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The development of food and forage crops that flourish under saline

conditions may be a prospective avenue for mitigating the impacts of climate

change, both allowing biomass production under conditions of water-deficit

and potentially expanding land-use to hitherto non-arable zones. Here, we

examine responses of the native halophytic shrub Atriplex leucoclada to salt

and drought stress using a factorial design, with four levels of salinity and four

drought intensities under the arid conditions. A. leucoclada plants exhibited

morphological and physiological adaptation to salt and water stress which

had little effect on survival or growth. Under low salinity stress, water stress

decreased the root length of A. leucoclada; in contrast, under highly saline

conditions root length increased. Plant tissue total nitrogen, phosphorus and

potassium content decreased with increasing water stress under low salinity.

As salt stress increased, detrimental effects of water deficit diminished. We

found that both salt and water stress had increased Na+ and Cl− uptake,

with both stresses having an additive and beneficial role in increasing ABA

and proline content. We conclude that A. leucoclada accumulates high salt

concentrations in its cellular vacuoles as a salinity resistance mechanism;
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this salt accumulation then becomes conducive to mitigation of water stress.

Application of these mechanisms to other crops may improve tolerance and

producitivity under salt and water stress, potentially improving food security.

KEYWORDS

salt stress, water stress, A. leucoclada, alternate crops, saline agriculture

Introduction

Climate change has increased the global mean temperature
and water scarcity throughout the world (Zamin et al., 2019a).
Demand for water supply is continuously increasing and had
increased threefold since the 1950s as the freshwater supply
has been on the wane (Gleick, 2003; Wu and Tan, 2012).
According to an estimate, an average of 90% of global fresh water
is being used for agriculture (Shiklomanov, 2000). According
to the (FAO, 2005) report salinity had affected 800 Mha of
land globally. It is expected that salinity will annually destroy
about 10 Mha of agricultural land (Khan et al., 2006; Zamin
et al., 2019b). Thus, the landscaping sector will face serious
challenges, to meet irrigation requirements (Shahin and Salem,
2014a).

To solve the problems of water shortage and groundwater
salinity many irrigation systems and much equipment is being
introduced (Shahin and Salem, 2014b; Zamin and Khattak,
2018). Two types of approaches had been taken on so far
to overcome these problems. The first is modifying the
environment by managing the irrigation and drainage and the
second approach is genetically modifying the plants to enhance
their stress tolerance (Läuchli and Lüttge, 2002; Mahmood
et al., 2003). However, stress tolerance responses of plants are
complex and the functions of many genes controlling these
mechanisms are unknown (Chaves et al., 2003). Halophytes
had been recommended as a solution for production with
salt/brackish water (Khan and Weber, 2006). Native halophyte
plants can grow in harsh environmental conditions and can
be introduced into urban landscaping under drought and
saline conditions (Franco et al., 2006; Zamin and Khattak,
2017).

Increasing water shortage and irrigation water
salinity are the main abiotic stresses for the plants.
These stresses disturb plant physiology and growth by
disrupting their gene expression (Wu and Tan, 2012;
Zamin et al., 2018). Plants have evolved numerous
mechanisms to adapt to salt stress conditions (Munns
and Tester, 2008). Water stress-avoiding refers to a range
of morphological and physiological adaptations of plants
to sustain suitable water status. Another approach to
withstand water stress is water stress tolerance which

includes physiological and biochemical mechanisms
(Clarke and Durley, 1981).

Atriplex leucoclada (English name: Orache; Arabic name:
Ragal, ), a halophytic plant, is a low perennial shrub that has
developed various strategies to adapt to saline environments
with excessively high salt content in the soil. Originating in
the Mediterranean basin, A. leucoclada grows in many different
habitats, but it usually occurs on sabkha, coastal and inland salt
marshes with a high accumulation of salts, and occasionally on
silty soils. A. leucoclada is an important species for agricultural
use in arid regions. Atriplex species can be planted for soil
desalination and CO2 sequestration. It is a useful plant for desert
and extensive landscape schemes as a groundcover, occasionally
requiring watering and maintenance to improve its appearance
(Arriyadh, 2014).

