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Across-season biomass assessment is crucial in the cultivar selection process 

to accurately evaluate the yield performance of lines under different growing 

conditions. However, it has been difficult to have an accurate, reliable, and repeated 

fresh biomass (FM) estimation of large populations of plants in the field without 

destructive harvesting, which incurs significant labor and operation costs. Sensor-

based phenotyping platforms have advanced in the data collection of structural 

and vegetative information of plants, but the developed prediction models are 

still limited by low correlations at different growth stages and seasons. In this 

study, our objective was to develop and validate the global prediction models for 

across-season harvested fresh biomass (FM) yield based on the ground- and air-

based sensor data including ground-based LiDAR, ground-based ultrasonic, and 

air-based multispectral camera to extract LiDAR plant volume (LV), LiDAR point 

density (LV_Den), height, and Normalized Difference Vegetative Index (NDVI). The 

study was conducted in a row-plot field trial with 480 rows (3 rows in a plot per 

cultivar) throughout the whole 2020 growing season up to the reproductive stage. 

We evaluated the performance of each plant parameter, their relationship, and the 

best subset prediction models using statistical stepwise selection at the row and plot 

levels through the seasonal and combined seasonal datasets. The best performing 

model: FM LV LV Den NDVI~ _∗ ∗  had a determination of coefficient R2 of at 

least 0.9 in vegetative stages and 0.8 in the reproductive stage. Similar results can 

be achieved in a simpler model with just two LiDAR variables—FM LV LV Den~ _∗ . 

In addition, LV and LV_Den showed a robust correlation with FM on their own over 

seasons and growth stages, while NDVI only performed well in some seasons. 

The simpler model based on only LiDAR data can be widely applied over season 

without the need of additional sensor data and may thus make the in-field across-

season biomass assessment more feasible and practical for fast and cost-effective 

development of higher biomass yield cultivars.

KEYWORDS

perennial ryegrass, cross-season yield, high-throughput phenotyping, sensor, 
prediction model, unmanned vehicle, uncrewed

TYPE Original Research
PUBLISHED 08 August 2022
DOI 10.3389/fpls.2022.950720

OPEN ACCESS

EDITED BY

Ali M. Missaoui,  
University of Georgia,  
United States

REVIEWED BY

Nancy Jo Ehlke,  
University of Minnesota Twin Cities, 
United States
Andrius Aleliūnas,  
Lithuanian Research Centre for Agriculture 
and Forestry, Lithuania

*CORRESPONDENCE

Phat T. Nguyen  
phat.nguyen@agriculture.vic.gov.au

SPECIALTY SECTION

This article was submitted to  
Plant Breeding,  
a section of the journal  
Frontiers in Plant Science

RECEIVED 23 May 2022
ACCEPTED 06 July 2022
PUBLISHED 08 August 2022

CITATION

Nguyen PT, Shi F, Wang J, Badenhorst PE, 
Spangenberg GC, Smith KF and 
Daetwyler HD (2022) Within and combined 
season prediction models for perennial 
ryegrass biomass yield using ground- and 
air-based sensor data.
Front. Plant Sci. 13:950720.
doi: 10.3389/fpls.2022.950720

COPYRIGHT

© 2022 Nguyen, Shi, Wang, Badenhorst, 
Spangenberg, Smith and Daetwyler. This is 
an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.950720﻿&domain=pdf&date_stamp=2022-08-08
https://www.frontiersin.org/articles/10.3389/fpls.2022.950720/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.950720/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.950720/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.950720/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.950720/full
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.950720
mailto:phat.nguyen@agriculture.vic.gov.au
https://doi.org/10.3389/fpls.2022.950720
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nguyen et al. 10.3389/fpls.2022.950720

Frontiers in Plant Science 02 frontiersin.org

Introduction

Climate change poses a sustained challenge to have better 
forage cultivars with a higher yield and resilience to secure feed 
availability and grazing profit, in which perennial ryegrass is the 
most important forage species in temperate regions (Wilkins, 
1991; Cunningham et al., 1994). The current selection of cultivars 
relies on the evaluation of biomass production in the field. Across-
season yield assessment is essential to evaluate the robust yield 
performance under different growing conditions, which results in 
a long breeding cycle of up to 15 years (Hayes et  al., 2013; 
McDonagh et al., 2016). New modern breeding methods such as 
genomic selection (GS) can shorten the breeding cycle (Lin et al., 
2016), but it requires a large training population planted in 
different trial configurations (e.g., spaced plants, row-based plots, 
or sward-based plots) at early cultivar development stages to verify 
the genetic variation between/within experimental cultivars (Lin 
et  al., 2014; Annicchiarico et  al., 2015). Accurate biomass 
estimation is thus important to measure a diverse biomass 
performance and understand how genotypes respond to the 
growing condition. However, while destructive methods are the 
most accurate to estimate the actual biomass (Catchpole and 
Wheeler, 1992), they are laborious, time-consuming, and costly, 
limiting the size of field trials. Consequently, the inability of 
assessing accurate biomass estimation from large populations in 
the field has limited the rapid development of new cultivars using 
genomic selection breeding methods (Pembleton et  al., 2018; 
Ghamkhar et al., 2019).

