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Harnessing genetic resistance to
rusts in wheat and integrated
rust management methods to
develop more durable
resistant cultivars
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Jiaying Chang and Wenxiang Yang*

College of Plant Protection, Technological Innovation Center for Biological Control of Plant
Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
Wheat is one of the most important staple foods on earth. Leaf rust, stem rust

and stripe rust, caused by Puccini triticina, Puccinia f. sp. graminis and Puccinia

f. sp. striiformis, respectively, continue to threaten wheat production

worldwide. Utilization of resistant cultivars is the most effective and

chemical-free strategy to control rust diseases. Convectional and molecular

biology techniques identified more than 200 resistance genes and their

associated markers from common wheat and wheat wild relatives, which can

be used by breeders in resistance breeding programmes. However, there is

continuous emergence of new races of rust pathogens with novel degrees of

virulence, thus rendering wheat resistance genes ineffective. An integration of

genomic selection, genome editing, molecular breeding and marker-assisted

selection, and phenotypic evaluations is required in developing high quality

wheat varieties with resistance to multiple pathogens. Although host genotype

resistance and application of fungicides are the most generally utilized

approaches for controlling wheat rusts, effective agronomic methods are

required to reduce disease management costs and increase wheat

production sustainability. This review gives a critical overview of the current

knowledge of rust resistance, particularly race-specific and non-race specific

resistance, the role of pathogenesis-related proteins, non-coding RNAs, and

transcription factors in rust resistance, and the molecular basis of interactions

between wheat and rust pathogens. It will also discuss the new advances on

how integrated rust management methods can assist in developing more

durable resistant cultivars in these pathosystems.
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1 Introduction

Wheat is a major food crop, with a total area of more than 219

million hectares and an annual production of more than 760

million tonnes (Faostat, 2020). It provides around 20% of the

world human population’s daily caloric needs (Faostat, 2016).

Every year, fungi and insects devastate worldwide wheat yield to

the tune of 21.5% (Savary et al., 2019). Biotrophic pathogenic

fungi cause rust diseases, which are among the most economically

important diseases affecting wheat production. Stem rust (black

rust), leaf rust (brown rust), and stripe rust (yellow rust), all

caused by the rust pathogens Puccinia graminis f. sp. tritici (Pgt),

Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst),

respectively, continue to endanger worldwide wheat production

on a year-round basis (McIntosh et al., 1995; Dean et al., 2012;

Hafeez et al., 2021; Mapuranga et al., 2022a). Stem rust caused by

Pgt is often regarded as one of the most destructive wheat rust

disease because if not controlled, it can wipe all the crops within a

short space of time (Singh et al., 2011). A stripe rust infection may

develop at any moment throughout the plant’s life cycle, from the

one-leaf stage until the time of maturity, as long as the plants are

still growing. Over 60 nations have reported cases of wheat stripe

rust, which may be found on every continent except Antarctica

(Savary et al., 2019). Recently, catastrophic stripe rust outbreaks in

key wheat-producing nations resulted in large yield losses. Pt

primarily infects wheat leaves at various developmental stages as

well as leaf sheath and glumes (Figlan et al., 2020). Pt significantly

impedes the production of wheat, causing high yield losses

(Samborski, 1985). Leaf rust occurs in many temperate wheat-

producing areas due to its adaptation to a wide range of

environments, causing yield losses of up to 70%. (Marasas et al.,

2003; Huerta-Espino et al., 2006; Aktar-Uz-Zaman et al., 2017).

Resistance to leaf rust, stripe rust, and stem rust is conferred by a

diverse set of genes designated Lr, Yr, and Sr, respectively (Zhang

et al., 2020b).

Wheat genome sequences from diploid, tetraploid, and even

hexaploid wheats are being sequenced and annotated frequently

and rapidly making it possible to discover and characterize new

resistance genes that can be used by wheat breeders to improve

wheat resistance to multiple pathogens (Appels et al., 2018,

Ramıŕez-González et al., 2018; Bailey-Serres et al., 2019; Gerten

et al., 2020). Disease resistance in natural plant-pathogen

interactions can be divided broadly into resistance that is

expressed against all isolates of a pathogen (non-race specific

resistance) and resistance that is expressed only against

specific pathogen phenotypes (race specific resistance). Race-

specific resistance confers mostly ample resistance to some

pathogens and not others, and it is conferred by single

resistance (R) (major effect) genes and is comparatively

inherited. Non-race specific resistance confers partial

resistance; is independent of specific avirulence (Avr) genes

and also allows infection but lowers pathogen proliferation.
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The two different types of resistance can be conferred by the

same genes, in which a host gene may confer hypersensitive

resistance to some isolates and a rate-reducing resistance to

others (Maurya et al., 2021).

