assessment indices for the CC were used to evaluate the
representativeness of the core set of Taiwan vegetable soybean
germplasm. Finally, the impact on input data (i.e., number of
phenotypic traits) and number of core collection accessions
under a range of thresholds of missing phenotype rates
was addressed and discussed. The framework applied in this
study suggests a solution to figure out the difficulty arising
from missingness efficiently and provides an opportunity for
assessing the genetic architecture of complex phenotypes among
correlated accessions.

Materials and methods

Vegetable soybean germplasm

A total of 213 vegetable soybean germplasm accessions and
47 phenotypic traits collected and preserved from the NPGRC
were utilized in this study. The origins of the vegetable soybean
accessions were Taiwan, Japan, China, Hong Kong, South Korea,
the United States, the Philippines and unknown origins.
Phenotypic traits were investigated and recorded in the field at
Kaohsiung District Agricultural Research and Extension Station,
COA, complied with the guidelines of distinctness, uniformity
and stability test, in four consecutive autumn cropping seasons
(1995–1998). For more details, please refer to Kao et al. (2021).

The phenotypic traits (21 quantitative and 26 qualitative
phenotypes) were characterized by a wide range of features

regarding 38 morphologic phenotypes, 5 growth phenotypes,
2 phenological phenotypes, and 2 production phenotypes. The
38 morphologic phenotypes include seed length (mm), seed
width (mm), seed thickness (mm), leaflet length (cm), leaflet
width (cm), pod length (cm), pod width (cm), single pod
weight (g), number of pods per 500 g, number of seeds per
pod, shelling rate (%), immature seed length (mm), immature
seed width (mm), immature seed thickness (mm), seed shape,
seed color, hilum color, hypocotyl coloration, number of nodes
on main stem, stem color, number of branches, leaflet size,
leaflet shape, number of leaflets, leaf color, pubescence density,
pubescence color, corolla color, pod set capacity, pod length,
pod width, pod shape, pod color, immature seed size, immature
seed coat color, immature seed texture, easiness of pod removal,
and storability. The five growth phenotypes include internode
length (cm), plant height (cm), first pod height (cm), lodging
score, and plant type. The two phenological phenotypes are
from sowing to flowering (days) and from blooming to harvest
(days). The two production phenotypes are 100 seed weight (g)
and 100 immature seed weight (g). All the phenotypic traits
were recorded by observation of at least 10 randomly selected
plants from each replication in a randomized complete block
design with four replicates. We noticed that five phenotypic
traits (number of nodes on main stem, number of branches,
lodging score, pod length, and pod width) were categorized into
qualitative traits. The criteria are described below. The number
of nodes on main stem was classified into small (less than 13
nodes), medium (between 13 and 17 nodes), or large (more than
17 nodes). The number of branches was partitioned into low
(less than 4 branches), medium (between 4 and 5 branches), or
high (more than 5 branches). Lodging score was calculated from
the leaning angle that can be grouped into absent (lower than
or equal to 10◦), medium (between 20 and 40◦), or high (greater
than 40◦). Pod length was classified into short (less than or equal
to 4.4 cm), medium (between 4.4 and 5 cm), or long (greater
than or equal to 5 cm). Pod width was grouped into narrow (less
than or equal to 1.1 cm), medium (between 1.1 and 1.3 cm), or
broad (greater than 1.3 cm).

Meteorology data

The meteorology data were obtained from two institutes
of the Kaohsiung District Agricultural Research and Extension
Station (KDARES) and the Kaohsiung Weather Station of
the Central Weather Bureau in Taiwan. The records included
daily data during 1995–1998 on temperature (◦C), humidity
(%), sunshine duration (hours), precipitation (mm), and days
with precipitation (day). We previously examined and revealed
that the phenotypic data recorded by experienced experts who
were well-trained on phenotypic investigation in the fields at
KDARES had no significant environmental effects. For detailed
results, please refer to Kao et al. (2021).
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Multiple phenotype imputation of
missing phenotypes

Multiple phenotype imputation is a solution of providing a
valuable imputed value for handling missing data in multiple
correlated phenotypes observed on correlated samples (Dahl
et al., 2016). Three major steps were applied to handle missing
phenotypes: imputation, estimation, and pooling of estimates
(Papageorgiou et al., 2018). First, unobserved phenotypes were
repeatedly generated to capture the sources of uncertainties
during the MI procedures. Applying Bayesian model regression,
the imputed values were randomly sampled from the predictive
distribution based on observed data (Lee and Simpson, 2014).
For each accession with unobserved data, we fit the model

Y∗i ∼ N
(
ui, σ2

i
∣∣ Y\Y∗)

to estimate missing data for a specific phenotypic trait; Y∗i is
the partial unobserved phenotype in the ith trait, and Y\Y∗ is
the maximum dataset of the observed phenotype. Thus, the
posterior mean (ui) of the multivariate normal distribution can
be used to impute missing phenotypes (Y∗). In the estimation
stage, the estimated associations in each imputed dataset would
differ because of the variability of imputed values, so the
outcomes differed slightly among each imputation. This is
because all imputed phenotypes will not be distributed on the
regression line so the data’s true variability can be obtained
(Kleinke and Reinecke, 2015). The imputed values of qualitative
traits were estimated from posterior predictive distribution,
while those of quantitative traits were estimated from predictive
mean matching (Gelman and Hill, 2011; Kropko et al., 2017).
As for the pooling stage, the estimated results of the multiple
imputation were pooled by taking the mean of the estimates.
The R̂ statistic was computed to verify the iterative convergence
of the MI procedures. To meet the criterion of convergence,
a R̂ statistic less than 1.1 is required (Gelman and Hill, 2011;
Su et al., 2011). To better generate the imputed phenotypes for
missingness, we conducted thirty iterations in the first stage,
followed by five iterations in the second stage with chained
equations (four independent chains) during the MI process. The
mi package in R was used in the analysis.