Remote sensing approaches are non-destructive, high-
throughput, and efficient methods able to accurately screen large 
numbers of plants at different levels of spatial resolution (Roy and 
Ravan, 1996; Kumar et al., 2015; Lu et al., 2016). To support large-
scale measurement, various high-throughput phenotyping 
platforms have integrated remote sensing to increase data 
acquisition capabilities from the ground, air, and satellites, 
reducing operation cost and time capture as well as providing 
repeated non-destructive measurement in the field. Despite the 
effective and unlimited access to large areas across the globe, 
satellite-based platforms are limited on spatial and temporal 
resolution. Ground- and air-based platforms have advantages for 
proximal assessment, which is necessary for the experimental 
breeding trials often containing rows and small plots. Therefore, 
uncrewed ground (UGV) and aerial vehicles (UAV) have been 
developed and validated for a range of important agronomic traits 
in agriculture in crops and forage species (Dungey et al., 2018; 
Gebremedhin et al., 2019b; Zhao et al., 2019). However, currently 
crewed ground-based platforms (tractors and side-by-side 
vehicles) remain the primary platform for pasture measurements. 
The type of phenotyping platform used depends on the trial 
configuration and size as well as the field of application.

A variety of remote sensors (proximal, optical, multispectral, 
and hyperspectral sensors) have been deployed to measure plant 
canopy structure (i.e., plant height, diameter, density, etc.) and 
vegetation indexes (VIs) to determine their empirical relationship 

with desirable traits. These digital parameters have been 
demonstrated to be useful in the estimation of agronomic traits in 
crop and forest species, including biomass. For grass species, 
biomass estimates from canopy structure parameters or vegetative 
indexes are different to crops and vary widely over the growth 
stages/season and the level of spatial and temporal resolution due 
to their heterogeneous morphology and structure (Zhang et al., 
2018). Previous studies have addressed this issue by combining/
incorporating canopy structure parameters and vegetative indexes 
to create more robust biomass prediction models (Sbrissia et al., 
2001; Li et al., 2015; Andersson et al., 2017; Gebremedhin et al., 
2019a; Zhang et al., 2019). Most recent prediction models were 
developed using conventional regression methods, especially 
multiple linear regressions, to combine the plant height (PH), 
canopy height metrics (CHM), and point-derived plant density 
with NDVI and other VIs (Schaefer and Lamb, 2016; Andersson 
et al., 2017; Moeckel et al., 2017; Yue et al., 2018; Gebremedhin 
et al., 2019a). Better correlations were observed, and significant 
correlations were reported at the sward/paddock level, but they 
were still low at single plant and row-based levels (Gebremedhin 
et al., 2019a; Wang et al., 2019). In general, studies have proposed 
seasonal models and across-season prediction models have not 
been developed to date.

New robust parameters are desirable in biomass estimation of 
forage grasses as well as simplifying the prediction models. In 
recent years, plant volume has gained attention as a proxy of 
biomass, as plant response is strongly linked with its physical 
three-dimensional (3D) structural space (Omasa et  al., 2007). 
Measuring plant volume can accurately estimate biomass 
production and could potentially replace a number of diverse 
parameters such as NDVI during the whole growing cycle. Good 
results of estimated biomass from plant volume were reported in 
maize (Han et al., 2019), wheat (Walter et al., 2019), grapevine 
(Keightley and Bawden, 2010), shrubs, and short herbaceous 
plants (Hirata et al., 2007). For perennial ryegrass, few studies 
using manually collected data have shown a strong correlation 
between plant volume and harvested biomass in controlled 
environments (Wang et al., 2020) and field conditions (Ghamkhar 
et  al., 2019). Recently, we  have developed and validated an 
uncrewed ground vehicle integrated with a LiDAR sensor to 
measure plant volume in row-plot field trials (Nguyen et al., 2021). 
Ghamkhar et al. (2019) pointed out that the biomass estimates 
using LiDAR plant volume showed a small variation across season 
and low correlation at the high-density biomass at the end of 
growing period. This could be explained by the lack of a density 
parameter in the context of the mass theory. The density of 
ryegrass is complex and driven by many physiological factors such 
as tiller number, leaf area, water content, and chlorophyll content. 
In the past, studies used the point-derived plant density from 
LiDAR data to compensate for the disadvantages of VIs, such as 
saturation at the high biomass and less accuracy due to soil effects 
at low biomass levels. However, the use of VIs, particularly NDVI, 
is widely used as it strongly correlates with living biomass during 
the vegetative stage.
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The main objectives of this study were to (1) review and 
evaluate the empirical relationship between each digital parameter 
(PH, plant volume, plant density, and NDVI) and harvested fresh 
biomass (FM), (2) develop and evaluate a variety of models using 
LiDAR data with other plant phenomic parameters, and (3) select 
and validate the best model with statistical cross-validation 
methods to define its reliability and robustness for within and 
across-season ryegrass biomass estimation.