Studying A. leucoclada under stress conditions will
help us to better understand the salt and water stress
resistance mechanisms. Moreover, introducing the
identified species in landscaping will not only save a
huge amount of water but also preserve the biodiversity,
wildlife habitats, horticulture heritage, and national unique
landscape of the country.

Materials and methods

Research site

The field experiment was conducted at AL-Foa
Research Farm, United Arab Emirates University, Al
Ain, Abu Dhabi, United Arab Emirates (24◦12′ N
and 55◦ 44′ E) during December 2015–July 2016. The
experimental site is situated in the arid region, having
a long, hot summer season of 4 months, i.e., from May
to September with maximum temperatures above 45◦C.
The winter prevails from mid-November to the end of
February followed by a short spring season from March
to April. The mean annual temperature varies between
12 and 45◦C during the winter and summer seasons,
respectively (SCAD, 2015). Soil type was classified as Typic
Torriorthent sandy-skeletal hyperthermic soil and is silty
loam having pH (H2O) of 8.6, ECe of 8.2 dS m−1 with
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SAR of 22.4 and 0.6% organic matter (Abdelfattah et al.,
2009).

Experimental design

Atriplex leucoclada seeds were sown in germinating trays
with growing media of potting soil and sweet sand (Red desert
sand with low salinity used for agriculture) 1:1 by volume.
The soil used in potting mix was sandy in nature having 24.53
percent carbonate content with pH of 7.58 and Ec 9.49. The
Ca content of soil sample was 25 mg/kg whereas Mg was
34.2 mg/kg and low K content, i.e., 7.53 mg/kg (Table 1).
After 3 weeks of germination, seedlings were transplanted
to 20 cm pots filled with red desert sand. Seedlings were
thinned to one seedling per pot. The fertilization and weeding
practices were equally applied to all treatments during the
entire growing period of the plants. After 2 months of growth,
four saltwater treatments, i.e., 5 dS m−1 (Control; S1), 10 dS
m−1 (low salinity level; S2), 15 dS m−1 (moderate salinity
level; S3), and 20 dS m−1 (high salinity level; S4) were
prepared by dissolving NaCl to fresh water, supplied by Al-
Ain municipality (Al-Dakheel et al., 2015; Zamin et al., 2019a).
Salinity treatments were prepared in four different water tanks.
These water tanks were connected to a drip irrigation line
to supply water to each pot individually with four irrigation
intestines. To estimate field capacity the fully water-saturated
soil was weighed and then dried to constant weight at 105◦C.
The weight difference between water-saturated and oven-dried
soil was taken as the weight of water needed to bring soil
to field capacity, and lower FC was calculated accordingly.
Four irrigation intensities were: 100% field capacity (Control;
WL1), 80% field capacity (low stress; WL2), 60% field capacity
(moderate stress; WL3), and 40% field capacity (severe stress;
WL4). Irrigation water was quantified for each water stress
treatment and was applied to the plants through a drip
irrigation system. The experiment was conducted in an open
field and plants were grown under natural environmental
conditions. The experiment was conducted in a randomized
complete block design with a split-plot arrangement replicated
three times. The salinity levels were allotted to the main
plot while the irrigation intensities were allotted to sub-
plots.

Harvesting and sampling

Three plants from each treatment were harvested
at the end of each month. Data was recorded for
morphological parameters each month. For the quantitative
chemical analysis, representative specimens of each plant
were instantly ground in liquid nitrogen and stored at
−80◦C.

Morphological traits

After harvest, the plant samples were carefully cleaned from
sands, washed with distilled water, and dried with the help of
tissue paper. After harvesting each plant was divided into shoots
and roots and oven-dried (60◦C) and weighted (± 0.0001 g). For
morphological traits, all the samples were put in Ziploc bags,
placed in an ice bag at 4◦C, and transferred to the laboratory.
Shoot length was measured from the base of the stem to the apex
end while root length was measured from the root base up to the
end of the primary root.