Measurement of correlation

Correlations were calculated between traits and visualized
in a correlation matrix heatmap. We used Pearson’s correlation
coefficient to measure the statistical relationship (i.e., strength
and direction of association) between quantitative traits.
Spearman’s correlation coefficient was used to measure
the association between qualitative traits. We classified the
quantitative traits into categories according to the result of
the clustering analysis and applied Spearman’s correlation

to calculate the correlation between a qualitative trait and
a categorized quantitative trait. Point-biserial correlation
coefficient was used to measure the association between a
dichotomous trait (nominal trait with only two levels) and
a quantitative trait (Khamis, 2008). The value of correlation
coefficient lies between –1 (perfect positive) and +1 (perfect
negative). Germplasm accessions almost always use related
accessions. Therefore, the MI method is beneficial to the
estimates of missing phenotypes. The MI procedures can
potentially boost power to uncover population structure and
relatedness kinship among high correlated phenotypes across
correlated accessions (Dahl et al., 2016).

Construction of core collection

We established the core collection on PowerCore software
version 1.0. PowerCore is a widely used software package
for establishing CCs. This program uses an advanced M
(maximization) strategy with a modified heuristic algorithm
(Kim et al., 2007). The M strategy has been used to select
representative accessions with maximum coverage to attain a
limited core set of the EC depending on the level of variability
in germplasms. Quantitative phenotypic traits were classified
into different classes based on the Sturges’ rule (Sturges, 1926),
which is defined as K = 1+ log2(n), where K is the number of
classes and n is the observed number of accessions. Qualitative
phenotypic traits were grouped based on number of distinct
characters. Finally, the modified heuristic algorithm was used to
select the CC from the EC (ECraw and ECimpu) using 46 mixed-
type phenotypic traits of vegetable soybeans so that the CC has
minimum redundant accessions and maximum diversity.

Weighted k-means clustering

We applied an unsupervised learning strategy through
the weighted k-means clustering algorithm to search for the
optimal number of cluster so that the genetic architecture
feature of population structure and relatedness kinship of
multiple mixed-type phenotypes among vegetable soybean
germplasm accessions can be uncovered. For the first step in
this approach, we set several k initial centers (i.e., two to fifteen,
say), and based on the clusters, each germplasm accession
was assigned to the neighboring centers using a dissimilarity
measure. Weight was computed for each trait in each cluster
and considered in the computation of dissimilarity measure
(Badih et al., 2019). We set the weight as 0.5 by default.
The optimal number of clusters (k) is characterized by high
diversity and evenness (Shannon–Weaver diversity index >90%,
Nei’s diversity index >80%), minimal intra-cluster distance,
and maximal inter-cluster distance (variance explained >75%).
Finally, to demonstrate the genetic diversity and structure of
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the germplasms, the fpc package in R (Hennig and Imports,
2015) was used for graphical representation of the results of
the cluster analysis. Likewise, this algorithm was applied to
individual quantitative traits to uncover the optimal number of
clusters and reveal diversity. We applied the wskm and kamila
packages in R to perform weighted k-means clustering (Foss and
Markatou, 2018; Zhao et al., 2020).

Phenotypic diversity analysis

Richness and uniformity are the two primary indices to
evaluate phenotypic diversity. Richness represents the total
number of clusters. Uniformity represents the degree of
germplasm accessions in each of the clusters evenly distributed.
When evaluating the property of germplasm, the larger the
diversity index is, the higher the evenness of the phenotypic
traits will be. The phenotypic diversity analysis was conducted
using the Shannon–Weaver diversity index (Shannon and
Weaver, 1949) and Nei’s diversity index (Nei, 1973). The
Shannon–Weaver diversity index (H’) is defined as

• H’ =−
∑S

i = 1
pi ln(pi)

ln (S) ,

and Nei’s diversity index (Nei) is defined as

• Nei = 1−
∑S

i = 1 pi
2,

where S is the total number of clusters, pi is the proportion of
accessions in the ith cluster to the total number of germplasms.
The value of H’ and Nei is bounded between 0 and 1, and
between 0 and (1-1/S), respectively. For estimating biodiversity
richness and evenness, the Shannon–Weaver diversity index has
more weight on genetic richness, and the Nei’s diversity index
has more weight on genetic evenness (Kim et al., 2017).

Evaluation of the core collection

A homogeneity test (Levene’s test) for variances and a
difference test (t-test) for means were performed to determine
the difference in phenotypic traits between the CC and the
EC. Levene’s test was conducted by 1,000 times of bootstrap
iterations to check the homogeneity of variances among the
groups (Levene, 1960; Joseph et al., 2020). Then, an independent
t-test was conducted to identify the significant difference
in means between the CC and the EC. For quantitative
traits, Student’s t-test was performed on those with equal
variances, and Welch’s t-test was performed on those with
unequal variances. For quantitative traits, Chi-squared test of
homogeneity was performed to test the difference between the
CC and the EC in the classification ratio of each trait (p-
value <0.05).

We used five indices to evaluate whether the CC
is representative and divergent from the germplasm or

not, which included (1) the mean difference percentage
(MD% = 1

m
∑m

i = 1
|Me−Mc|

Mc
× 100%), (2) variance difference

percentage (VD% =
1
m
∑m

i = 1
|Ve−Vc|

Vc
× 100%), (3)

coincidence rate (CR% = 1
m
∑m

i = 1
Rc
Re × 100%), (4) variable

rate (VR% =
1
m
∑m

i = 1
CVc
CVe

× 100%), and (5) coverage
(Coverage% =

1
m
∑m

i = 1
Dc
De
× 100%), where M, V, R, CV,

D and m represent the mean, variance, range, coefficient of
variation, number of clusters, and number of traits, respectively.
As for the subscript, e is short for the EC while c is short for the
CC. If MD% is lower than 20%, VD% is small enough; if CR%
is greater than 80%, VR% is great enough, and if the coverage is
close to 100, we assessed the CC to be well represented by the EC
(Hu et al., 2000).

Results

Initially, we had a total of 213 vegetable soybean germplasm
accessions and 47 morphological traits available. After removing
13 redundant accessions (i.e., containing the same phenotypic
data) and one trait (i.e., identical values in the “number
of leaflets” trait had no meaning), 200 accessions and 46
phenotypic traits (25 qualitative traits and 21 quantitative traits)
remained and were taken as the entire collection (denoted
as ECraw).