Materials and methods

Field experiment

The experiment was conducted at Agriculture Victoria 
Research, Hamilton SmartFarm, Hamilton, Victoria, Australia 
(−37.8468, 142.0743). A perennial ryegrass breeding trial was 
used for this study. The row-plot field trial comprised 18 
perennial ryegrass breeding lines and reference cultivars with a 
random replication of each cultivar (from 7 to 10 replicates) 
contained a total of 160 plots and was established in four primary 
rows of 40 plots each (with 1 m inter-row spacing) in June 2017. 
Each plot had dimensions of 1.8 × 4 m with 48 plants from one 
cultivar and was made up of three rows (16 plants per row and 
0.25 m spacing between plants). Rows were spaced at 0.6 m. The 
experimental data were collected at three time points (June, 
October, and December) in 2019, which corresponded to Winter, 
Late Spring, and Summer seasons, respectively, spanning most of 
the growing season of perennial ryegrass in Australia. Data 
collection date was determined when the plants were at the three 
leaf stages, which is the appropriate harvesting time in the Winter 
and Late Spring seasons. For the Summer dataset, data capture 
was during the reproductive development phase to examine 

biomass estimation performance from sensors under this stage. 
Data collection consisted of harvested biomass using a 
destructive method and phenotyping data from aerial and 
ground-based phenotyping platforms (Figure 1). All phenotyping 
data were collected a day before harvest day in the order of 
crewed ground vehicle, UAV, and UGV. The priority was given to 
the crewed ground vehicle because it was driven by a human 
operator and was conducted in the early morning to avoid 
sunlight and high temperatures, whereas the UGV was driven in 
the afternoon. The UAV was operated in the middle of the day 
when it has sunny and clear or cloudy conditions to minimize the 
influence of solar irradiance and shadows. For the October 
dataset, two of the four mowers had a technical issue caused by 
a cutting plate which caused inaccurate FM cuts from the plants 
in the first 80 plots, therefore these plots were removed from 
the dataset.

Data collection and analysis

Normalized difference vegetative index: 
Uncrewed aerial system

For NDVI extraction, aerial multispectral images of the field 
trial were taken at nadir by a MicaSense RedEdge-M (MicaSense 
In., Seattle, WA, United States) camera mounted on a DJI Matrice 
100 quadcopter (DJI Technology Co., Shenzhen, China). The 
flight missions were created on Pix4DCapture software (Pix4D 
SA, Switzerland) and enabled the DJI Matrice 100 to fly at 30 m 
flight attitude, a speed of 2.5 m/s (9 km/h), and with forward and 
sideways image overlap of 75%. The MicaSense RedEdge-M 
multispectral camera captured five spectral narrowband images 
(Blue at 465–485 nm, Green at 550–570 nm, Red at 663–673 nm, 
Red Edge at 712–722 nm, and Near-infrared at 820–860 nm) with 

FIGURE 1

Aerial and ground-based high-throughput phenotyping platforms used in this study to estimate an empirical relationship with harvested fresh 
biomass from a manual lawn mower.
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a ground sample distance of 2.08 cm/pixel on fast mode according 
to the MicaSense capture settings of the DJI Matrice 100. For 
further image processing, a radiometric calibration tarp (Tetracam 
Inc., Chatsworth, CA, United  States) with five reflectance 
percentages (3, 6, 11, 22, and 33%) and multiple ground control 
points (GCPs) within the trial (Supplementary Figure 1) were 
used to calibrate the reflectance values of the acquired images for 
all bands and perform the georectification. Image processing, 
georectification, and orthomosaics were conducted with the 
Pix4Dmapper 4.2.16 software (Pix4D SA, Switzerland). The 
output image of each band was exported in the coordinate 
reference system (CRS) WGS 84 54S and calibrated to reflectance 
values by linear regression equations from the calibration tarp. 
The NDVI values were calculated and generated in the QGIS 
3.4.15 software (QGIS Geographic Information System, Open 
Source Geospatial Foundation Project)1 by the following equation:

 
NDVI

NIR RED

NIR RED
=

−
+

,

 
(1)

where NIR and RED are spectral bands at wavelengths 820–860 
and 663–673 nm, respectively.

Polygons of individual rows were created based on the NDVI 
image and linked to identifiers (ID) following Gebremedhin et al. 
(2020). Polygons were then used to extract per row NDVI, plant 
height, and LiDAR data for downstream analysis.

Sonar plant height: Crewed ground vehicle
Our trial configuration was similar to Gebremedhin et  al.’s 

(2019a) and plant height of rows was measured with ultrasonic 
sonar Baumer UNDK 30 U6103/S14 sensors (Baumer Group, 
Frauenfeld, Switzerland) mounted on a 1.45 m wide tailored steel 
frame that adapts to the front of a crewed ground vehicle 
(PhenoRover) and extracted by following their method. In short, the 
PhenoRover is a Polaris Ranger 6 × 6 side-by-side vehicle (Polaris 
Industries Inc., Medina, MN, United States) that was equipped with 
a custom-developed height acquisition system consisting of six 
Baumer UNDK 30 U6103/S14 sonar sensors, a Trimble Real-time 
Kinematics—Global Navigation Satellite System (RTK-GNSS), and 
a Campbell Scientific CR3000 datalogger (Campbell Scientific, Inc., 
Logan, UT, United States). Six sonar sensors were mounted in a 
metal front chassis for three-row measurements where two are in 
one row and at 0.6 m apart of each other as same as to the ground. 
All six sensors were set at 10 Hz for fast measurement, and thereby, 
the driving speed of vehicle was aimed to around 1.4 m/s (5.04 km/h) 
to ensure that the height measurements can be taken every 5–10 cm.

