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Three strategies of transgenic
manipulation for crop
improvement
Haoqiang Yu, Qingqing Yang, Fengling Fu* and Wanchen Li*

Maize Research Institute, Sichuan Agricultural University, Chengdu, China

Heterologous expression of exogenous genes, overexpression of endogenous

genes, and suppressed expression of undesirable genes are the three

strategies of transgenic manipulation for crop improvement. Up to 2020,

most (227) of the singular transgenic events (265) of crops approved

for commercial release worldwide have been developed by the first

strategy. Thirty-eight of them have been transformed by synthetic

sequences transcribing antisense or double-stranded RNAs and three

by mutated copies for suppressed expression of undesirable genes

(the third strategy). By the first and the third strategies, hundreds of

transgenic events and thousands of varieties with significant improvement

of resistance to herbicides and pesticides, as well as nutritional quality,

have been developed and approved for commercial release. Their

application has significantly decreased the use of synthetic pesticides

and the cost of crop production and increased the yield of crops and

the benefits to farmers. However, almost all the events overexpressing

endogenous genes remain at the testing stage, except one for fertility

restoration and another for pyramiding herbicide tolerance. The novel

functions conferred by the heterologously expressing exogenous

genes under the control of constitutive promoters are usually absent

in the recipient crops themselves or perform in different pathways.

However, the endogenous proteins encoded by the overexpressing

endogenous genes are regulated in complex networks with functionally

redundant and replaceable pathways and are difficult to confer the

desirable phenotypes significantly. It is concluded that heterologous

expression of exogenous genes and suppressed expression by RNA

interference and clustered regularly interspaced short palindromic

repeats-cas (CRISPR/Cas) of undesirable genes are superior to the

overexpression of endogenous genes for transgenic improvement

of crops.
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Introduction

Breakthrough of crop improvement

To meet the food demand of the booming world population,
the comprehensive requirements for yield, quality, and
adaptability of crop cultivars are becoming more and more
urgent (Barrett, 2021). Due to the limitation of genetic
variation within nature or mutagenized populations of
sexually compatible species, conventional approaches to crop
improvement, such as systematic breeding, crossing breeding,
and heterosis utilization, are laborious and time-consuming.
However, transgenic technology surmounts hybridization
barriers and utilizes the desirable genes from genetically distant
species, to realize molecular design breeding to a certain
extent (Raymond Park et al., 2011; Kamthan et al., 2016). It is
thought that transgenic technology has been a revolutionary
impact on crop improvement as a second Green Revolution,
greatly improving the yield, quality, and adaptability of crops
and making an important contribution to ensuring food
security (Eckardt et al., 2009; Farre et al., 2010; Kamthan
et al., 2016). Transgenic cultivars of crops are developed by
cloning desirable genes, constructing expression vectors, genetic
transformation of recipient crops, screening and identification
of transformed lines, so as to improve the original undesirable
traits or endow them with new beneficial traits (Raymond
Park et al., 2011; Kamthan et al., 2016). In addition, transgenic
technology is also used to modify or knock out the undesirable
genes of crops to change their genetic characteristics and
obtain the desirable phenotypes (Georges and Ray, 2017).
After a safety assessment, transgenic cultivars with significant
improvement in yield, quality, or adaptability are approved for
commercial release.

The rapid increase of transgenic crops

The first transgenic plants were developed about four
decades ago with traits like antibiotic and insect resistances
(Bevan et al., 1983; Fraley et al., 1983; Herrera-Estrella
et al., 1983; Murai et al., 1983). Since the approval of
the transgenic tomato variety with delayed maturation for
commercial release by the food and drug administration
(FDA) after stringent scientific scrutiny and credible safety
assessment in 1994 (Klee, 1993; Parrott et al., 2010; Giraldo
et al., 2019), transgenic crops, like inset resistant cotton and
maize, herbicide-resistant soybean and canola, have received
marketing approval one after another (Padgette et al., 1995;
Schuler et al., 1998; Bates et al., 2005), and transgenic
technology has increased the pace of crop improvement to
meet the requirements of biotic and abiotic resistance, higher
yield, and nutritional value (Raymond Park et al., 2011).
According to the survey carried out by the International

Service for the Acquisition of Agri-Biotech Applications
(ISAAA, 2022), the commercialized acreage of transgenic crops
has straightly increased to 176.85 million hectares in the
world by 2021 (Figure 1). This acreage distributes in more
than 30 countries in all, including industrial and developing
countries. Great profitability has been achieved by increasing
yield and reducing input in pesticides, labor, and machinery
(Naranjo, 2011; Raymond Park et al., 2011; Smyth et al.,
2014).