Of the 46 morphological traits, about 15.76 and 73.03%
of phenotype pairs were strongly or moderately and weakly
correlated among the 200 accessions, respectively (the top right
panel of Figure 1 and Supplementary Table 1). Among them,
approximately 33% of the phenotype pairs reached a statistically
significant correlation (p-values less than 0.05), suggesting that
multiple phenotypes are highly correlated. The correlations
of the remaining phenotype pairs (11.21%) were unavailable
because of unmatched phenotypes. In addition, different
degrees of missingness that ranged between 0.5 and 78.5
percent occurred in forty (87%) phenotypes (Supplementary
Tables 2, 3). Among the 46 phenotypic traits in our germplasms,
6 had no missing data, 23 had low missing rates (0.5–
26.5%), 8 had moderate missing rates (49.5–52.5%), and 9 had
high missing rates (64.5–78.5%) (Supplementary Tables 2, 3).
By applying the chained equations in multiple phenotype
imputation, all missing phenotypes across multiple correlated
traits in related samples were filled by the imputed ones
(denoted as ECimpu). For each phenotypic trait, a R̂ statistic was
calculated to check convergence. The convergence criterion is
defined as the R̂ statistic in the second stage of the MI procedure
that needs to be less than 1.1 by default, and is recommended
by Gelman and Hill (2011). Obviously, more than half of the
imputed phenotypes were not converged (i.e., R̂ >1.1) in the first
stage of multiple phenotype imputation (Figure 2A). However,
all imputed phenotypes were converged with R̂ statistics less
than the default threshold of 1.1 (Figure 2B) in the second stage,
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indicating stable and reliable estimates for missing phenotypes.
For complete phenotypic traits, please refer to Supplementary
Material 1. Twenty quantitative traits (except for the “from
blooming to harvest” trait) demonstrated non-significant (i.e.,
p-values greater than 0.05) central tendency and dispersion of
trait characteristics between complete (observed plus imputed
values) and observed phenotypes (Supplementary Table 4).
Likewise, nineteen qualitative traits (excluding “number of
nodes on main stem,” “lodging score,” “plant type,” “pod
shape,” “pod color,” and “immature seed texture”) showed non-
significant (p-values greater than 0.05) frequency distribution of
categorical traits between complete and observed phenotypes
(Supplementary Table 5). Approximately 85% of complete
phenotypes demonstrated consistent patterns of distributions
with observed phenotypes, with only 15% having marginal
difference, which are negligible for imputed data. As shown
in the bottom left panel of Figure 1, a similar pattern of
multiple correlated phenotypes was observed on complete
phenotypes. The correlation coefficients of complete (observed
plus imputed values) phenotype pairs ranged between –0.58
and 0.92. Noticeably, smaller circle sizes and lighter colors
represented a marginal decline in the correlations among
complete phenotypes, but a 10% increase was observed in
significant phenotype pairs compared to observed phenotypes.
Taken together, this suggests that our imputed phenotypes are
reliable and representative.

The clustering result of the Taiwanese vegetable soybean
germplasm accessions can be classified into seven distinct
clusters (Figure 3) according to genetic distance (or accessions
similarity) across 46 mixed-type phenotypes using the weighted
k-means clustering algorithm. All accessions of the ECimpu

(•symbol) are distributed in all the seven clusters representing
the 77.8% variance explained by clustering (Table 1). Accessions
in the same cluster have close or similar characteristics of
phenotypes compared to those outside the cluster. On the
contrary, accessions between different clusters have diverse
features across phenotypic traits. Among the EC, one accession
named Sakata Kairyo Mikawashima (KG0192, a Japanese
variety) may contain distinctive characteristics and specific
genetic diversity that are very different from our germplasms;
hence it was selected as one of the core accessions in the present
study (i.e., both the CCimpu and the CCraw) and in our previous
study (Kao et al., 2021). The seven clusters were characterized
by large diversity richness and evenness (Shannon–Weaver
diversity index = 0.9, Nei’s diversity index = 0.82) based on
the familial relatedness and population structure of ECimpu

explaining 77.8% of the genetic architecture of phenotypic
features (Table 1). This indicates rich genetic variability
of phenotypic features in the Taiwanese vegetable soybean
germplasm accessions.

In this study, we applied PowerCore to construct a sub-
collection containing 36 accessions (CCimpu) having minimum
accessions and maximum diversity of the ECimpu (Table 2).

The advanced M (maximization) strategy, through a heuristic
algorithm, was applied to guarantee that the selected CCimpu

had minimal redundancy and retained the maximum overall
diversity of the whole germplasm accessions. The CCimpu (the
⊕ symbol in Figure 3) were distributed evenly across all the
seven clusters, which cover the countries of origin Taiwan,
Japan, South Korea, United States, Hong Kong, the Philippines,
and unknown origins. A more even proportion of accessions
in each cluster was found in the CCimpu (ranging from 2.78
to 22.22%) compared to that in the ECimpu (ranging from
0.5% to 22.5%). Furthermore, the overall diversity richness
and evenness (Shannon–Weaver diversity index = 0.94, Nei’s
diversity index = 0.83) of the whole germplasm accessions were
retained efficiently in the CCimpu, indicating that the selection
of the core accessions was effective (Table 1). We noted that the
same diversity richness and evenness were also retained in the
CC using observed phenotypes (denoted as CCraw). Twenty-one
accessions (∼60%) painted with a gray background represent
the identical core accessions chosen by the CCraw (Table 2),
suggesting that the MI-based CC is efficient and reliable.

We performed difference tests, diversity comparison, cluster
distribution, and assessment evaluation between the CCimpu and
the ECimpu to address the representativeness of the CCimpu. First
of all, we compared the CCimpu to the ECimpu, and found that
12 (57.14%) phenotypes retained the variability and 9 (42.86%)
phenotypes had a slight loss in dispersion (Figure 4). Second,
we found three imputed quantitative traits (seed thickness,
from sowing to flowering, and 100 immature seed weight)
and one imputed qualitative trait (pod length) showing weakly
significant differences (p-values ranged between 0.02 and 0.04)
(Figures 4, 5 and Supplementary Tables 6, 7). The results
indicated a slight mean difference (8.7%) between the two
collections (acceptable threshold is <20%), indicating consistent
patterns of central tendency and dispersion for all phenotypes
between the CCimpu and the ECimpu. No significant difference
was found between the CCraw and the ECraw (Supplementary
Tables 8, 9).