Lidar data metrics: Uncrewed ground vehicle
The DairyBioBot is a UGV developed at Agriculture Victoria 

Research, Hamilton SmartFarm, Victoria, Australia, which was 
equipped with the LMS400 2D LiDAR (SICK Vertriebs-GmbH, 

1 http://qgis.osgeo.org

Germany) to capture plant structure in the field (Nguyen et al., 
2021). In each planned mission, the DairyBioBot was driven 
following the specific path capturing two rows at a time in our 
experimental field trial at a speed of 1.2 m/s (4.3 km/h) while 
recording coordinates with its Real-Time Kinematic Global Position 
System (RTK GPS) at 5 Hz. At 1.127 m height above the ground 
cover, the LiDAR sensor was set to scan an angular range from 55° 
to 123° with a scan resolution of 1° to have a field of view (FOV) of 
two rows per scan. To ensure high plant resolution, the scan 
frequency was set at 500 Hz to accurately measure plant volume. 
The processing of LiDAR plant volume (LV) per row/plot was 
described in Nguyen et al. (2021). Briefly, raw LiDAR data and GPS 
coordinates were captured at two different frequencies and were 
processed and merged based on their time stamps. This generated 
a data point cloud that was visualized on the aerial image of the field 
trial and plant volume was calculated per polygon (per row/plot). 
LiDAR point density (LV_Den) was investigated as a potential plant 
density parameter, which is defined as a ratio of the number of the 
acquired data points (with cutoff threshold of 5 cm from the 
ground) over the total points for scans per row/plot. Further, LiDAR 
plant height (LV_PH) per row and plot was calculated as the average 
height measurement within a row polygon and three rows in a plot.

Biomass data: Destructive mechanical harvest
The ground-truth fresh biomass data were collected using a 

destructive mechanical harvest cut at 5 cm above the ground. To 
estimate biomass at the row and plot level, each individual row 
was manually cut by a stranded lawn mower (Model: 
HRX217K5HYUA; Engine capacity—190 cc; Honda Motor Co., 
Ltd., Tokyo, Japan) and bagged in a plastic bag labeled with a 
Row Identity (RowID) and Plot Identity (PlotID). After harvest, 
all 480 FM samples were weighed using a Mettler Toledo GmbH 
scale (Model: ICS6x5–1; Mettler-Toledo Ltd., Toledo, OH, 
United States). Biomass data per plot were calculated as the sum 
of FM of three rows in a plot based on their PlotID. In the 
Winter (June) dataset, FM was only measured at the whole 
plot level.

Predictive modeling

All digital plant phenotypes extracted from sensors (Figure 2), 
including NDVI, Sonar_PH, LV, LV_Den, and LV_PH, were 
initially tested by estimating linear regressions with FM biomass 
in within and combined season datasets. Using 
PerformanceAnalytics package in R version 4.0.3 (R Core Team 
2020, Vienna), each variable’s ability to estimate biomass was 
evaluated with the Pearson’s correlation coefficient (R). For 
biomass estimation in ryegrass species, multiple linear regression 
(MLR) is an appropriate method to make predictive modeling 
(Martin et al., 2005; Giri et al., 2019). The MLR equation can 
be represented by the following formula:

 y b b x b x b xn n= + + + + +0 1 1 2 2  ε  (2)

https://doi.org/10.3389/fpls.2022.950720
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://qgis.osgeo.org


Nguyen et al. 10.3389/fpls.2022.950720

Frontiers in Plant Science 05 frontiersin.org

where: y is the measured fresh biomass (g),
b b b bn0 1 2, , ,  and are parameters of the model,
x x xn1 2, ,  and are an exploratory variable,
ε  is the error of prediction, and n is the number of variables.

All MLR models combined (without interactions) from our 
phenomic variables were established using the best subsets 
selection method using the leaps R package. This method 
computes all models using a specified subset of predictors and 
presents the best-fitting model within each set. The adjusted 
coefficient of determination (Adjusted R2), which is the 
proportion of variation in predictor values, was used to first 
assess all the best-fitting models in each dataset. For further 
evaluation, the summer dataset is a good test set as it represents 
a wide variation in the plant fraction between vegetative and 
reproductive parts of 480 rows (160 plots), which therefore can 
be  used to identify different best models of different subsets 
based on the statistical criteria for multiple variables, including 
Adjusted R2, Mallows’s Cp criterion (Cp), and Bayesian 
information (BIC). The best subset was selected by higher 
Adjusted R2, lower Cp, and BIC values along with a smaller 
number of variables. According to physics, the mass of an object 
can be calculated by multiplying volume by density. Volume can 

predict biomass accurately (e.g., an LV predictor), but the 
accuracy of biomass estimation in grass species can be affected 
by inconsistent plant density, which can be  caused by many 
factors, such as leaf area, tiller density, leaf mass as well as 
chlorophyll content (Van Loo, 1993; Matthew et al., 1996; Sbrissia 
et al., 2001). Plant density is an unknown variable in biomass 
prediction, but could be partly explained by LV_Den, NDVI, or 
the combination of LV_Den and NDVI variables. We developed 
models (M3 to M6) to determine the best biomass prediction 
model based on these hypotheses (Table 1). Additionally, the 
published model at the proximal individual plant level by 
Gebremedhin et al. (2019a) was used to compare LiDAR+NDVI 
( FM LV PH NDVI~ _ × ) performance versus LiDAR only 
models ( ~ _FM LV PH ). The best performing model was 
selected based on the statistical metrics including Adjusted R2, 
Residual Standard Error (RSE), and F-statistic (F), but the best 
model was also considered with our specified optimal criteria 
such as the number of variables and number of sensor 
technologies in a prediction equation, and the consistency of 
variables in different datasets. To test the prediction accuracy and 
robustness of the selected best model, multiple cross-validations 
approaches using caret R package with different settings from 
repeated k-fold with ten times, leave-one-out to random split was 

FIGURE 2

Each processed dataset consists of biomass data, normalized difference vegetation index (NDVI) image, Sonar plant height, and LiDAR data 
metrics (plant height, volume, and density) for each time point. In biomass data, the identity of each row and plot is classified in the RowID and 
PlotID columns versus its corresponding fresh mass (FM) value.
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used to split the dataset into training and testing sets. Significant 
statistical parameters including root mean squared error (RMSE), 
the determination of coefficient (R2), and mean absolute error 
(MAE) were presented to assess the overall prediction 
performance of the selected model.