More than 100, 80 and 66 resistance genes have been found

for wheat leaf rust, stripe rust, and stem rust, respectively, with

the bulk of them having been already mapped on wheat

chromosomes using DNA markers (McIntosh et al., 2017;

Hafeez et al., 2021; Kumar et al., 2022; Yu et al., 2022). Flor

proposed a gene-to-gene relationship for each resistance gene

using the Linum-Melampsora host-pathogen approach (Flor,

1955). According to this hypothesis, the function of each

resistance gene is dependent on a corresponding pathogen

avirulence gene. Therefore, in the absence of this avirulence

gene, the resistance gene may not confer resistance (Dodds et al.,

2006). More than 30 wheat resistance genes have been cloned in

order to better understand the nature of their gene products,

which has improved our knowledge of the molecular mechanism

of resistance to leaf rust, stem rust, and stripe rust. More than

half of the R genes in plants, including the leaf rust, stem rust,

and stripe rust genes in wheat, are members of the nucleotide-

binding domain and leucine-rich repeat (NLR) family. Other

cloned R genes encode different protein families including ATP-

binding cassette (ABC) and steroidogenic acute regulatory

protein-related lipid transfer (START), etc. The never-ending

quest for higher yields while simultaneously improving quality

does not come without its difficulties. Increased pathogen

emergence has resulted from the loss of wheat genetic variety

due to the pursuit of elite, high-performing cultivars. As a result

of this drop in genetic diversity, diseases now endanger the

global wheat supply (Figueroa et al., 2018). We believe that

future genomics research and application will aid in the breeding

of wheat varieties with more permanent resistance than what is

now available, and that we may finally win the never-ending

arms race between host and pathogen.

However, despite great progress in the management of wheat

diseases due to technological and scientific innovation, plant

diseases continue to pose major threats to global wheat

production (Jeger et al., 2021; Prasad et al., 2021). Pathogens

and respective diseases can be directly or indirectly affected by

climate change (Juroszek et al., 2020). Temperature, relative

humidity, rainfall, photoperiod, wind direction and speed, date

of sowing, and maturity of crops, all influence the growth,

multiplication, pathogenesis, dissemination, and survival of

plant pathogens (Prasad et al., 2021). Relative humidity,

ambient temperature, and precipitation have the greatest

influence on the outcome of a particular host-pathogen

interaction, pathogens dissemination, and survival (Prank

et al., 2019). Therefore, predicting the likely consequences of

climate change on the host, pathogen, their interaction,

population dynamics, agro-ecosystem community structure,

and micro-evolutionary developments is required before
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considering the effects of changing climate on particular crop

disease (Prasad et al., 2021). This review gives a succinct and up-

to-date overview of rust resistance, particularly race-specific and

non-race specific resistance, the role of pathogenesis-related

proteins, non-coding RNAs, and transcription factors in

conferring rust resistance. It will also discuss the molecular

basis of interactions between wheat and rust pathogens and

how integrated rust management approaches can aid in

developing more durable resistance cultivars.
2 Pathogen perception

It is common for rust to get access to the plant core by

directly penetrating the leaf or stem surfaces and entering the

plant via leaf stomata. During the course of an infection, plants

are equipped with the ability to detect the presence of pathogens

at many levels (Jones and Dangl, 2006), and as a consequence,

the host defense system is activated. Pattern-recognition

receptors (PRRs) on the cell membranate detect pathogen-

associated molecular patterns (PAMPs) and trigger PAMP-

triggered immunity (PTI). Establishing a dynamic parasitic

relationship between the biotrophic fungi and the host is the

foundation for the development of the pathogen in the host

plant. In order to infect the host plant successfully, rust

pathogens suppress PTI components by secreting virulence

factors called effectors into the host cells through the haustoria

and hyphae resulting in effector-triggered susceptibility (ETS)

(Martel et al., 2021; Mapuranga et al., 2022a; Mapuranga et al.,

2022b). The plants in response developed a second layer of

innate immunity known as effector-triggered immunity (ETI), in

which the plant resistance proteins recognize corresponding

avirulence factors and set off a powerful defensive response. As

originally proposed by Jones and Dangl, the PTI-ETS-ETI cycle

continues and is portrayed as a zig-zag model (Jones and

Dangl, 2006).