The phenotypic diversity for each of traits was then
compared between the ECimpu and the CCimpu (Figure 6 and
Supplementary Table 10). We applied an unsupervised learning
strategy through the weighted k-means algorithm to search for
optimal clusters for each of the quantitative traits in the ECimpu

(Figure 7). The optimal number of clusters is characterized
by high diversity richness and evenness (Shannon–Weaver
diversity index >90%, Nei’s diversity index >80%) and a large
proportion of variance explained (>75%). For quantitative traits
(Figure 6B), the Shannon–Weaver diversity index of the ECimpu

and the CCimpu ranged from 0.33 to 0.99 and 0.58 to 0.99, with
an equal average of 0.91, respectively. The Nei’s diversity index of
the ECimpu and the CCimpu ranged from 0.11 to 0.86 and 0.24 to
0.85, with an overall average of 0.77 and 0.76, respectively. These
suggested that more than half (or 42.85%) of the quantitative
phenotypes retained (or slight lost from 1 to 13%) diversity
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FIGURE 1

Correlation heatmap of 46 phenotypic traits in Taiwanese vegetable soybean accessions. The (top right panel) heatmap is based on observed
phenotypes (ECraw), and the (bottom left panel) heatmap is based on complete (i.e., observed plus imputed values) phenotypes (ECimpu). The
size and color intensity of the circle are proportional to the degree of correlation. Positive and negative correlations are colored in blue and red,
respectively. The symbol "×" means value is not available.

richness and evenness. The diversity differences between the
ECimpu and the CCimpu were almost equivalent. For qualitative
traits (Figures 6C, 7), both the CCimpu and the ECimpu had
an equal number of clusters in all traits, demonstrating 100%
coverage. The Shannon–Weaver diversity index of the ECimpu

and the CCimpu ranged from 0.59 to 0.99 and 0.73 to 1.00,
with an overall average of 0.85 and 0.9, respectively. The Nei’s
diversity index of the ECimpu and the CCimpu ranged from

0.3 to 0.74 and 0.4 to 0.76, with an overall average of 0.55
and 0.58, respectively. These suggested that more than three
quarters (or 24%) of the quantitative phenotypes retained (or
slightly loss from 1 to 9%) diversity richness and evenness.
On the whole, diversity richness and evenness were retained
and preserved well in the CCimpu, indicating the our selected
CCimpu is representative of diversity from the ECimpu. Similar
diversity preservation or loss was observed between the ECraw
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FIGURE 2

R̂ statistic of imputed phenotypic traits with chained equation in multiple phenotype imputation. (A) First stage and (B) second stage of multiple
phenotype imputation. The value of the R̂ statistic is a convergence criterion for imputation. The imputation is converged (colored in blue) if
R̂ < 1.1 (or > 1.1) for all the imputed phenotypes but is non-converged otherwise (colored in red). The dashed line is defined as the convergent
threshold of 1.1. The large hollow circle symbol represents the R̂ statistic of mean. The small solid circle symbol represents the R̂ statistic of
standard deviation.

and the CCraw (please refer to Supplementary Table 11). Again,
our results support the applicability of the MI-based method in
exploring population structure and constructing a CC.

The CCimpu selected by PowerCore provided a perfect
coverage (100% in qualitative traits and 99.4% in quantitative
traits) for the entire collection (Table 3), suggesting that
important phenotypic features and variability were preserved
in the CCimpu. Critically, the performance of small MD%
(4.51%) and VD% (42.41%), and large CR% (98.10%) and VR%

(138.76%) indices for the CCimpu reflected their effectiveness
and good representation in capturing varying ranges of
phenotypic variability in the entire collection. The assessment
of the CCraw in four indices (MD% = 4.14%, VD% = 40.65%,
CR% = 96.81%, and VR% = 135.1%) was equivalent to that of
the CCimpu. Again, MI-based imputed phenotypes can establish
a representative core set of Taiwanese vegetable soybeans.

To investigate the impact of missing phenotypes on the
establishment of the CC, we first set four different thresholds
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FIGURE 3

Cluster analysis of Taiwanese vegetable soybean accessions. Weighted k-means clustering was performed on 200 accessions using 46
complete (i.e., observed plus imputed values, ECimpu) phenotypic traits. Taiwanese vegetable soybean germplasm accessions are classified into
seven clusters. The solid (•) and N-ary circled plus operator (⊕) represents 200 accessions in the ECimpu and 36 selected accessions in the
CCimpu, respectively.

TABLE 1 Overall diversity and distribution of clustering of germplasm accessions in different collections (ECimpu, CCimpu, and CCraw).

Accessions collection Distribution of clusteringc Variance explained Overall diversity

1 2 3 4 5 6 7 H’ Nei’s Retained/Lost

ECimpu(200 accessions) 40 29 1 17 23 45 45 77.8% 0.90 0.82

CCimpu
a (36 accessions) 8 6 1 8 4 5 4 0.94 0.83 Retained

CCraw
b (43 accessions) 7 5 1 8 8 5 9 0.94 0.83 Retained

H’, Shannon–Weaver diversity index; Nei’s, Nei’s diversity index.
aThe CCimpu was selected with PowerCore using complete (observed plus imputed values) phenotypes (ECimpu).
bThe CCraw was selected with PowerCore and observed phenotypes (ECraw).
cClustering analyses for mixed-type traits were conducted using the weighted k-means clustering algorithm.

of missing rate (0, <30, <65, and ≤100%) to evaluate the
selected accessions of the CC. Table 4 demonstrates the number
of phenotypic traits used to construct the CC, the overall
phenotype missing rate in the EC, and the number of selected
accessions in the CC under a given threshold of the missing
rate. In general, CC size should be in control of about 10%
of the EC, as Brown (1989b) recommended. The higher the
threshold of the missing rate in phenotypic traits, the more
phenotypic traits were used in the EC resulting in more numbers
of core collection accessions in both the CCraw and the CCimpu.
We observed the fact that the more phenotypes in the EC,

the more complicated the relatedness kinship and population
structure among germplasm accessions; thus, more accessions
were selected to be representative of the EC. As we can see,
the number of accessions in the CC (both the CCraw and the
CCimpu) was increased with higher (i.e., loose) threshold of
the missing rate in phenotypes. Most interestingly, the number
of core accessions in the CCimpu was smaller than that in
the CCraw under all the thresholds. Second, we examined
how missing rate affects the selection of the CC. Figure 8
reveals the impact of phenotype missing rate on calculating
the genetic distance for the core accessions in the CC. The
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TABLE 2 Selected accessions in the core collection (CCimpu) of Taiwanese vegetable soybean germplasms.