Statistical tools

All plots and statistical analyses were performed in the R 
environment through R version 4.0.3 (R Core Team 2020, 
Vienna). Besides the base and dependencies packages, necessary 
packages for data analysis were used ggplot2 for plotting, 
PerformanceAnalytics for advanced plotting with Pearson’s 
correlation coefficient in one figure, tidyverse for data 
manipulation and visualization, caret for computing cross-
validation methods, and leaps for the best subset selection.

Results

Relationship between sensor-based 
phenotypes and biomass

Sensor-based phenotype distributions and correlations with 
destructive FM were visualized for the combined dataset across all 
three seasons (Winter, Late Spring, and Summer, Figure 3). All 
digital parameters were significantly correlated with FM (R > 0.7, 
p ≤ 0.001), except NDVI from multispectral images, which was 
poorly correlated at 0.16 and 0.47 for the row and plot levels, 
respectively. Based on correlations with FM, biomass predictors 
could be  ranked from LV, LV_Den, LV_PH, Sonar_PH to 
NDVI. Both LV and LV_Den extracted from the LiDAR sensor 
were highly correlated with fresh FM at both levels with significant 
correlations of 0.90–0.95 and 0.85–0.92, respectively. Similarly, in 
the seasonal datasets, the results showed that the LiDAR-derived 
metrics such as LV and LV_Den were most correlated with FM 
(R = 0.76–0.97, Table 2) and followed by NDVI. In addition, LV and 
LV_Den had a strong correlation at both the row and plot levels 
with a minimum R = 0.95, indicating that they capture similar 

information. Sonar_PH in Late Spring was poorly correlated with 
FM and was much more variable across seasons than other 
parameters. These findings suggest that a model derived from the 
LV and LV_Den parameters could be suitable for predicting FM, 
but incorporating with NDVI could potentially make predictions 
more robust across the seasons.

Best subset modeling

We tested all models involving our five sensor-based 
parameters to find a parsimonious combination with good 
performance and the fewest parameters and sensor types. In 
general, there were usually several models with very similar 
performance (R2, Figure  4). Except for the Summer season, 
LiDAR-derived parameters achieved the same accuracy as 
models including NDVI. Sonar_PH was least included in top 
models, indicating its limited utility. For vegetative stage FM, the 
high prediction was estimated by the combination of the LV and 
LV_Den in Winter but in Late Spring, LV on its own achieved up 
to 0.95 Adjusted R2. In Summer, at the reproductive stage, R2 
varied substantially from 0.73 to 0.8 with different subsets of 
parameters. Models with all parameters achieved R2 of 0.80, while 
a model excluding Sonar_PH resulted in a comparable R2 of 0.79. 
Using only LiDAR parameters reduced R2 to 0.73 in Summer, 
indicating some loss of information. These R2 trends were 
confirmed with other model performance metrics Mallow Cp 
and BIC (Supplementary Figure  2). Similar results were also 
shown at the row level in Supplementary Figures 3, 4. In the 
combined seasonal dataset, the standalone LV variable provided 
an excellent prediction at the Adjusted R2 of 0.91 with little 
improvement when combined with the other parameters. Adding 
sensor parameters other than LiDAR did not improve R2.

Comparisons of six models including 
parameter combinations

Having explored which parameters were useful in 3.2, 
we wanted to investigate whether including combinations (sum or 
products) of parameters could further improve model fit. All 
models incorporating an LV predictor had a clear improvement of 
R2 over models with only NDVI and Sonar_PH/LV_PH (M1 and 
M2, respectively) at both the row and plot level in the combined 
seasonal dataset (Figures 5, 6; Table 3). The observed R2 from M3 
to M6 was at least 0.82 and 0.91 for the row and plot level, 
respectively, where model M1 and M2 estimated 0.63–0.65 for the 
row level and 0.79–0.88 for the plot level. Model M2, including 
LV_PH, performed slightly better than model M1, including 
Sonar_PH, across all datasets. Among all prediction models, the 
best performing model was model M6: 
FM LV LV Den NDVI~ _× ×( )  on both assessment levels, but 
more simple models with two variables (e.g., model M3: 
FM LV NDVI~ × and M4: FM LV LV Den~ _× ) were 

TABLE 1 Multiple linear regression models used to compare the 
predicted and measured fresh weight (FM) samples. 

Model Equation

M1 FM ~ NDVI Sonar _ PH NDVI Sonar _ PH+ + ×

M2 FM ~ NDVI LV _ PH NDVI LV _ PH+ + ×

M3 FM ~ LV NDVI×

M4 FM ~ LV LV _ Den×

M5 ( )FM ~ LV LV _ Den NDVI× +

M6 ( )FM ~ LV LV _ Den NDVI× ×

Predictor variables include normalized difference vegetation index (NDVI), average 
plant height (Sonar_PH), LiDAR plant height (LV_PH), LiDAR plant volume (LV), and 
LiDAR point density (LV_Den).
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similar in R2, except in Summer. This indicates that models M3 
and M4 may be competitive simpler prediction options.