Physiological traits

Photosynthetic rate (P) of upper, lower, and basal leaves
was measured weekly using a Plant Photosynthesis Meter
(EARS, Netherlands) (Samarah, 2005). Leaf water potential was
recorded during midday using a WP4C Dewpoint psychrometer
(Decagon Devices, Inc., United States) (Xiong et al., 2014).
Leaf water potential was recorded after 1 and 5 months
of treatment application. Phosphorus concentrations were
estimated in plant leaves at the end of the experiment by
the methodology laid out by Olsen (1954). K and Na+

content of plant extracts were determined by Flame Emission
Spectroscopy at the end of the experiment. For Cl− content
50 mg of leaf and root samples were ground and heated in
distilled water for 3 h (80◦C). The Cl− content of the extract
was then determined with the chloride analyzer at the end
of the experiment.

TABLE 1 Physicochemical properties.

Soil properties

Texture

Sand (%) 87.5

Silt (%) 5

Clay (%) 7.5

Total carbonate (%) 24.53

EC (dSm−1) 9.49

pH 7.58

Cations (mq L−1)

Ca+ 25

Mg 34.2

Na+ 53.8

K 7.52

Anions (mq L−1)

Cl 46.8

HCO3 20.4

SO4 0.64

Mg:Ca Ratio 1.37
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Biochemical traits

ABA and Proline extraction was performed on 10 mg of
freeze-dried leaf tissue as described by Forcat et al. (2008). The
samples were analyzed for ABA and Proline using LCMS/MS
and were filtered through a 0.45 µm cellulose acetate syringe.
The phytohormones separation was done using a C18 column
(ZORBAX Eclipse Plus). An injection of 2 µl was loaded onto
the C18 column (1.8 µm particle size, 2.1 mm inner diameter
and 50 mm long) at a flow rate of 0.2 mL/min and the column
temperature was kept at 35◦C. The liquid chromatography was
connected to an Agilent Technologies Mass Spectrometry (6420
Triple Quad detector). For elution solvent A consist of formic
acid (0.1%) with distilled water and solvent B consisted of an
LCMS grade acetonitrile was used. The analytical procedure was
as follows: Solvent A was used (5 min), then the gradient from
0 to 100% solvent B was used, (5–20 min) after the solvent B
was kept constant (5 min) and at 25.1 min solvent A was 100%
was used for (30-min). During the analysis with LC-MSMS only
negative polarity mode was used for ABA and Proline analysis.
For fragmentation nitrogen gas was used. The capillary voltage
was 4,000 V, the gas flow was 8 L/min, the gas temperature was
300◦C and the nebulizer pressure was 45 psi.

Statistical analysis

Two-way (ANOVA) was used to check the effect of
salinity and drought, and their interaction on morphological,
biochemical, and physiological traits. The normality was
checked with the Shapiro–Wilk test. The post-hoc Tukey’s HSD
was used to check the comparison between treatments. All the
analysis was performed using the SPSS software.

Results and discussion

Percent survival (%), root and shoot
length (cm), and weight (g)

Results concerning the morphological response of
A. leucoclada to varying salt and drought stresses are given in
Table 2. Analysis of variance revealed that all the morphological
parameters (percent survival, root and shoot length, and weight)
did not show any significant (P > 0.05) effect from salt stress. It
is clear from the results of survival percentage that A. leucoclada
can survive on all studied salt and water stress levels. Analysis of
variance revealed that different water stress levels significantly
(P ≤ 0.05) affected Shoot dry weight (SDW) , RDW, and SL of
A. leucoclada. Increasing the water stress level decreased the
SDW. The highest SDW was recorded for WL1 (18.15 g) while
the other three water stress levels have lower SDW. Maximum
RDW was measured for WL1 (3.72 g) while the other three
water levels of WL2, WL3, and WL4 were significantly lower
and like each other. Maximum SL was recorded for 44.37 cm
for WL1 while other three water levels of WL2, WL3, and WL4
were significantly lower and similar to each other. Different
salt and water stress levels and interaction of salt and water
stress levels had a non-significant effect (P > 0.05) on the RL of
A. leucoclada.