Germplasm IDa Accession nameb Origin Germplasm IDa Accession nameb Origin

KG0001 ESB-66-3 Taiwan KG0125 Chen Hsiang Taiwan

KG0002 ESB-66-6 Taiwan KG0128 Hsiao Ching Unknown

KG0009 ESB-67-9 Taiwan KG0132 Mainland China Hong Kong

KG0011 ESB-67-14 Taiwan KG0134 Taimeifood No.1 Taiwan

KG0015 Chakaori Japan KG0140 AGS188 (PI 187154) Japan

KG0027 Erimo Japan KG0147 Hatsutaka Japan

KG0031 G10493 Japan KG0149 Ryuhyo Japan

KG0038 G10502 Japan KG0153 Kaohsiung No.2 Taiwan

KG0050 Fubaye Unknown KG0156 GC 83006-7 Taiwan

KG0054 Tamasudare Japan KG0163 D-62-7815 United States

KG0060 Tung Yeh Japan KG0164 Nuli-6-G2657 South Korea

KG0072 Gokuwase Japan KG0165 Nuli (PI 408251) South Korea

KG0073 GokuwaseHayabusa Japan KG0167 Hua Yu 74-48 Taiwan

KG0086 Kaohsiung No.3 Taiwan KG0170 KS1625 Taiwan

KG0088 Taisho Shiroge Japan KG0180 Yukinoshita-28 Japan

KG0092 PI 157424 South Korea KG0185 AGS186 (PSB-VS 3) Philippines

KG0101 Ryokukou Japan KG0192 Sakata KairyoMikowashima Japan

KG0106 Kamui Japan KG0196 TzurarokoDaizu Japan

aThe germplasm ID highlighted in bold represents the identical accessions of CC based on 29 phenotypes reported by Kao et al. (2021); ID with gray background represents the identical
accessions of the CCraw .
bThe 36 accessions were selected as the core collection (CCimpu) using the advanced M (maximization) strategy through a heuristic algorithm in the PowerCore software.

FIGURE 4

Boxplot of quantitative traits in the entire collection (i.e., observed plus imputed values, ECimpu) and the core collection (CCimpu). Gray dot
represents individual accession. Asterisk represents significant difference between the CCimpu and the ECimpu by Student t-test (for equal
variances) and Welch’s t-test (for unequal variances). *p-value < 0.05.

x-axis (the bottom) represents the number of clusters and cluster
distribution. The y-axis (left) represents the missing rate (%).
The secondary y-axis (the right) represents the genetic distance.

The length and marginal color of the bar represents the missing
rate of each core accession and the distribution of clustering,
respectively. The red line is defined as the genetic distance
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FIGURE 5

Stacked bar chart of qualitative traits in the entire collection (observed plus imputed values, ECimpu) and the core collection (CCimpu). Different
colored bar represents specific class of phenotype. Asterisk represents significant difference between the CCimpu and the ECimpu by
Chi-squared test. *p-value <0.05.

calculated using modified Roger’s distance. It is clear to see that
the genetic distances of the CCraw (Figure 8B) are smaller than
those of the CCimpu (Figure 8C). The underestimated genetic
distances (or similarity) contributed to unpaired phenotypes
because of missingness. As we can see, some accessions with
a small or equivalent genetic distance may be selected by
chance to be members of the CC; particularly, this situation
obviously occurred in the CCraw. In addition, missingness can
lead to biased estimates; under such conditions, the higher the
missing rate, the smaller the genetic distance (i.e., more similar)
(Figure 8B). Fortunately, this issue does not present in the
CCimpu (Figure 8C). As shown in Figure 8A, there are two
accessions (KG0001 and KG0054) with high genetic distance
based on complete phenotypes (ECimpu), while low genetic
distance is revealed based on observed phenotypes (ECraw).

Both of them were only included in the CCimpu (excluded in
the CCraw), suggesting that they have some unique characteristic
covered by incomplete data. To sum up, the MI-based core
collection can capture accessions with valuable characteristics
and retained variability from the EC.

Discussion

Our vegetable soybean (edamame) germplasm collection
contains 213 accessions and 47 phenotypic traits (morphology,
growth, phenology, and production), which preserved the
richest resources of diverse accessions and phenotypic diversities
worldwide. Edamame is a type of specialty soybean and is
harvested as immature beans and eaten as a snack or a vegetable.
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FIGURE 6

Diversity comparisons between the entire collection (observed plus imputed values, ECimpu) and the core collection (CCimpu) in Taiwanese
vegetable soybean germplasms. (A) Diversity index of each phenotypic trait in the ECimpu. The brown and green lines are defined as the Nei’s
and Shannon–Weaver diversity indexes, respectively. (B) Diversity change between the ECimpu and the CCimpu in quantitative traits. (C) Diversity
change between the ECimpu and the CCimpu in qualitative traits. The blue bar (Shannon–Weaver diversity index) and the red bar (Nei’s diversity
index) mean diversity is retained (≥0%) or lost (<0%) of the CCimpu compared to the ECimpu.

FIGURE 7

Distribution of clustering of the entire collection (observed plus imputed values, ECimpu) and the core collection (CCimpu). The blue and orange
bars represent the number of clusters in the ECimpu and CCimpu, respectively. Clustering analysis for quantitative traits was conducted using the
weighted k-means clustering algorithm. Only the “single pod weight” trait has less number of clusters in the CCimpu, representing almost full
coverage from the ECimpu.