Achievements of three transgenic
strategies

Three transgenic strategies

Heterologous expression of exogenous genes,
overexpression of endogenous genes, and suppressed
expression of undesirable genes are the three strategies
of transgenic manipulation for crop improvement. The
first strategy is the transformation of crops by exogenous
genes from genetically distant species. The second strategy
is also proposed as cisgenesis and intragenesis by the
transformation of endogenous genes from the same species
or homologous genes from sexually compatible species,
respectively, if no foreign DNA such as selectable marker
gene and vector-backbone sequence is introduced into the
cisgenes or intragenes by in vitro mutagenesis or other
means (Rommens et al., 2007; Schouten and Jacobsen,
2008; Jacobsen and Schouten, 2009). These alternative
concepts mitigate the public concerns about the biosafety
of genetically modified (GM) crops developed by transgenesis
(Schouten et al., 2006). The third strategy is to suppress
the expression of undesirable endogenous or pathogenic
and pest genes by the introduction of synthetic sequences
transcribing antisense or double-stranded RNAs (Mamta
and Rajam, 2017; Zhang J. et al., 2017; Hernández-Soto
and Chacón-Cerdas, 2021), or to knock out them by
clustered regularly interspaced short palindromic repeats-
cas (CRISPR/Cas) technology as well as some other more
complicated technologies of genome editing such as
zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and mega-nucleases (MNs)
(Gaj et al., 2013; Jaganathan et al., 2018; Langner et al.,
2018; Gao, 2021; Rasheed et al., 2021; Samaras et al., 2021;
Sharma and Vakhlu, 2021; Turnbull et al., 2021). Especially
CRISPR/Cas technology, as a simple, easy, and cost-effective
tool of precise and straightforward genome-wide gene
editing, has been developed as a potential strategy for crop
improvement and helped much to mitigate the public’s negative
perception of GM food crops (Naeem et al., 2020; Gao, 2021;
Rasheed et al., 2021).
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FIGURE 1

Commercialized acreage of transgenic crops.

Transgenic events approved for
commercial release

According to the survey carried out by ISAAA (2022),
most (227) of the singular transgenic events (265) approved
for commercial release worldwide were developed by the first
strategy: 210 by bacterial genes (Stalker et al., 1988; Ye et al.,
2000; Paine et al., 2005; Castiglioni et al., 2008; Napier et al.,
2019), 8 by exogenous genes from mold, algae, fungus, and yeast
(Knutzon et al., 1998; Napier et al., 2019; Kinney et al., 2022),
5 by exogenous genes from sexually incompatible plant species
(Song et al., 2003; Takagi et al., 2005; Preuss et al., 2012; Rice
et al., 2014), and 2 by the mutant copies of the endogenous genes
for enhancing herbicide tolerance (McNaughton et al., 2008;
EFSA Panel on Genetically Modified Organisms [GMO]et al.,
2018; Karthik et al., 2020), respectively (Table 1). Thirty-eight
events were developed by the third strategy and transformed by
synthetic sequences transcribing antisense or double-stranded
RNAs for suppressed expression of undesirable endogenous
genes of pathogens, pest insects, and recipient crops themselves
(Chen et al., 2003; Davis and Ying, 2004; Tennant et al., 2005;
Otani et al., 2007; Ilardi and Nicola-Negri, 2011; Aragao et al.,
2013; Ramaseshadri et al., 2013; Carvalho et al., 2015; Orbegozo
et al., 2016; Borah et al., 2018; Wu et al., 2018; Callahan et al.,
2019; Chiozza et al., 2020). Only one event was transformed
by endogenous genes for restoring male fertility (Unger et al.,
2002) and another event for pyramiding herbicide tolerance.
Of course, antibiotic or herbicide-resistant genes from bacteria
were also introduced into almost all of these events as selection
markers of transformant screening (Demaneche et al., 2008). By

CRISPR/Cas technology, several events have developed, skipped
regulation of government, and entered the market because of
their safety assurance, and some more events have been in the
pipeline of safety assessment (Hartung and Schiemann, 2014;
Waltz, 2016a,b; Wolt et al., 2016; Faure and Napier, 2018;
Jaganathan et al., 2018; Langner et al., 2018; Samaras et al.,
2021).