Photosynthetic rate (Pr) (µmol/m2/s),
leaf water potential (MPa), Na+1 uptake
(µ mole g−1), Cl−1 uptake (µ mole g−1)

Different salt and water stress levels had a significant
(P ≤ 0.05) effect on the Pr of A. leucoclada (Table 3). Pr

TABLE 2 Morphological response of Atriplex leucoclada to varying drought and salinity stresses.

Drought stress (%
field capacity)

Survival
percentage

Root length
(cm)

Shoot length
(cm)

Root dry
weight (g)

Shoot dry
weight (g)

100 (WL1) 87.82 40.12 44.37 3.72 18.15

80 (WL2) 77.46 33.56 23.83 1.84 7.43

60 (WL3) 80.96 34.26 20.56 1.62 4.68

40 (WL4) 81.02 31.68 21.22 1.70 6.34

LSD (0.05) NS NS 14.449 1.2453 6.2891

Salinity stress (dS m−1)

5 (S1) 88.48 37.89 27.05 1.92 7.70

10 (S1) 77.65 36.77 34.64 2.08 9.56

15 (S1) 77.81 33.26 30.07 2.37 10.61

20 (S1) 82.64 31.70 18.22 2.50 8.74

LSD NS NS NS NS NS

Interaction (WS× SS) NS NS NS NS NS

Means with different letters in each category are significantly different at α = 0.05. NS, WS, SS, and LSD stand for non-significant, drought stress, salinity stress, and least significant
difference, respectively.
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TABLE 3 Physiological response of Atriplex leucoclada to varying drought and salinity stresses.

Drought stress (%
field capacity)

Photosynthetic rate
(µmol m−2 S−1)

Leaf water
potential (MPa)

Na+1 uptake (µ
mole g−1)

Cl −1 uptake (µ
mole g−1)

100 (WL1) 15.4a −47 482 278

80 (WL2) 18.3a −54 475 229

60 (WL3) 29.0b −55 489 179

40 (WL4) 24.9b −52 500 255

LSD (0.05) 10.216 2.6121 13.719 45.431

Salinity stress (dS m−1)

5 (S1) 23.9c −55 440 104

10 (S1) 25.9bc −48 493 199

15 (S1) 19.0a −56 496 287

20 (S1) 18.8ab −50 518 352

LSD 4.5867 3.6015 17.832 49.458

Interaction (WS× SS) NS Figure 1 Figure 2 Figure 3

Means with different letters in each category are significantly different at α = 0.05. NS, WS, SS, and LSD stand for non-significant, drought stress, salinity stress, and least significant
difference, respectively.

increased with increasing water stress while decreasing with
increasing salt stress.

Salt × water stress had a significant effect (P ≤ 0.05) on the
leaf water potential of A. leucoclada. After months of treatment
application, S2WL1 had a maximum LWP of −46 MPa, and a
minimum LWP (−64 MPa) was recorded for S1WL2 Table 3
and Figure 1.

Na+ and Cl− content had an interactive effect (P ≤ 0.05)
on salt and water stress. Na+ and Cl− content increased not
only with increasing salt stress but also with increasing water
stress. Na+ was lower in S1WL2 and S1WL1 and increased
with increasing salinity and water stress. Maximum Na+ content
was reported for S3WL4 and S4WL4 (Figure 2). Similarly, the
lowest Cl− content was recorded for S1WL1 and S1WL2. The
highest Cl− content was recorded for S4WL1 (Table 3 and
Figure 3).