Unlike grain soybean, edamame is characterized by several
features including large seed size, high isoflavone content, cold
tolerance, higher moisture content, stay-green pods, and sweet

and delicate flavor. Edamame is primarily grown during the
autumn and spring seasons in Taiwan’s Kao-Ping and Yun-Chia-
Nan areas.
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TABLE 3 Evaluation of the core collection compared to the entire collection in Taiwanese vegetable soybean germplasms.

The property of the core collection N (%) MD%a VD%a CR%a VR%a Coverageb

Quantitative traits Qualitative traits

CCimpu 36 (18.0%) 4.51 42.41 98.10 138.76 99.40 100

CCraw 43 (21.5%) 4.14 40.65 96.81 135.10 NA 100

CCraw and CCimpu , core collections selected with PowerCore using observed and complete (observed plus imputed values) phenotypes, respectively; N, number of phenotypes; (%),
percentage of the CC that accounted for the EC; MD%, mean difference percentage; VD%, variance difference percentage; CR%, coincidence rate; VR%, variable rate; NA, not available.
aThe evaluation indices of MD%, VD%, CR%, and VR% were calculated based on all 25 quantitative traits.
bCoverage was computed based on all 46 mixed-type phenotypic traits.
cThe CC is considered to be the representative of the EC only when (1) MD% is no more than 20%, (2) CR% is greater than 80%, and (3) coverage is close to 100.

Soybeans (including edamame) have been cultivated in
Taiwan for several decades. Before the 1970s, the edamame
market in Taiwan was dominated by fresh shelled beans.
During 1969–1970, several varieties introduced from Japan
were especially chosen for planting, and of which two specific
varieties were processed into frozen edamame for export.
After that, fresh frozen edamame has become an essentially
popular snack in Taiwan’s market. With the improvement in
freezing equipment, processing chain, technology development,
and safety management system, the time to harvest edamame
has been shortened. Improved edamame varieties produce
better freshness and improved quality taste. To date, Taiwan’s
edamame with multiple unique commercial varieties has been
successfully sold in international markets around the world.
Therefore, edamame is known as “Taiwan’s green gold.”

Over recent decades, the awakening of dietary and healthy
eating habits has promoted the consumption and development
of edamame in the United States. From 2000 to 2008, there was a
300% increase in consumption of edamame in the United States
(Sams et al., 2012). With the current trend, the demand
for edamame will continue to increase (Zhang et al., 2017).
However, most of the edamame consumed was imported from

TABLE 4 Impact of phenotype missing rate on the establishment of
the core collection.

Threshold of phenotype missing rate

0% <30% <65% ≤100%

Number of phenotypic
traits in the entire
collection (EC)

6 29 38 46

The overall phenotype
missing rate in the EC

0% 12% 22% 31%

Number of accessions in
the CCraw

a(%)
14 (7.0%) 30 (15.0%) 32 (16.0%) 43 (21.5%)

Number of accessions in
theCCimpu

a(%)
14 (7.0%) 28 (14.0%) 30 (15.0%) 36 (18.0%)

CCraw , the core collection established using observed phenotypes; CCimpu , the core
collection established using complete (observed plus imputed values) phenotypes; (%),
percentage of the CC that accounted for the EC.
aCCraw and CCimpu were established using PowerCore to analyze the observed (ECraw)
and complete (ECimpu) phenotypes, respectively.

China. The development and improvement of edamame in the
United States are relatively late because of some limitations
including poor phenotypic and genetic resources, poor seed
germination, poor seedling emergence and establishment,
susceptibility to seed diseases, and others (Jiang G. L. et al.,
2018). The situations mentioned above brought more attention
to the potential of vegetable soybean germplasms.

In our vegetable soybean germplasm accessions, a
scenario of multiple correlated phenotypes (Figure 1
and Supplementary Table 1) and missing phenotypes
(Supplementary Tables 2, 3) was observed. This central issue is
typically seen in related samples and can lead to many statistical
problems (Dahl et al., 2016). For instance, many methods
such as principle component analysis and clustering analysis
were developed mainly for complete (without missing values)
multiple phenotypes. Missing phenotypes in germplasms often
reduce sample sizes (i.e., number of accessions) and result in
significant loss of power and misunderstanding of the genetic
architecture of complex multiple correlated phenotypes. In
particular, substantial missing phenotypes across accessions
may produce no samples with completely observed phenotypes.
This scenario also occurs in our vegetable soybean germplasm
because of cultivation problems, negligent investigations, and
environmental conditions. Although missing phenotypes are
pervasive in germplasm accessions and large accessions are
often difficult to collect, little is known about the detrimental
impact of missingness on the power to explore the whole
map of population structure, kinship relatedness, and genetic
diversity of germplasms.

Missing data may increase uncertainty in vegetable soybean
germplasms and cause inaccurate analysis results. Especially, the
CC established by multiple correlated phenotypes really relies
on data completeness. In this study, we applied a model-based
imputation algorithm, multiple phenotype imputation, through
Bayesian linear regression computationally to impute missing
phenotypes. The uncertainty arising from the imputation
procedure was considered to be minimized (Lee and Simpson,
2014). Through the multiple phenotype imputation process,
missing phenotypes were imputed by repeatedly sampling
from a fitted imputation model (the first stage) and then
by averaging the estimates derived from each individual of
complete datasets (the second stage). Hence, the multiple
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FIGURE 8

Impact of missing rate on genetic distance. (A) Distribution of genetic distance in seven different clusters for 200 accessions in the entire
collection. The blue and yellow lines represent the genetic distance calculated using modified Roger’s distance based on complete (i.e.,
observed plus imputed values) phenotypes (ECimpu) and observed phenotypes (ECraw), respectively. The dash line separates the distribution of
genetic distance into different clusters. The red arrow pointing to accessions (KG0001 and KG0054) means they have larger difference in
genetic distance between the ECimpu and the ECraw, for example. (B) Distribution of clustering, phenotype missing rate, and genetic distance for
43 accessions in the core collection using observed phenotypes (i.e., CCraw). (C) Distribution of clustering, phenotype missing rate, and genetic
distance for 36 accessions in the core collection using complete phenotypes (i.e., CCimpu). The x-axis (bottom) represents the number of
clusters and cluster distribution. The y-axis (left) represents the missing rate (%). The secondary y-axis (right) represents the genetic distance.
The length and marginal color of the bar represent the missing rate of each core accession and distribution of clustering, respectively. The
green line represents the distribution of genetic distance of the core accessions.