Great achievements of heterologous
expression of exogenous genes

Weeds burden plant growth as they compete for space,
sunlight, and soil nutrients leading to 25–80% yield losses (Awan
et al., 2015; Ramachandra et al., 2016). The application of
synthetic herbicides is an effective approach to control weeds
but causes great waste of resources, and serious problems of
environmental pollution and food safety (Vandenberg et al.,
2017; Panthi et al., 2019). GM varieties transformed by
herbicide-resistant genes give the feasibility to combat weeds
and thus help in the safety of the crops without major
yield losses (Benbrook, 2016; Ramachandra et al., 2016).
Glyphosate [N-(phosphonomethyl) glycine] is a widely used
broad-spectrum herbicide that controls weeds by inhibiting the
5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme
and interfering with the shikimate biosynthesis pathway
(Funke et al., 2006). However, this non-selective herbicide
also damages the crops. The current strategy is to improve
glyphosate resistance in crops by the transformation of the
EPSPS, GAT, and Goxv genes that encode for an insensitive
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TABLE 1 Singular transgenic events approved for commercial release.

GM crop GM trait Event Bacterial Distant species Plant RNAi

Exogenous Mutant Endogenous

Alfalfa Herbicide tolerance 2 2

Quality improvement 4 4

Bean Viral resistance 1 1

Canola Herbicide tolerance 23 23

Quality improvement 9 2 7 1

Cotton Herbicide tolerance 28 28 3
Insect resistance 26 27 1

Quality improvement 1 1

Cowpea Insect resistance 1 1

Eggplant Insect resistance 1 1

Flax Herbicide tolerance 1 1

Maize Herbicide tolerance 18 16 3 1
Insect resistance 7 7

Herbicide/insect tolerance 18 18

Drought tolerance 1 1

Quality improvement 5 3 1 1

Male sterility 3 3

Fertility restoration 1 1

Melon Delayed maturation 2 2

Soybean Herbicide tolerance 18 17 1 3
Insect resistance 2 2

Herbicide/insect tolerance 2 2

Herbicide tolerance/growth regulation 1 1

Drought tolerance 1 1
Quality improvement 4 1 2 1

Papaya Viral resistance 4 4

Plum Viral resistance 1 1

Potato Herbicide tolerance 4 4
Insect resistance 29 29

Viral resistance 15 15

Rice Herbicide tolerance 3 3

Insect resistance 3 3

Quality improvement 2 2 1 1

Squash Viral resistance 2 2

Sugar beet Herbicide tolerance 3 3

Sugarcane Insect resistance 3 3

Drought tolerance 3 3

Sweet pepper Viral resistance 1 1

Tobacco Herbicide tolerance 1 1

Quality improvement 1 1

Tomato Insect resistance 1 1

Viral resistance 1 1

Delayed maturation 9 2 1 6

Wheat Herbicide tolerance 1 1

Total 265 210 8 5 (+6) 3 (+6) 2 (+1) 38

Technological strategy First Second Third

227 (+12) 2 (+1) 38

Distant species include mold, algae, fungus, and yeast. RNAi was triggered by antisense and double-stranded RNA described by the introduced synthetic DNA sequence. The gray
background indicates the stacked genes. The numbers of the events introduced stacked genes were put in the brackets. All the information is from ISAAA (2022).
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FIGURE 2

Benefits of transgenic herbicide- and insect-resistant crops.

form of EPSPS of acetyltransferase and glyphosate oxidase,
respectively (Block et al., 1987; Padgette et al., 1995; Castle
et al., 2004; McNaughton et al., 2008; Yan et al., 2011; Awan
et al., 2015; Chhapekar et al., 2015; Guo et al., 2015; Liang
et al., 2017; Zhang X. B. et al., 2017; Yi et al., 2018). The
other widely used synthetic herbicides are gluphosinate and
bialaphos, which inhibit the activity of glutamine synthetase
and thus block all nitrogen assimilation into the plant. Tolerant
varieties are developed by the transformation of the genes
PAT and Bar that encode for phosphinothricin acetyltransferase
(PAT), which detoxifies the herbicides (Hérouet et al., 2005;
Herman et al., 2013; Cegielska-Taras et al., 2008; EFSA Panel
on Genetically Modified Organisms [GMO] et al., 2020a,b).
Bromoxynil (3,5-dibromo 4-hydroxybenzonitrile) and other
oxynil herbicides inhibit photosynthesis by blocking electron
flow during the light reaction, causing the production of
reactive oxygen species (ROS), destruction of cell membranes,
inhibition of chlorophyll formation and death. Resistance is
conferred by the bxn gene that encodes a nitrilase enzyme
that detoxifies the herbicide (Stalker et al., 1988). All these
herbicide-resistant genes are derived from various species of soil
bacteria Agrobacterium, Pseudomonas, Streptomyces, Bacillus,
Ochrobactrum, and Klebsiella (Block et al., 1987; Thompson
et al., 1987; Stalker et al., 1988; Castle et al., 2004; Siehl
et al., 2007; Yan et al., 2011). Only very few of them are
transformed by an herbicide-resistant mutant of exogenous
or endogenous plant EPSPS genes (Table 1; McNaughton
et al., 2008; EFSA Panel on Genetically Modified Organisms
[GMO]et al., 2018; Karthik et al., 2020). From these transgenic
events, 4 alfalfa, 52 canola, 65 cotton, 345 maize, 4 potato,
3 rice, 52 soybean, 2 sugar beet, 1 tobacco, and 1 wheat
cultivars have been developed and approved for commercial