Abscisic acid (µg. g−1 FW) and proline
content (µg. g−1 FW)

Means of ABA quantified are represented in Table 4
and Figure 4. Salt and water stress levels had statistically
significant (P ≤ 0.05) interaction for ABA production. ABA
production showed an increasing trend with increasing both
salt and water stress levels. Maximum ABA content was
92 µg. g−1 FW quantified at S4WL4. ANOVA revealed that
different salt and water stress levels and their interaction had
a significant effect on the proline content of A. leucoclada.
Proline content increased with increasing the combined effect
of salt and water stress and maximum proline content
was 16,654 µg−1 FW recorded for S4WL4 (Table 4 and
Figure 5).

Discussion

Percent survival (%), root and shoot
length (cm), and weight (g)

Salt and water stress were mostly studied separately for
their effects on crop growth (Hamed et al., 2013). Hence only
a few studies had examined their interactions (Hamed et al.,
2013). A. leucoclada has been found to be resistant to salt
and water stress and survived under all salt and water stresses
applied. Salt stress had no significant effect on the growth of
A. leucoclada. On the other hand, increasing water stress had
shown a major decrease in growth parameters except for root
length (Table 2). Similar results for reduced growth under salt
stress as compared to water stress are also resorted by Hassine
and Lutts (2010) for Atriplex halimus, Melo et al. (2016) for
Atriplex nummularia and Almas et al. (2013) in Artemisia
vulgaris and Álvarez et al. (2018) for Pistacia lentiscus. The
same is reported for A. canescens (Glenn and Brown, 1998),
A. lentiformis (Meinzer and Zhu, 1999), A. halimus (Alla et al.,
2011), and Anethum graveolens (Tsamaidi et al., 2017). Result
similar to our experiment for decreased RDW under water stress
as compared to salt stress are reported by Wang et al. (2011) for
tamarisk (Tamarix chinensis Lour), Yagmur and Kaydan (2008)
for triticale (Triticosecale Witm., cv. Presto), Khan et al. (2017)
for soybean and, Miranda-Apodaca et al. (2018) for Quinoa
(Chenopodium quinoa).

Although soil water potential is decreased by saline water
irrigation water flow to the roots remains the same. On the
other hand, water stress decreases the soil matric potential and
decreases water flow to the roots (Homaee et al., 2002). This
can be the reason that the matric potential during water stress
affected the shoot growth of studied species more than that did
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FIGURE 1

Interactive effect of salinity and drought stress on ABA content (µg. g−1 FW) content of Atriplex leucoclada. Error bars represent the standard
error of the mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity, WL3 = 60% field capacity and
WL4 = 40% field capacity) while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1). Letters a–g indicate
whether the bar graphs showing parameters are significant or nonsignificant. Bars having the same letters are nonsignificant.

FIGURE 2

Interactive effect of salinity and drought stress on Na+ content of Atriplex leucoclada. The error bars represent the standard error of the mean
(n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity, WL3 = 60% field capacity and WL4 = 40% field capacity)
while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1). Letters a–g indicate whether the bar graphs
showing parameters are significant or nonsignificant. Bars having the same letters are nonsignificant.

the osmotic potential (Shainberg and Shalhevet, 2012). These
results corroborate with the results of Maggio et al. (2005) who
reported 22% less aboveground dry weight in salt stress and 46%
less dry weight in water stress than control.

Photosynthetic rate (µmol/m2/s), leaf
water potential (MPa)

Both salt and water stress had an interactive effect
(P ≤ 0.05) on Pr of A. leucoclada. Pr was maximum during
the cooler month of March and start decreasing with increasing

temperature in the months after that. Pr was significantly
affected by salt x water stress. Salt stress decreased the Pr while
water stress increased the Pr significantly. The current results
are in line with Wang et al. (2011) for Tamarix chinensis. Water
deficit led to earlier peaks of net photosynthetic rate (PN) during
the day. In the case of quinoa, the highest salt concentration
of (500 mM) decreased net Pr by 65% compared to controls.
However, water stress resulted in 77% lower values for net Pr
(Miranda-Apodaca et al., 2018).