Detailed evaluation and validation of 
parsimonious models

To select the best prediction model, model M3: 
FM LV NDVI~ ×  and M4: FM LV LV Den~ _×  were 
evaluated for their overall prediction performance (Table  4). 
Similar performance was observed from both models at row and 
plot levels for all metrics. Especially, in the Summer dataset, the 
plants were at the reproductive stage and biomass included 

flowering heads. Model M3 resulted in a slightly higher R2 and was 
lower for the other parameters (e.g., RSE, AIC, BIC, and PER) 
than model M4 (Table  4). Since NDVI measures the green 
vegetative density of plants, model M4 produced a better 
prediction of biomass including green material and flowering 
heads than model M3 incorporated with LV_Den (measured 
point density of plants). However, NDVI is extracted from a 
multispectral camera integrated on an aerial platform, whereas the 
LV and LV_Den were from the LiDAR sensor on the same ground 
platform. Considering that M3 and M4 perform very similarly in 
other seasons, the increase in R2 from the capture of NDVI in 
Summer may not be worthwhile economically and M4 may be the 
best pragmatic model.

A B

FIGURE 3

Evaluation of the relationships between plant digital parameters extracted from sensor-based phenomics and harvested fresh biomass (FM) in the 
combined seasonal dataset. Panel (A) presents 720 samples at row level and panel (B) for 368 samples at the plot level. In the panel, histogram 
windows display the distribution of individual parameters on the diagonal of the panel, whereas the bivariate scatter plots with a red fitted line and 
Pearson’s correlation coefficient with the significant level as stars at the top and bottom of the diagonal, respectively. Star symbols are “***,” “**” 
and “*” for p-values are ≤ 0.001, 0.01, and 1.0. LV, LiDAR plant volume; LV_Den, LiDAR point density; LV_PH, LiDAR plant height; Sonar_PH, 
ultrasonic plant height; NDVI, multispectral normalized different index; and FM, manual harvested fresh biomass.

TABLE 2 A summary table of Pearson’s correlation coefficient (R) for the empirical relationship between each plant digital parameter and harvested 
fresh biomass in the seasonal dataset at the row and plot level.

Parameters
Row level Plot level

Late spring Summer Winter Late spring Summer

LV 0.94 0.84 0.90 0.97 0.86

LV_Den 0.92 0.76 0.83 0.95 0.77

LV_PH 0.64 0.61 0.84 0.80 0.69

Sonar_PH 0.11 0.52 0.61 0.01 0.55

NDVI 0.85 0.80 0.75 0.87 0.81
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We performed cross-validations to explore the predictive 
ability of Model M4 ( FM LV LV Den~ _ )×  in the combined 
dataset. At the plot level, M4 showed strong R2 consistency from 
0.91 to 0.92, with a small variation of RSME and MAE ranging 
from 456.41 to 507.31 g/plot and 319.11 to 359.93 g/plot across 
all CV tests (Supplementary Table 1). Similarly, on the row level, 
the estimated R2, RSM, and MAE were obtained from 0.80 to 
0.83, 209.42 to 220.77 g/row, and 149.58 to 158.10 g/row, 
respectively. Based on assessing the statistical significance 
through all three CV approaches with different settings, M4 
predicted biomass well.

Discussion

We developed and validated within and combined season 
prediction models, based on sensor data, to assess across-season 
biomass yield of perennial ryegrass. Under different growth 
conditions, growth responses measured as biomass production 
over time vary considerably. Particularly, climate metrics such 
as rainfall and temperature change across seasons and influence 
biomass accumulation in seasonal patterns. In addition, 
perennial ryegrass has a complex plant structure and 
non-uniform growth habit from individual to the group (e.g., 

FIGURE 4

The color map of Adjusted R2 values comparing the performance of models involving five senor-based predictors (from 1 to 5 predictors and an 
intercept variable per subset) and fresh biomass in each dataset at the plot level. Each predictor is presented by a colored square and arranged 
with other predictors of the same color. Color darkness is proportional to adjusted R2 values, where black is highest.

A B C

D E F

FIGURE 5

Comparisons between the measured and predicted fresh biomass (FM) at the plot level (N = 386) in the combined dataset from six prediction 
models: (A) M1: ∼ + _ + × _FM NDVI Sonar PH NDVI Sonar PH, (B) M2: ∼ + _ + × _FM NDVI LV PH NDVI LV PH, (C) M3: ~ ×FM LV NDVI, (D)  
M4: ~ _×FM LV LV Den, (E) M5: ~ _× +FM LV (LV Den NDVI), (F) M6: ~ _ .× ×FM LV (LV Den NDVI) The red and black lines represent the  
best-fit linear regression and 1:1 line, respectively. Adj_R2: adjusted coefficient of determination; RSME: root mean square error.
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row or sward) through seasons and years. These changes can 
influence the effectiveness of each sensor-based technology 
differently. However, the selection of cultivars with a high yield 
trait is highly dependent on the accurate biomass estimation 
across repeated measurements to evaluate robust yield 
performance. Our study explored the predictability of digital 
structural and vegetative predictors at different scales of 
biomass assessment across a within and combined season 
dataset to understand forage biomass estimation in response to 
the season changes. Our aim was to achieve an accurate and 
robust across-season prediction model.