release1. A meta-analysis shows that the application of these
transgenic herbicide-resistant varieties reduces the use of
synthetic herbicide by 2.43% and the cost of herbicide by
25.29%, increases the yield of crops by 9.29%, and benefits
farmers by 64.29% (Figure 2; Klumper and Qaim, 2014).
However, great attention should be paid to the potential
environment and agronomic impact caused by intraspecific
gene flow from the transgenic herbicide-resistant varieties
to weeds or their non-GM counterparts, especially in partly
cross-pollinated canola and other crops of the crucifer family
(Légère, 2005; Bonny, 2016; Sharkey et al., 2021). This problem
should be seriously solved by the choice of suitable cultivars
and certified seeds as well as by weed and soil management
(Devos et al., 2004; Hüsken and Dietz-Pfeilstetter, 2007). The
potential CRISPR/Cas technology should play important role in
combating this problem (Hussain et al., 2021).

Insect pests used to be the major biotic stress that caused
a serious reduction in crop productivity globally (Oerke, 2006;
Douglas, 2018). The extensive application of chemical pesticides
not only increased production costs but also caused severe
environmental pollution (Aktar et al., 2009; Birkett and Pickett,
2014). Transgenic insect-resistant crops (mainly cotton, maize,
and soybean) have made a beneficial and eco-friendly impact on
crop production (Matten and Reynolds, 2003; Gatehouse et al.,
2011; Blanco, 2012; Rocha-Munive et al., 2018). The majority
(68) of the transgenic insect-resistant events (70) are developed
by heterologous expression of the insecticidal genes Cry (δ-
endotoxin) from different strains of soil bacterium Bacillus
thuringiensis (Ghareyazie et al., 1997), except for 1 maize, 2

1 https://www.isaaa.org/gmapprovaldatabase
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poplar, and 2 cotton events simultaneously transformed by
vegetative insecticidal protein genes vip3, CpTI, and API, as
well as double-stranded RNA transcript of gene Snf7 from
western corn rootworm (Diabrotica virgifera), respectively, for
pyramiding broad resistance (Table 1; Xie et al., 1997; Hu et al.,
2001; Cui et al., 2011; Ramaseshadri et al., 2013). From these
events, 59 cotton, 1 cowpea, 1 eggplant, 341 maize, 3 poplar, 30
potato, 3 rice, 6 soybean, 3 sugarcane, and 1 tomato cultivars
resistant to lepidopteran (246), coleopteran (156), hemipteran
(1), as well as multiple insects (36), respectively, have been
developed and approved for commercial release (ISAAA,
2022). The majority of published studies on transgenic cotton
performance have documented the decrease in insecticide
application, and the increase in yield and benefits in developed
and developing countries (Showalter et al., 2009). A meta-
analysis shows that the application of insecticidal transgenic
crops has decreased the use of synthetic pesticides by 41.67%
and the cost of pesticides by 43.43%, increased the yield of crops
by 24.85%, and benefited farmers by 68.78% (Figure 2; Klumper
and Qaim, 2014). This analysis is confirmed by an actual survey
on the application of transgenic insect-resistant cotton in China
(Pray et al., 2001).

Vitamin A deficiency is common in children in developing
countries who rely on rice as a staple food (Cabezuelo et al.,
2020). Transgenic “Golden” rice and potato heterologously
expressing three bacterial genes (CrtB, CrtI, and CrtY)
encoding phytoene synthase, phytoene desaturase, and
lycopene β-cyclase, respectively, for enhancing β-carotene
synthesis and accumulation have been developed and approved
for commercial release, and directly used as food in the
United States, Canada, New Zealand, Australia, Nigeria, Kenya,
and the Philippines (Table 1; Ye et al., 2000; Paine et al.,
2005; Chitchumroonchokchai et al., 2017; Napier et al., 2019),
although endogenous orthologs of these genes are present in
the genomes of rice and potato (Thorup et al., 2000; Koc et al.,
2015; Banakar et al., 2020; Yang et al., 2021).