Under water stress, leaf water potential and thus
photosynthetic activity is decreased (Razzaghi et al., 2011).
This reduction in photosynthesis can be caused by stomatal
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FIGURE 3

Interactive effect of salinity and drought stress on water potential (MPa) of Atriplex leucoclada. The error bars represent the standard error of the
mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity, WL3 = 60% field capacity and WL4 = 40% field
capacity) while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1).

closure (Goldstein et al., 1996), disturbance of photosynthetic
activity (Drew et al., 1990), or at both low and high salt
concentrations (Yeo et al., 1991). Decreasing soil moisture
content and water potential reduces the water potential of the
plant tissue. In response to low water potential additional solutes
are accumulated which is referred to as osmotic adjustment
(OA) (Zhang et al., 1999; Verslues et al., 2006). In halophyte
species, Na+ is involved in OA. It is supposed that Na+ largely
exists in the vacuoles (Martínez et al., 2005).

Salt and water stress had an additive effect on LWP and
leaf osmotic potential reduction of Zygophyllum xanthoxylum
(Ma et al., 2012). Miranda-Apodaca et al. (2018) compared the
effect of osmotic and ionic stress on quinoa. It was reported
that plants subjected to saline treatment observed a greater
capacity for osmotic adjustment. In contrast, plants subjected

TABLE 4 Biochemical response of Atriplex leucoclada to varying
drought and salinity stresses.

Drought stress (% field
capacity)

ABA (µg g−1

FW)
Proline (µg g−1

FW)

100 (WL1) 23.02 3472.09

80 (WL2) 31.40 4701.77

60 (WL3) 42.38 6355.27

40 (WL4) 56.79 8461.69

LSD (0.05) 5.3 974.17

Salinity stress (dS m−1)

5 (S1) 18.46 2668.84

10 (S1) 22.73 5077.64

15 (S1) 51.33 5416.19

20 (S1) 61.07 9828.14

LSD 7.05 1430.2

Interaction (WS× SS) Figure 4 Figure 5

Means with different letters in each category are significantly different at α = 0.05. NS,
WS, SS, and LSD stand for non-significant, drought stress, salinity stress, and least
significant difference, respectively.

to water stress treatment showed more dehydration. The water
potential diminished significantly due to salt and water stress
(González et al., 2012). Álvarez et al. (2018) reported decreased
water potential for all salt and water stress treatments in
Pistacia lentiscus.

It was concluded that osmotic adjustment through the
uptake of readily available inorganic ions (Na+ and Cl−)
under salt stress is more efficient than adjustment through the
production of organic solutes under water stress (Liu et al., 2008;
Slama et al., 2008; Sucre and Suarez, 2011; Álvarez et al., 2012).

Herralde et al. (1998) submitted plants of Argyranthemum
coronopifolium to salt and water stress independently. Water
stress promoted significant differences in leaf water potential
(−1.76 MPa for 9w) in stressed plants vs. control.

Hassine et al. (2008) exposed Atriplex halimus plants to
40/160 mM NaCl or 15% polyethylene glycol. Shoot water
potential in plants exposed to PEG remained lower than the
plants under the highest salt stress. Duarte and Souza (2016)
investigated water potentials in Capsicum annuum by irrigating
with different levels of saline water. Salt stress resulted in a
decrease in LWP. The decrease in the osmotic potential in plant
leaves was a mean of saline stress adoption.

Our results are in agreement with the findings of Omami
and Hammes (2006) in amaranth under salt and water stress,
Mannan et al. (2013) for soybean, and Khan et al. (2015) for
mung bean under salinity stress. It can be concluded that salt
stress can help to reduce the negative effects of water stress by
osmotic adjustment through Na+ and proline accumulation.

Na+1 uptake (µ mole g−1), Cl−1 uptake
(µ mole g−1)

Under saline conditions, Na+ in the growth medium might
compete with K absorption by the roots (Blumwald, 2000). It
is assumed that K uptake and its deposition in tissues by the
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FIGURE 4

Interactive effect of salinity and drought stress on Cl− content of Atriplex leucoclada. Error bars represent the standard error of the mean
(n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity, WL3 = 60% field capacity and WL4 = 40% field capacity)
while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1). Letters a-i indicate whether the bar graphs
showing parameters are significant or nonsignificant. Bars having the same letters are nonsignificant.