FIGURE 9

Cluster analysis and tree diagram of five crucial vegetable soybean accessions in Taiwan breeding programs. (A) For simplicity, weighted
k-means clustering was performed on 199 accessions (except for the outlier “Mikowashima”) using 46 complete phenotypic traits. The red
arrow pointing to the plus (+) symbol represents the five accessions (KG0086, KG0092, KG0101, KG0153, and KG0156). (B) History of
development processes of vegetable soybean varieties in Taiwan. Accessions with the asterisk (∗) symbol were incorporated in the CCimpu.

phenotype imputation method is able to account for the
uncertainty within and across the complete (i.e., observed plus
imputed phenotypes) datasets due to the missingness (Lee and

Simpson, 2014). We noticed that a slight change in correlation
structure (i.e., marginally decreased correlations) was present
in our imputed phenotypes, which is typically seen in imputed
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datasets (Taylor et al., 2017). Although none of the imputation
methods can perfectly preserve the original correlation structure
of phenotypes, the MI method is beneficial in terms of bias
and uncertainty (i.e., reduction in errors) and outperforms
other methods such as average-based imputation and single
imputation (Taylor et al., 2017; Madley-Dowd et al., 2019).
Most importantly, the multiple phenotype imputation method
provides less errors and gains in accuracy. In particular, the
MI method works best when the data missing rate is high
or the sample size is medium ranging between 50 and 1,000
regardless of missing rate, compared to other missing data
imputation methods (Cheema, 2014). Therefore, the MI method
can serve as the most efficient and robust method for handling
missing phenotypes.

The degree of potential biases caused by missingness
really depends on mechanisms underlying missing data and
approaches to deal with missing data (Jakobsen et al., 2017).
The MI method can be applied to many kinds of data,
including phenotypes and genotypes (Soley-Bori, 2013). Several
success examples in plant and human studies, for instance
Plant-Impute DB (Gao et al., 2021), imputed low-density
marker chip data in plant breeding (Niehoff et al., 2022) and
GWAS genotypes in rice (Wang et al., 2018). We noticed that
the MI method outperforms the single imputation methods
(e.g. average-based approaches). The former has unbiased
and accurate estimates, and works computationally efficient.
In particular, the MI method using the Bayesian model
performed better with slightly higher accuracy than that
using the non-Bayesian model (Tian et al., 2015). Efficient
utilization of germplasm resources is really a challenging
task for plant-breeding. A precise and accurate CC can help
breeders and scientists in reducing breeding program workload
(van Hintum et al., 2000).

The chance of at least one observation being missed
increases exponentially as the number of phenotypes increases.
This situation also occurred in our study. We observed a
dramatic increase in overall missing rate, from 12 to 22% and
then to 31%, for all the traits in the corresponding EC as
phenotypic traits increased from 29 to 38% and then to 46%,
respectively (Table 4). High overall missing rate can slightly
affect the results of difference tests between the ECraw and the
ECimpu (Supplementary Tables 4, 5). In this study, we found
four (8%) phenotypic traits that reached a significant difference
because of high missing rate (more than 50.5%) and/or only two
possible classes in a trait, which is acceptable and negligible. This
is often observed in complex correlated phenotypes in related
samples (Dahl et al., 2016).

Core collections (CCs) have a small size to promote breeder
screening and improve cultivars (Frankel, 1984; Brown, 1989b).
In general, a CC should have 10% of the entire collection (EC)
size and represent 70% of the genetic diversity at least of the
EC (Brown, 1989a). During the process, we used the PowerCore
v1.0 software to construct the CCimpu and CCraw from the

ECimpu and ECraw, respectively. Both the CCimpu and the CCraw

exhibited a small mean difference percentage (both 4.51 and
4.14% were less than the significance critical value of 20%) and
a variance difference percentage (42.41 and 40.65%). However,
high coincidence rate (both 98.1 and 96.81% were higher
than the critical value of 80%) and variable rate (138.76 and
135.10%) were also noted, indicating a wide range of diversity in
phenotypic variability in the CC compared to the EC (Table 3).
Both the CCimpu and the CCraw showed a perfect coverage of
100% on the qualitative traits, suggesting they contain all types
of qualitative traits. We found a nearly perfect coverage (99.40%)
on the quantitative traits in the CCimpu. However, PowerCore
did not provide coverage on quantitative traits in the CCraw

because of missingness in the phenotypes.
Missingness can seriously affect the selection of core

accessions. In addition, CC selection may tend to choose
accessions with low missing rate. For instance, there are
18 accessions with low missing rate (<25%) selected in the
CCraw compared to the 23 accessions selected in the CCimpu

(Figures 8B,C). The CCraw have nine accessions (21%) in the
seventh cluster, while the CCimpu have only four accessions
(11%) in the seventh cluster but have more accessions (22%)
in the fourth cluster. In contrast to the accessions in the
seventh cluster, the accessions in the fourth cluster have an
obvious difference genetic distance between ECraw and ECimpu,
suggesting that germplasms have some unknown phenotypes
and are unable to reflect the actual morphological variation
of populations. Accurate methods for imputing missing data
may also be helpful in capturing underlying patterns of real
variation (Stephens and Scheet, 2005). Furthermore, the overall
phenotypic diversity in the CCimpu was equal to that in the
CCraw (Table 1). This suggests that the MI-based method can
be an efficiently reliable way to boost power and preserve higher
diversity in less core collection accessions.

From diversity comparisons between the core collection and
the complete entire collection (Figure 6 and Supplementary
Table 10), 28 (61%) traits retained phenotypic diversity, and
16 (35%) had up to 9% diversity loss. Only two traits (plant
height and 100 immature seed weight) lost diversity by more
than 10% (up to 13%) in both diversity indices, suggesting
that the CCimpu retained the high diversity and evenness of
the ECimpu. A Venn diagram and five indices (MD%, VD%,
CR%, VR%, and coverage) of the CCimpu and CCraw are given
in Supplementary Figure 1 and Supplementary Table 12.
Using complete phenotypes demonstrated better properties of
five indices (i.e., good representation of genetic diversity) of
the EC in the intersection (21 accessions) of the CCraw and
the CCimpu compared to the use of observed phenotypes.
Nevertheless, the CR% in both the difference of the sets
CCraw and CCimpu (denoted with CCraw and CCimpu) and
the difference between the sets CCimpu and CCraw (denoted
with CCimpu and CCraw) was less than the threshold of 80%.
Compared to the results of the CCimpu and CCraw (Table 3), it
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is worth noting that the 21 core accessions are prioritized to be
used for breeding programs.