Canola (Brassica napus) is a high-yield oil crop. However,
the quality of its oil is required to be improved to decrease the
high proportion of saturated fatty acids. Genetic modification
by introducing desaturase genes and desaturase-related genes is
an effective approach (Napier et al., 2019). Although these genes
are present in the genome of canola itself (Xue et al., 2018), all
the nine events approved for commercial release (ISAAA, 2022)
have been transformed by stacked exogenous genes from mold,
algae, fungus, and yeast (Table 1; Knutzon et al., 1998; Napier
et al., 2019; Kinney et al., 2022).

Overexpression of endogenous genes
remains at the testing stage

By the strategy of overexpression of endogenous genes,
numerous transgenic events have also been developed and

their target phenotypes reported to be enhanced. For example,
drought is one of the most significant constraints on crop
production (Cohen et al., 2021). A lot of literatures have
documented the improvement of drought tolerance of
transgenic crops overexpressing endogenous or homologous
genes encoding function proteins related to osmotic protectants,
membrane stabilization, detoxification and transport, such as
SOD (superoxide dismutase), VP1 (vacuolar proton-pumping
pyrophosphatase), BADH (betaine aldehyde dehydrogenase),
P5CS (11-pyrroline-5-carboxylate synthetase), LEA (late
embryogenesis-abundant proteins), and FER (ferritin), as well
as transcription factors and signaling molecules, such as DREB
(dehydration-responsive element binding), ABF [abscisic acid
(ABA)-responsive elements binding factor], AP2/ERF (ethylene
response factor), bZIP (basic leucine zipper), MYB, MYC,
NAC (no apical meristem), ZFP (zinc finger protein), HD-Zip
(homeodomain-leucine zipper), WRKY, NF (nuclear factor),
HRD, and HYR (higher yield rice) (Kasuga et al., 1999; Nelson
et al., 2007; Xiao et al., 2007; Century et al., 2008; Huang et al.,
2009; Wu et al., 2009; Tran et al., 2010; Varshney et al., 2011;
Xue et al., 2011; Datta et al., 2012; Schilling et al., 2017; Bi et al.,
2018; Gao et al., 2018; Yang et al., 2018; Sarkar et al., 2019; Wei
et al., 2019). However, the vast majority of these efforts have
still remained at the testing stage. Of the five singular transgenic
events approved for commercial release (Table 1; ISAAA, 2022),
one has been transformed by the cold shock protein gene CspB
from B. subtilis and three by the choline dehydrogenase genes
BetA from Escherichia coli and Rhizobium meliloti, respectively,
although the cold shock proteins are also found in many
eukaryotic species (Castiglioni et al., 2008; Tollefson, 2011).
Only one has been transformed by the exogenous transcription
factor gene Hahb-4 from sexually incompatible sunflower
(Helianthus annuus) (Ribichich et al., 2020).

RNA interference is effective for
suppressing expression of undesirable
genes

Plant diseases reduce crop yield and quality and bring huge
economic losses (Gimenez et al., 2018). Transgenic technology
has been employed to battle against a wide range of plant
pathogens (Wally and Punja, 2010; Kamthan et al., 2016).
Similar to drought tolerance, the vast majority of the transgenic
events overexpressing endogenous disease-resistant genes or
homologous disease-resistant genes from sexually incompatible
species remain at the testing stage (Anand et al., 2003; Zhao
et al., 2005; Yang et al., 2008; Zhou et al., 2009). Twenty-five of
the 29 approved events have been developed by the third strategy
and transformed with synthetic DNA sequences to transcribe
antisense or double-stranded RNAs for the interference of
disease viruses (Chen et al., 2003; Davis and Ying, 2004;
Tennant et al., 2005; Aragao et al., 2013; Carvalho et al., 2015;
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Borah et al., 2018; Wu et al., 2018; Callahan et al., 2019;
Chiozza et al., 2020), and only the other four potato events
are transformed with exogenous genes of pathogenesis-related
proteins from distant species of the nightshade family (Solanum
bulbocastanum and Solanum venturii) (Table 1; Halterman et al.,
2008; Foster et al., 2009). RNA interference (RNAi) triggered by
antisense or double-stranded RNAs described by transformed
synthetic DNA sequences is a versatile, effective, safe, and eco-
friendly technology for crop protection against viruses and other
pathogens as well as insect pests, and delaying maturation of
fruits with positive economic, environmental, and human health
implications (Klee, 1993; Taning et al., 2020; Giudice et al., 2021;
Hernández-Soto and Chacón-Cerdas, 2021).