Our results demonstrated that LV and LV_Den were the 
strongest predictors of forage biomass. A consistent strong 
relationship with biomass was observed across all seasonal and 
combined-seasonal datasets at both row and plot levels. Each 
digital phenotype still has its own drawbacks. While LV and LV_
Den were consistently amongst the best phenotypes for biomass 
prediction, the rank of the other phenotypes widely varied from 
specific to multiple growing seasons. NDVI performed well within 
and over seasons but recorded a dramatic drop in the combined-
season dataset. Physical parameters with a larger measurement 
range performed more robustly than vegetation indices. Although 

A B C

D E F

FIGURE 6

Comparisons between measured and predicted fresh biomass (FM) at the row level (N = 720) in the combined dataset from six models: (A)  
M1: ~ _ _+ + ×FM NDVI Sonar PH NDVI Sonar PH,  (B) M2: ~ _ _+ + ×FM NDVI LV PH NDVI LV PH,  (C) M3: ~ ×FM LV NDVI,  (D) M4: ~ _×FM LV LV Den,  
(E) M5: ~ _× +FM LV (LV Den NDVI), and (F) M6: ~ _ .× ×FM LV (LV Den NDVI) The red and black lines represent the best-fit linear regression and 
1:1 line, respectively. Adj_R2: adjusted coefficient of determination; RSME: root mean square error.

TABLE 3 Comparison of regression performance of models to predict biomass at row and plot levels in seasonal datasets.

Model

Row level Plot level

Late spring Summer Winter Late spring Summer

Adj_R2 RMSE Adj_R2 RMSE Adj_R2 RMSE Adj_R2 RMSE Adj_R2 RMSE

M1 0.73 86.17 0.69 216.5 0.73 99.90 0.75 233.3 0.75 563.0

M2 0.80 78.38 0.72 210.3 0.86 79.22 0.88 175.6 0.79 527.0

M3 0.89 60.79 0.74 205.0 0.88 73.34 0.95 118.0 0.78 538.2

M4 0.89 60.44 0.71 212.2 0.91 65.89 0.95 117.8 0.74 572.7

M5 0.90 59.66 0.76 200.9 0.91 64.61 0.95 115.6 0.81 505.8

M6 0.90 59.51 0.76 200.3 0.92 62.33 0.95 115.0 0.81 504.4

Adj_R2: adjusted coefficient of determination. RMSE: root mean square error. All models significant p-values ≤ 0.001.
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the sample population was large and chosen to represent the 
diversity of growth and development in perennial ryegrass, this 
diversity is often related to relatively small ranges in spectral 
diversity. This phenomenon is also seen when relating chemical 
diversity to spectral characteristics in ryegrass. The small numerical 
NDVI ranges are a limitation to explain biomass changes on its 
own across growth stages and/or seasons. Better observations from 
sensor predictors in the vegetative stages (such as in Winter and 
Late Spring) were obtained than in the reproductive stage 
(Summer). Therefore, identification of major predictive variables 
is crucial to get a robust across-season model at multiple temporal 
points and scales, also taking into account a desire to minimize the 
number of parameters and required sensor-based platforms.

Traditionally, modeling by combining all the best performing 
datatypes can achieve the maximum predictive ability by 
compensating each other’s drawbacks, but may not reflect the true 
plant responses over seasons for biomass. From the color maps 
representing the best subset selection (Figure 4), the best combined 
models within a single/combined season can easily be determined 
with each of the datasets, this optimization was not always apparent 
in reviewing adjusted R2. This usually occurred if there were many 
similar performing predictive parameters in a set (like vegetative 
indices or VIs); but in this study, they were completely different 
from each other and in different relationships to biomass. 
Consequently, it will not guarantee that the best-fit model predicts 
well in one season and will also perform well in another season and 
future dataset. Therefore, developing prediction models based on 
the combining method would not necessarily produce a robust 
estimation that can apply across seasons. Since LV, LV_Den, and 
NDVI were the best predictors and have a strong empirical 
relationship with each other, they come closer to interpreting mass 
theory, and also proved as a good combination in the deeper model 
evaluation by the best subset selection method in the summer 
dataset. Our proposed models have demonstrated that the 
estimations can be similar as combined models without the effort 
of using all acquired parameters. The best performing prediction 
model was M6: FM LV LV Den NDVI~ _∗ ∗  which provided 
an excellent correlation with harvested biomass within and across 
seasons. However, although M3 and M4 differed from M6 by 
missing some interactions, they produced a similar prediction 
performance. The small increase when including NDVI could 
be due to NDVI capturing color differences of flowering heads 
versus leaves in the vegetation in the summer season (reproductive 
stage). Measurement in the summer is usually to score the heading 
date of the reproductive stage to select the late reproductive 
varieties. However, most breeding programs would cut before 
heading date for yield observation. The R2 improvement from 
including NDVI may not warrant the cost expense in investing in 
an aerial platform to capture NDVI. In terms of practical 
application, model M4: FM LV LV Den~ _×  then is more likely 
the best prediction model, as it requires only one data source. The 
reliability of model M4 was validated through different cross-
validation and proven by the strong consistency of R2 at around 
0.92, with a small variation on RSME and MAE ranging from T
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456.41 to 507.31 g/plot and 319.11 to 359.93 g/row. Hence, our 
model M4 can be used as an across-season prediction model for 
measuring biomass in perennial ryegrass.