FIGURE 5

Interactive effect of salinity and drought stress on Proline content (µgg−1FW) content of Atriplex leucoclada. Error bars represent standard error
of the mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity, WL3 = 60% field capacity and WL4 = 40%
field capacity) while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1. Letters a–i indicate whether the
bar graphs showing parameters are significant or nonsignificant. Bars having the same letters are nonsignificant.

plant is reduced under salt stress (Lazof and Bernstein, 1999).
This reduced potassium concentration in plant tissues grown
under salt stress conditions is reported by many authors (Hu and
Schmidhalter, 1997; Khan et al., 2000; García et al., 2004; Carter
et al., 2005). This decrease is attributed to the antagonistic effects
of Na+ and K ions (Suhayda et al., 1990).

The present study revealed a significant interactive effect of
salt and water stress on Na+ and Cl− uptake. Increasing salt
stress increased Na+ and Cl− uptake. Water stress also increased
the Cl− uptake even at low salinity stress. Cl− uptake increased

with increasing water stress at the lowest salinity level S1 only.
Under the highest salinity level of S4 Cl− uptake decreased with
increasing water stress levels.

An important “salt includer,” Jojoba also accumulated
significant amounts of sodium under slat stress (Mills and
Benzioni, 1992). Na+ content in shoots increased sharply
across the salt levels in Atriplex canescens (Glenn and
Brown, 1998) Salicornia rubra (Khan et al., 2001) Bruguiera
cylindrica (Atreya et al., 2009) sea aster (Aster tripolium L)
(Ueda et al., 2003), jojoba explants (Roussos et al., 2007),
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Atriplex halimus (Martínez et al., 2005), and S. portulacastrum
(Slama et al., 2008).

Halophytic species Salicornia rubra was studied by Khan
et al. (2001). Chloride concentration in shoots increased with
increasing irrigation water salinity. Another halophyte Aster
tripolium L was evaluated by Ueda et al. (2003) under water
stress and NaCl (300 mM) stress. Cl− content increased
three times and Na+ content increased up to five times
in the NaCl-stressed leaves that of the control. Similarly,
Sesuvium portulacastrum and Arthrocnemum macrostachyum
also reported Na+ and Cl− compartmentalization (Messedi
et al., 2004; Khan et al., 2005).

Under salt stress osmotic adjustment is achieved through
increased Na+ and Cl− uptake. The production of organic
osmotica is more energy-consuming (Greenway and Munns,
1980). Thus inorganic ion accumulation is an alternative
mechanism to adjust osmotic potential and seems to save
energy, which enables a plant to grow in less favorable
conditions (Khalid and Cai, 2011). The shoot acts as a sink for
Na+ ions when plants were grown under salt stress (Jefferies
et al., 1979). Cells are able to avoid high levels of salts in the
cytoplasm and achieve osmoregulation by increasing salt levels
in the vacuoles by intracellular compartmentalization (Khan
et al., 2000, 2005).

Abscisic acid (µg. g−1 FW) and proline
content (µg. g−1 FW)

Kefu et al. (1991) stated saltbush (Atriplex spongiosa)
plants did not increase ABA content on 75 mol m−3

NaCI salinity but increased at 150 mol m−3. Hassine and
Lutts (2010) exposed Atriplex halimus plants to iso-osmotic
stress of NaCl (160 mM) or PEG (15%). Hassine and Lutts
(2010) reported that ABA accumulated in response to salt
(160 mM NaCl). Alla et al. (2011) while studying A. halimus
responses for salt (NaCl) or water stress (PEG) found that
salt stress produced more metabolic disturbance than water
stress. Razzaghi et al. (2011) observed an increase in ABA with
increasing water stress.