Application of clustered regularly
interspaced short palindromic
repeats/Cas9 for crop improvement

Since its first discovery in E. coli (Ishino et al., 1987),
CRISPR/Cas has been developed as a simple, easy, and cost-
effective tool for precise and straightforward genome-wide gene
editing (Gaj et al., 2013; Tang et al., 2017; Molla and Yang,
2019; Molla et al., 2020, 2021; Sharma and Vakhlu, 2021). Unlike
ZFNs, TALENs, and MNs, CRISPR/Cas could be used to modify
any genomic sequences, thereby providing a simple, easy, and
cost-effective means of precise and straightforward genome-
wide gene editing (Gaj et al., 2013; Tang et al., 2017; Gao, 2021;
Leibowitz et al., 2021; Rasheed et al., 2021; Sharma and Vakhlu,
2021; Turnbull et al., 2021). However, In the beginning, most
of the studies focused more on the concept proofing of the
CRISPR/Cas system (Nekrasov et al., 2013; Shan et al., 2013; Xie
and Yang, 2013; Zhang et al., 2014; Lawrenson et al., 2015; Xie
et al., 2015; Hu et al., 2016; Malnoy et al., 2016; Zhu et al., 2016;
Li et al., 2017; Shimatani et al., 2017). Although many attempts
have been made to improve the yield, quality, and biotic and
abiotic tolerance of different crops (Xie and Yang, 2013; Liang
et al., 2014; Wang et al., 2014, 2021; Zhang et al., 2014, 2018,
2020; Fang and Tyler, 2016; Li et al., 2016, 2017, 2020; Zaidi et al.,
2016; Zhu et al., 2016; Shi et al., 2017; Shimatani et al., 2017; Yang
et al., 2017; Kim et al., 2018; Okuzaki et al., 2018; Shen et al.,
2018; Usman et al., 2020, 2021; Zeng et al., 2020; Monsur et al.,
2021), only very few events have been in the pipeline of safety
assessment up to now (Waltz, 2016a,b). In recent years, several
techniques, such as high attractive sgRNA, high fidelity Cas9,
and transformant screening, have been developed to reduce the
probable off-target effects caused by the imperfect matches with
gRNA and the unpredictable efficiency among different DNA
target sites and PAM (Naeem et al., 2020; Leibowitz et al., 2021).
CRISPR/Cas has been improved as the most promising tool for
crop improvement (Gao, 2021; Rasheed et al., 2021; Turnbull
et al., 2021) and applied to improve yield, quality, and biotic and
abiotic tolerance (Wang et al., 2014, 2021; Fang and Tyler, 2016;

Li et al., 2016, 2017, 2020; Malnoy et al., 2016; Zaidi et al., 2016;
Braatz et al., 2017; Shi et al., 2017; Yang et al., 2017; Okuzaki
et al., 2018; Shen et al., 2018; Zhang et al., 2018, 2020; Usman
et al., 2020, 2021; Zeng et al., 2020; Monsur et al., 2021). Up to
now, several events have been developed and skipped regulation
of government and entered the market because of their safety
assurance, and some more events have been in the pipeline
of safety assessment (Hartung and Schiemann, 2014; Waltz,
2016a,b; Wolt et al., 2016; Faure and Napier, 2018; Jaganathan
et al., 2018; Langner et al., 2018; Samaras et al., 2021).

Superiority of heterologous
expression of exogenous genes

Novel functions conferred by
exogenous genes are less regulated by
endogenous pathways

The functions conferred by the heterologously expressing
exogenous genes are usually novel in the recipient crops
themselves, such as herbicide and insect resistance in the
released events of transgenic cotton, maize, soybean, and alfalfa
(Cui et al., 2011; Awan et al., 2015; Chhapekar et al., 2015;
Guo et al., 2015; Liang et al., 2017; Yi et al., 2018), or perform
in different pathways, such as the synthesis of β-carotene and
unsaturated fatty acids in the released events of transgenic
rice and canola (Knutzon et al., 1998; Ye et al., 2000; Paine
et al., 2005; Wan et al., 2017). In the vast majority of the
above transgenic events, the exogenous genes are promoted
by the constitutive promoters (Paine et al., 2005; Cui et al.,
2011; Awan et al., 2015; Chhapekar et al., 2015; Guo et al.,
2015; Liang et al., 2017; Zhang J. et al., 2017; Yi et al., 2018).
Therefore, their expression is usually not regulated on the
transcriptional level, although some other factors such as genetic
background and growth stage of the recipient cultivars, and
environmental conditions may affect their expression by several
folds (Adamczyk and Meredith, 2004; Showalter et al., 2009;
Poongothai et al., 2010; Chen et al., 2019). In case of the
transgenic events are developed by the introduction of distant
prokaryotic genes, possible codon usage bias is usually overcome
by codon optimization of the transgene sequences (Siehl et al.,
2007; Liu, 2009; Yan et al., 2011; Chhapekar et al., 2015; Liang
et al., 2017; Yi et al., 2018). The investigations in transgenic
insecticidal cotton (r = 0.762, p < 0.001) and rice (r = 0.742,
p< 0.01) show that the accumulation of the Cry protein in leaves
is non-linearly correlated with the heterologous transcription
levels of the exogenous Cry genes, although varying with growth
and development (Adamczyk and Sumerford, 2001; Adamczyk
et al., 2001, 2009; Zhang et al., 2016). Adamczyk and Meredith
(2004) suggest that a small number of endogenous genetic
factors control the accumulation of the Cry protein in transgenic