Kao et al. (2021) proposed a modified Roger’s distance
algorithm to construct a CC based on 29 phenotypic traits
of Taiwanese vegetable soybean germplasms. We found that
sixteen accessions overlapped between the CCimpu and our
previous results (please refer to Table 2). Among the sixteen
accessions, KG0132 and KG0101 have the longest immature
seed length and thickest immature seeds, respectively. Besides,
both have a “large” characteristic in terms of immature seed size,
suggesting that the CC retained valuable edamame traits of the
immature seeds. The variety KG0031 recorded only 17.3 cm
mean plant height and 4.3 cm mean first pod height; both
values are smaller than the overall average minus the standard
deviation of all accessions of the traits. However, low plant
height and first pod height restricted its production and it
was not suitable for mechanical harvesting (Zdravković et al.,
2005; Jiang H. et al., 2018). However, KG0031 had a purple
corolla color, which means it may have more flavonoids (such
as dihydroflavonols) (Iwashina et al., 2007; Takahashi et al.,
2017). Overall, many accessions of the CCimpu are in accordance
with findings reported by Kao et al. (2021), indicating two
algorithms (advanced M strategy on PowerCore and modified
Roger’s distance) are useful to construct the CC with maximal
representative and high diversity from the EC.

Among the CCimpu (Table 2), Kou et al. (2000) revealed
that KG0180 (Yukinoshita-28) has the highest friability and the
lowest adhesion in all 30 varieties concerned by conducting
a texture profile analysis. Another extremely early maturity
accession called KG0073 (Gokuwase Hayabusa) has high
phenolic compounds, which represent the rich contents of
alcohol- and water-soluble antioxidants and sulfur-containing
amino acids (Kaizuma et al., 1974; Shafigullin et al., 2020). By
comparing our results to those of previous studies, some of our
CCimpu have elite characteristics that are also useful for breeding
programmers and researchers.

In the early 1980s, crop research institutes in Taiwan got
on with the improvement work for vegetable soybean (please
refer to Figure 9B). In order to meet the needs of domestic
and export demands, a high-yielding variety, “KG0156,” derived
from a cross between KG0092 (from South Korea, used as the
female parent) and KG0101 (from Japan, used as the male
parent) was selected and developed in the AVRDC in Taiwan
(Shanmugasundaram et al., 1991). In 1991, two new varieties,
KG0153 (KG0101 × KS8) and KG0086 (KG0092 × KS8),
were released by KDARES to farmers (Cheng, 1993; Cheng
and Chen, 1993) and became popular varieties for exporting
at that time. To this day, Kaohsiung No. 9, one of the most
important vegetable soybean cultivars in Taiwan, is being
selected from a cross between Kaohsiung No. 5 (derived from
the pure line population of KG0101) and KG0153 (Chen
and Cheng, 1996; Chou, 2008). Compared to their parental
line Kaohsiung No. 5, Kaohsiung No. 9 displayed better

performances including higher yield, suitability for mechanical
harvesting, larger immature seeds, and higher isoflavone content
(total isoflavones: 2,131 µg/g). Nowadays, Kaohsiung No. 9 has
become the dominant variety for export of frozen edamame.

As shown in Figure 9A, the five crucial accessions in
Taiwanese breeding programs are dispersed in three clusters.
The clusters of all improved varieties (KG0086, KG0153,
and KG0156) differ from their known parents (KG0092 and
KG0101). Nevertheless, KG0153 and KG0156 were classified
into the same cluster, and they share the same parent, “KG0101.”
In terms of phenotypic traits, seed length, seed width, seed
thickness, 100 seed weight, and 100 immature seed weight were
shown to be highly related to “high yield” in vegetable soybean
(Panthee et al., 2005; Sun et al., 2012; Hu et al., 2013; Yang
et al., 2013). Except for KG0086, the other accessions (KG0092,
KG0101, KG0153, and KG0156) have seed length of 9.3-11 mm,
seed width of 8.7–9.7 mm, seed thickness of 6.8–7.6 mm, and
100 seed weight of 42.7–46 g. As for 100 immature seed weight,
KG0086 is the best with up to 83 g. The findings confirmed that
Taiwanese breeders had selected suitable germplasms to meet
the breeding objective.

In conclusion, the selected core accessions in the CCimpu

involving the parents of Taiwanese commercial varieties (please
refer to Figure 9 and Table 2) were a significant contribution
to developing commercial edamame varieties in Taiwan.
Furthermore, the history of the breeding program of vegetable
soybean in Taiwan provides evidence to prove that our CCimpu is
helpful for breeders to screen distinguished breeding materials.
Besides, accessions with desirable traits in the CCimpu identified
in previous studies may also be considered promising materials
for future crop improvement programs.

Conclusion

Taiwan preserves considerable vegetable soybean
germplasm accessions, and is a forerunner in the field of
edamame breeding and improvement. We conducted multiple
phenotype imputation to demonstrate the effectiveness
and reliability of the imputed phenotypic data in exploring
genetic diversity and constructing the CC. Our results
showed that missingness can bias genetic distance and
diversity calculation, which results in non-precise selection
of the CC. In addition, the size of the CCraw (building
the CC without MI approach) is larger than that of the
CCimpu (building the CC with MI approach), suggesting
that workloads in a breeding program would be heavier.
The CCimpu showed small mean difference and variance
difference and high coincidence rate and coverage, suggesting
well representativeness of the whole germplasms. Besides,
some unique characteristics in our CCimpu may contribute
to the development of new commercial varieties. Facing with
challenges of missing phenotypes, the MI-based imputed
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phenotypes could be a solution to select core accessions from the
entire collection efficiently.
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