Most published models were developed on the plot or sward 
level, in which sub-setting the samples is commonly used to scale up 
the assessment level. To date, only one study in the spaced plants was 
published using the prediction model (M1) of 480 plants over 2 years 
and then scaling its validation to the plot level (Gebremedhin et al., 
2019a). Similar to that trial configuration, our best performing M6 
model had a significantly higher accuracy at the row (Adj_R2 = 0.70–
0.90, RSME = 59.61–200.3 g/row) and plot levels (Adj_R2 = 0.81–0.95, 
RSME = 62.33–504.4 g/plot) compared with M1  in the previous 
study. The M1 performance in this study was similar as reported 
previously. We can expect that future performance of the M1 model 
would be similar having now observed it in similar trials across 
multiple years. Larger RSME was observed when biomass was 
harvested as the whole row, instead of the sum of harvested single 
plants in a row. For the plot level, the estimated correlations from our 
proposed models were slightly higher than the previous studies, for 
example, R2 = 0.78 from LV_PH × NDVI in tall fescue (Schaefer and 
Lamb, 2016), R2 > 0.8 from all Crop Volume (CV) × VIs models in 
wheat (Banerjee et al., 2020), and R2 = 0.90 of the Vegetation Index 
Weighted Canopy Volume Model in soybean (Maimaitijiang et al., 
2019). Since plant height is easy to measure and extract from 
inexpensive sensors/cameras, the current trend of developing 
prediction models is based on the combination of plant height with 
other parameters (like VIs). While the VIs remain the fixed 
limitation, the main improvement of model accuracy is therefore 
depended on the plant height capacity (Togeiro de Alckmin et al., 
2021). Many studies showed that higher accuracy of plant height was 
measured by being closer to the ground level than aerial cameras 
(Madec et al., 2017; Wang et al., 2018; Yuan et al., 2018a). Ground-
based LiDAR data can provide more detailed information of 
complex height profiles than a single data point from the popular 
low-cost ultrasonic Sonar sensors. As a result, LV_PH simply 
dominated Sonar_PH in this study as well as the others (Yuan et al., 
2018a; Thompson et al., 2019; Walter et al., 2019). Noticeably, the 
poor-to-moderate performance of plant height started from the row 
to plot level as the decreasing diversity of height between plants. 
Therefore, the height-based models are more suitable to apply at 
swards/paddocks but may not be a good approach in the single 
plants/rows. Our developed models based on ground-based LiDAR 
data have demonstrated their better prediction ability at the row and 
plot level, possibly the single plants level, which indicated the 
broader application of those models can be used at the different 
scales from plants to plots in the breeding trials.

To improve the prediction accuracy of the developed models, it 
is advisable to further study the water (moisture) content as it also 
contributes to the overall weight of FM. This may explain the lower 
summer correlations compared to other seasons, which agrees with 
rainfall as the main discriminating factor for reducing prediction 
error for tropic perennial grasses (Youkhana et  al., 2017). The 
proposed model M4 still has the disadvantage of predictive speed 
due to the longer data collection time of UGV compared to the aerial 

platforms. Current settings allow the UGV to move between two 
rows at a time at a speed 1.2 m/s (4.3 km/h) to capture high-
resolution plant data. Accurate and reliable biomass measurement 
takes precedence over data collection time in the cultivar selection 
process, especially applying the genomic selection method. New 
studies have begun to integrate a compact LiDAR sensor with RGB/
multispectral camera (or newly as multispectral LiDAR camera) on 
an aerial platform. The advent of this technology will provide an 
all-in-one platform that rapidly measures not only biomass but 
additional important traits (e.g., nutrition, quality, and persistence; 
Roitsch et al., 2019). However, this technology is mainly designed for 
environmental, topographical, and mining surveying but not for 
precise agriculture yet (Li et  al., 2021). The wide scan area and 
measurement calibration are still major limitations in measuring LV 
for forage species with aerial LiDAR technologies (Chen et al., 2017; 
Yan et al., 2020). In future research, this study may form the opening 
of using multispectral LiDAR data for a comprehensive yield and 
nutritive value prediction model of the perennial ryegrass growth 
cycle in large field trials.

The application of sensor technology in high-throughput 
plant phenotyping to date has been mainly by using derived 
digital parameters for modeling and prediction traits of interest 
such as biomass, plant height, or nutritive values. It is essential to 
find the correlation relationships; therefore, model construction 
and cross-validation are still necessary where tradition way of 
data collection is inevitable. It would be important to understand 
the underlying biophysical and/or biochemical meanings of 
digital parameters. This may lead to direct digital phenotyping 
without converting them to traditional traits in the future. For 
example, LV and LV_Den can directly monitor plant growth and 
production in response to growing conditions.

Conclusion

This study demonstrated the excellent ability of ground-based 
LiDAR data from UGV and compared it to other ground -and 
air-based sensor phenotyping platforms in estimating the across-
season biomass yield of perennial ryegrass. LV and LV_Den 
extracted from LiDAR data strongly correlate with FM at a high 
level of accuracy that is robust within and combined seasons. In 
addition, LV is a key parameter in all best-fit subset models, and 
adding more predictive parameters resulted in only small 
improvements. Thus, the modeling approach based on the mass 
theory is more accurate than the traditional methods of predictive 
modeling in generating simple models with a small number of 
parameters. The developed models show a robust performance 
over seasons compared with the top best-fit subset models and 
models tested in other studies. In terms of practical application, 
the simple prediction model FM ~ LV × LV_Den is the best choice 
for a global prediction model of across-season biomass, as it 
requires data from only one sensor type. With a high precision of 
estimated biomass, it would assist the use of genomic selection in 
large populations to develop higher yielding cultivars.
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