Frontiers in Plant Science 07 frontiersin.org

https://doi.org/10.3389/fpls.2022.948518
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-948518 July 14, 2022 Time: 17:27 # 8

Yu et al. 10.3389/fpls.2022.948518

cotton. Therefore, these exogenous proteins usually diverge
from the endogenous metabolism pathways of the recipient
crops (Sanahuja et al., 2011; Palma et al., 2014; Melo et al.,
2016). The resistance conferred by these prokaryotic toxins
is not easy to be overcome by the evolution of the pest
insects. Instead, it can be augmented and complemented by
pyramiding broad resistance expressing different combinations
of insecticidal genes with different insecticidal mechanisms, or
silencing the housekeeping genes of pest insects by RNAi and
CRISPR/Cas technologies (Bates et al., 2005; Carriere et al.,
2015; Katta et al., 2020; Talakayala et al., 2020). In agricultural
practice, integrated pest management is still necessary to control
the non-targeted pests of Cry protein (Naranjo, 2011; Downes
et al., 2017).

Endogenous proteins are regulated in
complex networks

Almost all biochemical reactions are reversible, and most of
them are regulated in complex networks (Alberty, 2002; Fiehn
and Weckwerth, 2003). One of the fundamental predictions of
metabolic control theory is that, while any step in a pathway
can be made to control flux if the step is blocked, increasing
the activity of an enzyme may not necessarily result in increased
flux through the reaction it catalyzes (Kacser and Burns, 1995).
For example, plant lipids are a complex mixture of several
hundreds of triacylglycerol fatty acids (Dormann, 2021). The
relative content and saturation degree of these fatty acids
determine the functional, sensory and nutritional value of the
oil. Their synthesis metabolism is well regulated in a complex
network among alternative pathways across multiple subcellular
compartments (King et al., 2015; Chapman and Feussner, 2016;
Haslam et al., 2016; Wan et al., 2017). In soybean cotyledon,
the activity of stearoyl-acyl carrier protein (ACP) desaturase
is excess and thus overexpression of an endogenous stearoyl-
ACP desaturase gene does not result in any changes in the
accumulation and proportion of fatty acids (Kinney, 1996;
Voelker and Kinney, 2001). However, the synthesis pathway
can be rationally modified by the introduction of exogenous
genes from distant species to produce novel fatty acids of high
value that are absent or typically found at low levels in oil

crops (Voelker and Kinney, 2001; Thelen and Ohlrogge, 2002;
Haslam et al., 2016). All the four transgenic canola events
approved for commercial release (ISAAA, 2022) are introduced
with stacked exogenous genes from distant species of bacterium,
mold, yeast, algae, fungus, moss, and amastigote (Knutzon et al.,
1998; Napier et al., 2019).

Another example is the transgenic improvement of drought
tolerance. Drought tolerance of plants is mediated by signal
transduction ionic and osmotic homeostasis, detoxification,
and growth pathways. The ionic aspect is signaled via the
SOS pathway where a calcium-responsive SOS3-SOS2 protein
kinase complex controls the expression and activity of ion
transporters such as SOS1. Osmotic stress activates several
protein kinases including mitogen-activated kinases, which may
mediate osmotic homeostasis and/or detoxification responses.
A number of phospholipid systems are activated by osmotic
stress, generating a diverse array of messenger molecules,
some of which may function upstream of the osmotic stress-
activated protein kinases. The phytohormone ABA plays a
crucial role in plant growth and development, especially
in response to abiotic stresses. The endogenous ABA level
is controlled by complex regulatory mechanisms involving
biosynthesis, catabolism, transport, and signal transduction
pathways. This complex regulatory network responds to abiotic
stresses at multiple levels, including transcription, translation,
and post-translational regulation of tolerance-related genes
(Zhu, 2002, 2016; Cutler et al., 2010; Dong et al., 2015).
After perception by proteins of the PYR/PYL/RCAR family,
the ABA-bound PYR/PYL/RCARs interact with clade A protein
phosphatases type 2Cs (PP2Cs) and prevent them from
inhibiting the sucrose non-fermenting 1-related protein kinase
2s (SnRK2s) (Fujii et al., 2009; Ma et al., 2009; Park et al.,
2009). The activated SnRK2s induce ABA-responsive gene
expression by phosphorylating transcription factors such as
ABA-responsive element-binding factors (ABFs) and regulate
many other processes through phosphorylating other substrates
(Umezawa et al., 2013; Wang et al., 2013). Conversely, recent
researches show that the PYR/PYL/RCAR receptors themselves
are regulated by other pathways (Yu et al., 2020), and
even they repress the activity of ABA-independent SnRK2s
(Zhao et al., 2018). In the maize genome, there are 13,
16, and 11 members in the ZmPYL family, clade A of