These ABA-induced stress responses are important for plant
survival during both salt and water stress but affect different
physiological processes (Hassine et al., 2009). ABA stimulates
Na+ and Cl− excretion by external salt bladders under salt
stress and reduces water loss during water stress (Hassine and
Lutts, 2010; Walker and Lutts, 2014). ABA acts as a major signal
to regulate transpiration through stomatal pores (Schroeder
et al., 2001; Bartels and Sunkar, 2005). ABA-regulated stomatal
opening, root growth, and conductance (Schroeder et al., 2001;
Sharp and LeNoble, 2002) are important in the avoidance of low
water potential. ABA-induced increase of compatible solutes is
important for drought avoidance (Ober and Sharp, 1994). The
relative root and shoot growth is a response to water stress

(Hsiao and Xu, 2000) and is the result of regulation of growth
by ABA (Sharp and LeNoble, 2002).

This proline accumulation is involved in osmotic
adjustment and protects cellular structures against salt stress
and ROS (Hoque et al., 2007). Proline is one of the prominent
organic solutes that are stored in the cytoplasm and organelles
to balance the osmotic pressure of the ions in the vacuole under
stress conditions (Hasegawa et al., 2000). Proline accumulation
relates more to osmotic stress than any specific salt effect
(Munns, 2002). Proline accumulation is a preventive metabolic
adaptation that act as osmoprotectants and antioxidants and/or
free radical scavengers (Larher et al., 2009).

Khalid and Cai (2011) reported M. officinalis response
to proline accumulation by applying various levels of salt
and water stress. The highest proline content resulted from
combined application of salt and water stress. The same results
were reported by Watanabe et al. (2000) and Wu et al.
(2015). Teymouri et al. (2009) reported similar results studying
three halophytic salsola species (S. rigida, S. dendroides, and
S. richteri). The maximum increase in proline concentration
under salt stress was recorded for S. richteri. Atriplex spongiosa
had a similar trend of decreasing proline content in the range of
50–300 mol/m3 but increased rapidly at higher salinities (Storey
and Jones, 1979). The same is the case for Suaeda monoica, low
proline contents were recorded at 500 mol/m3 NaCl and below.
However, a significant increase was detected at high salinities
(Storey and Jones, 1979). Martínez et al. (2005) reported the
same results as that of our experiment. He reported that 0
or 15% PEG had no impact on the proline concentration at
low NaCl (50 mM) concentration. Atriplex halimus showed
similar responses after treating seedlings with either NaCl (50,
300, and 550 mM NaCl) or drought (control and withholding
water) (Alla et al., 2012). Similar responses of proline to salinity
(Bajji et al., 1998) and to osmotic stress (Martinez et al.,
2003) had been reported. This can be concluded that proline
is efficiently only involved in stress tolerance within the first
few hours of stress rather than in long-term stress tolerance
(Hassine et al., 2008).

Conclusion

Atriplex leucoclada, showed morphological and
physiological adaptations to both salt and water stress
and had no negative effect of these stresses on survival
percentage. A. leucoclada could be classified as obligatory
halophyte. A. leucoclada resisted maximum salt stress with
no significant effect on growth parameters. However, drought
stress significantly decreased the growth of A. leucoclada. Na+

and Cl− content increased not only with increasing salt stress
but also with increasing water stress. Cl− uptake in A. leucoclada
increased with increasing water stress at lowest salinity level
S1 only. Both salt and water stress had an additive role in
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increasing ABA and proline content. Higher salt stress levels
increased proline content with increasing water stress levels.

In conclusion, A. leucoclada used salt-resistant mechanism
to accumulate higher concentrations of salts in the cells.
They use physiological adaptation using enzymatic and non-
enzymatic mechanisms to cope with the negative impacts of
higher salt stress and ROS (Reactive Oxygen Species) produced.
A. leucoclada could be recommended for production as an
alternate for landscape plants and as a fodder crop in areas
with salt or brackish water. This will not only save limited
available fresh water resources, but also bring more land
under cultivation.
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