During ETI, the host immune system is activated by NLRs’

detection of effector molecules secreted by the pathogen. This

detection can occur either directly or indirectly, with the NLR

(also known as the guard) recognizing the effector-mediated

alteration of a host pathogenicity target or a decoy of this target

(also known as the guardee) (van der Hoorn and Kamoun, 2008;

Dodds and Rathjen, 2010). In NLR proteins, the C-terminal

leucine-rich repeats provide the guarding function, while the N-

terminal nucleotide-binding and coiled-coil or TIR domains

confer the signaling capacity. The guard model unraveled a

useful framework for understanding the molecular mechanisms

and evolution of plant resistance genes. All three interactors;

guard, guardee and effector are subject to diversifying selection,

but for the guardee, this can be constrained by the requirement

to maintain cellular function. The decoy pathogenicity target

may be integrated into the NLR itself in certain circumstances.
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Sensor NLRs frequently collaborates with a second helper NLR,

which initiates downstream signaling upon sensor NLR

activation (Cesari et al., 2014; Kourelis and van der Hoorn,

2018). The wheat Lr10 locus contains two NLR-encoding genes

that are necessary for resistance (Loutre et al., 2009). Race-

specific leaf rust disease resistance gene Lr14a encodes a

membrane-localized protein containing twelve ankyrin (ANK)

repeats with structural resemblances to Ca2+-permeable non-

selective cation channels. The ANK domain could be a direct

target of pathogen effectors and Lr14a indirectly recognizes the

AvrLR14A (Kolodziej et al., 2021). The wheat stripe rust

resistance gene YrU1 encodes a coiled-coil nucleotide binding

site leucine-rich repeat (CC-NBS-LRR) protein with N-terminal

ankyrin-repeat and C-terminal WRKY domains immune

receptors (Wang et al., 2020b). The ANK domain of YrU1 is

derived from ANK-transmembrane proteins and possibly serves

as a decoy for pathogen effectors (Wang et al., 2020b). Self-

association of the N-terminal of NLR proteins of Sr33, Sr50 plays

a crucial role in triggering downstream immune signals (Cesari

et al., 2016). Sr33 and Sr35 can induce an effector-independent

cell death response in planta (Cesari et al., 2016), and the

nominal defense signaling component is the N-terminal CC

domain and the dimerization of this domain is required for

signaling. Sr62 is also a pathogenicity target guarded by an NLR

(Yu et al., 2022).
3 Genetics of wheat resistance
to rusts

Many attempts have been made to extract rust-resistant

genes in cereal plants and know how to effectively deploy

them for long-term disease management. Genetic resistance

may be effective and chemical-free. Many efforts are being

devoted at extracting rust-resistant genes in wheat and

knowing how to best deploy them for long-term resistance

since genetic resistance can provide effective and chemical-free

disease control (Ellis et al., 2014). Furthermore, closely related

nonhost species are increasingly being used to uncover new

sources of resistance (Kawashima et al., 2016). However,

although host genotype resistance and fungicide application

are the most generally utilized approaches for controlling

wheat rusts, effective agronomic approaches are required to

reduce disease management costs and increase wheat

production sustainability. A greater knowledge of the spatial

and temporal heterogeneity in the structure of wheat rust growth

must aid in more effective and long-term disease control (Naseri

and Sharifi, 2019). For example, an integration of earlier disease

onset, later planting and maturation, lower cultivar resistance,

warmer winter, and even colder and wetter days throughout the

autumn-winter-spring period exacerbated leaf and stripe rust

outbreaks in wheat crops harvests (Naseri and Marefat, 2019;
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Naseri and Sasani, 2020). These substantial linkages also

highlighted the potential of increasing resistance levels in

wheat cultivars by selecting the correct planting date to limit

disease development under optimal climatic conditions.

However, there is limited knowledge about a combined

interaction of climate (relative humidity and temperature),

disease (onset and severity), genotype (maturity and

resistance), and planting date to predict intensity of wheat leaf

rust (Naseri and Sasani, 2020).