TABLE 2 Advantages and limitations of three transgenic strategies.

The first strategy The second strategy The third strategy

RNAi CRISPR/Cas

Transformed sequence Genetically distant genes Endogenous genes Antisense or double-stranded DNAs CRISPR and Cas9

Phenotype Conferring novel phenotypes Enhancing desirable phenotypes Suppressing undesirable phenotypes Modifying phenotypes

Regulation Novel proteins functioning in
diverse pathways

Endogenous proteins regulated in
complex networks

Suppressing synthesis of target
proteins

Suppressing or modifying
synthesis of target proteins

Approved event 227 2 38 1

Frontiers in Plant Science 08 frontiersin.org

https://doi.org/10.3389/fpls.2022.948518
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-948518 July 14, 2022 Time: 17:27 # 9

Yu et al. 10.3389/fpls.2022.948518

the ZmPP2C family, and the ZmSnRK2 family, respectively.
Therefore, the possible alternative pathways have as many
as 2288 (13 × 16 × 11) from the ZmPYLs through the
ZmPP2Cs to the ZmSnRK2s (Wang et al., 2018). Most of
these pathways are functionally redundant and replaceable,
so overexpression of the endogenous genes in any of these
2288 pathways is difficult to cause a significant improvement
for tolerant phenotypes (Zhu, 2016). Their transformed lines
remain at the testing stage (Hu et al., 2010; Xiang et al.,
2017; Bhatnagar et al., 2020; Wang et al., 2020). Moreover,
transformation may generate completely new interactions
between the transgenes making them function differently from
what is expected. Possible negative interactions between the
desired phenotypes and other traits should be accounted
(Khan et al., 2019). For example, the barley and wheat
transformants of wheat transcription factor gene HD-ZipI
(homeodomain-leucine zipper) and the tobacco transformant
of maize DREB gene ZmDREB4.1 showed improved resistance
to drought but also exhibited an undesirable reduction
of biomass and yield (Kovalchuk et al., 2016; Li et al.,
2018; Yang et al., 2018). In many studies, the tolerance
of transgenic events was evaluated by pot experiments in
a greenhouse, which was different from the response of
plants to water deficit in a gradual manner under natural
conditions (Ortiz et al., 2007; Passioura, 2012; Pierre et al.,
2012). A review by Cattivelli et al. (2008) of improvements
in drought tolerance considers the new insights into the
complexity of plant mechanisms enabled by genomics, but
there is still a large gap between yields in optimal and
stress conditions.

Conclusion

(1) The vast majority of the singular transgenic events
approved for commercial release worldwide are
transformed by genetically distant exogenous genes.
The heterologous expression of these genes improves
the resistance of crops to herbicides and pesticides,
as well as the nutritional quality. Their application
significantly decreases the use of synthetic herbicides
and pesticides, reduces cost, increases the yield of crops,
and benefits farmers. The novel functions conferred by
these genes under the control of constitutive promoters
therefore, over, are usually absent in the recipient
crops themselves or perform in different pathways. On
the other hand, the functions of endogenous proteins
are redundant and replaceable in complex networks.
Therefore, overexpression of endogenous genes is difficult
to cause a significant improvement of phenotypes as the
heterologous expression of exogenous genes (Table 2).

(2) RNAi triggered by antisense or double-stranded RNAs
described by transformed synthetic DNA sequences is a

versatile, effective, safe, and eco-friendly technology for
crop protection against viruses and other pathogens as
well as insect pests, and delaying maturation of fruits
with positive economic, environmental, and human health
implications (Table 2).

(3) CRISPR/Cas has developed as the most promising tool for
crop improvement. Up to now, several events developed
have skipped regulation of government and entered the
market because of their safety assurance, and some more
events have been in the pipeline of safety assessment
(Table 2).
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