Plant genetic resistance to diseases caused by biotrophic

fungi is essential for breeding crops worldwide because it

provides innovative strategies for disease control (Jiquel et al.,

2021). There are two types of genetic resistance to rust infection

in wheat namely, race-specific resistance and non-race specific

resistance. Over 200 resistance genes to fungal rusts have been

genetically identified with the majority conferring race-specific

resistance (McIntosh et al., 1995; McIntosh et al., 2013;

McIntosh et al., 2017). So far in wheat, more than 100, 80 and

66 genes for resistance against leaf rust, stripe rust, and stem rust

respectively, have already been identified and designated

globally, and are distributed on all the 21 wheat chromosomes

(McIntosh et al., 2017; Hafeez et al., 2021; Jan et al., 2021; Kumar

et al., 2022). More than 100 leaf rust resistance genes (~50%

derived from wild progenitor and non-progenitor species) have

been identified, and only eleven of these have been cloned so far,

including Lr1 (Cloutier et al., 2007), Lr9 (Wang et al., 2022),

Lr10 (Feuillet et al., 2003), Lr13 (Hewitt et al., 2021; Yan et al.,

2021), Lr14a (Kolodziej et al., 2021), Lr21 (Huang et al., 2003),

Lr22a (Thind et al., 2017), Lr34/Yr18/Sr57 (Krattinger et al.,

2009), Lr42 (Lin et al., 2022), Lr58 (Wang et al., 2022), and Lr67/

Yr46/Sr55 (Moore et al., 2015) (Table 1). Only ten of the stripe

rust resistance genes including Yr5/YrSp (Marchal et al., 2018),

Yr7 (Marchal et al., 2018), Yr10 (Liu et al., 2014), Yr15 (Klymiuk

et al., 2018), Yr27 (Athiyannan et al., 2022), Yr36 (Fu et al., 2009;

Gou et al., 2015), Yr18 (Krattinger et al., 2009), YrU1 (Wang

et al., 2020b), Yr46 (Moore et al., 2015) and YrAS2388R (Zhang

et al., 2019) have been cloned so far (Table 1). Till date, 66

distinct stem rust resistance genes on 59 loci have been

designated in wheat, and just over half of them are from bread

wheat, while the remainder were introgressed into wheat from

wild and related spp. It was recently reported that, eight Sr genes

are from domesticated wheat Triticum spp., eleven are from

Aegilops spp., four are from Secale cereale, four are from wheat

grass Thinopyrum spp., and one is from the grass Dasypyrum

villosum (Hafeez et al., 2021; Gaurav et al., 2022; Yu et al., 2022).

15 of the 66 designated Sr genes have been cloned so far,

including Sr13 (Zhang et al., 2017b; Gaurav et al., 2022), Sr21

(Chen et al., 2018), Sr22 (Steuernagel et al., 2016), Sr26 (Zhang

et al., 2021a), Sr33 (Periyannan et al., 2013), Sr35 (Saintenac

et al., 2013), Sr45 (Steuernagel et al., 2016), Sr46 (Arora et al.,

2019), Sr50 (Mago et al., 2015), Sr55/Lr67 (Moore et al.,

2015), Sr57/Lr34 (Krattinger et al., 2009), SrTA1662 (Arora

et al., 2019), Sr60 (Chen et al., 2020), Sr61 (Zhang et al., 2021a)
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and Sr62 (Yu et al., 2022). The continuous emergence of new

races of rust pathogens complicates the maintenance of effective

sources of genetic resistance in the field and emphasizes the

difficulties inherent in controlling these diseases purely via

genetic resistance (Ellis et al., 2014).
3.1 Race-specific resistance

Race-specific resistance is also known as qualitative

resistance, vertical resistance, specific resistance, major gene

resistance, monogenic resistance, actual resistance, all-stage

resistance or whole resistance. Since it is unique to particular

pathogen races and is susceptible to other pathogen races, this

kind of resistance is vertical resistance. It is often achieved by the

improvement of a hypersensitive pinpoint fleck reaction. It is

referred to as major gene resistance because it is governed by a

significant gene (Maurya et al., 2021). It is common to discover

race-specific resistance during the seedling or adult development

stages when various resistance responses to infection are seen. It

is often inherited qualitatively, has a limited life span, and is

readily defeated by more aggressive races of rust fungus that

emerge (Maurya et al., 2021). It is common to discover race-

specific resistance during the seedling or adult development

stages when various resistance responses to infection are seen.

It is often inherited qualitatively, has a limited life span of 3 – 5

years, and is readily defeated by more aggressive emerging races

of rust pathogens (Maurya et al., 2021). It is referred to as whole/

actual resistance because the resistance manifests itself in the

form of complete suppression of disease symptoms

improvement. Race-specific resistance genes typically follow

the conventional gene-for-gene paradigm, in which resistance

is determined by a particular genetic interaction between a host

resistance gene and its corresponding avirulence gene

(Periyannan et al., 2017). In most cases, race-specific resistance

manifests itself as hypersensitive response, which is

characterized by rapid cell death that occurs at the interface

between fungal haustoria and host cells in the epidermal and

mesophyll layers. A total of 66 genes/alleles at 59 loci confer

resistance to Pgt in wheat, and of the 59 cataloged loci, 53 are

expressed at all growth stages, and six confer adult

plant resistance.

Different R genes influence the development of distinct

resistance phenotypes or infection types in different cultivars.

Examples of such responses include wheat lines with Lr3

showing well marked hypersensitive flecks, while lines with

Lr2a showed only very faint flecks that were difficult to

distinguish from the background grain coloration (Bolton

et al., 2008). In addition to these race-specific resistance

responses, those conditioned by wheat lines with Lr3ka, Lr3bg,

and Lr11 showed tiny uredinia surrounded by chlorosis, while

those conditioned by wheat lines with Lr16 showed trivial

uredinia bounded by necrosis. Lr14a-containing lines
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TABLE 1 A summary of cloned Lr, Sr, and Yr genes for leaf rust, stem rust, and stripe rust resistance, respectively.

Gene
cloned

Chromosome
position

R-gene product R-gene class Cloning
Technique

References

Lr1 5DL A coiled coil (CC), nucleotide binding site (NBS), leucine rich-
repeat (LRR) protein of 1344 amino acid residues

All-stage resistance Map-based
cloning

(Cloutier
et al., 2007)

Lr9 6BL An unusual tandem kinase fusion protein of 1167 amino acid
residues with an N-terminal tandem kinase domain followed by a
von Willebrand factor A (vWA) domain and a Vwaint domain in
the C-terminal.

All-stage resistance MutIsoSeq (Wang et al.,
2022)

Lr10 1AS A 919 amino acid residues CC-NBS-LRR protein with an N-
terminal domain

All-stage resistance Map-based
cloning

(Feuillet
et al., 2003)

Lr13/Ne2 2BS A CC-NBS-LRR protein of 1073 amino acid residues High temperature adult plant
resistance.
Exhibits pleiotropic effects on
hybrid necrosis

MutRenSeq (Hewitt et al.,
2021; Yan
et al., 2021)

Lr14a 7BL A protein of 779 amino acids with an N-terminal domain
containing 12 ANK repeats followed by six predicted
transmembrane helices

All-stage resistance MutChromSeq (Kolodziej
et al., 2021)

Lr21 1DL A 1080 amino acid residues protein having a conserved NBS
domain with 13 LRRs and distinct 151-amino acid sequence

All-stage resistance Map-based
cloning

(Huang et al.,
2003)

Lr22a 2DS A 912 amino-acid immune receptor protein similar to Arabidopsis
RPM1

Adult -stage resistance
N-terminal amino acids of
RPM1 interact with the RPM1-
interacting protein 4, resulting
in a HR

Map-based
cloning and
TACCA

(Thind et al.,
2017)

Lr34/Yr18/
Sr57

7DS A 1401 amino acid ABC transporter with similarity to pleiotropic
drug resistance subgroup of ABC transporters

Adult plant resistance
Possible toxin transporter.
Lr34res increases anti-fungal
phenylpropanoid diglyceride

Map-based
cloning

(Krattinger
et al., 2009)

Lr42 IDS A typical CC-NBS-LRR protein of 920 amino acid residues and is
likely to be a singleton or helper NLR not sensor NLR

All-stage resistance BSR-Seq
mapping

(Lin et al.,
2022)

Lr58 2BL An unusual tandem kinase fusion protein of 1167 amino acid
residues with an N-terminal tandem kinase domain followed by a
von Willebrand factor A (vWA) domain and a Vwaint domain in
the C-terminal.

All-stage resistance MutIsoSeq (Wang et al.,
2022)

Lr67/Yr46/
Sr55

4DL A 514-amino acid hexose transporter with 12 trans-membrane
helices

Adult plant resistance or HTAP
restistance.
Negatively regulates hexose
transporter

Map-based
cloning

(Moore et al.,
2015)

Sr13 6AL A CC-NBS-LRR protein of 948 amino acid residues All-stage resistance Map-based
cloning

(Zhang et al.,
2019)

Sr21 1DS A CC-NBS-LRR protein of 1624 amino acid residues All-stage resistance Map-based
cloning

(Chen et al.,
2018)

Sr22 7AL A 941 amino acid residues CC-NBS-LRR protein All-stage resistance MutRenSeq (Steuernagel
et al., 2016)

Sr26 6A A CC-NBS-LRR protein of 880 amino acid residues All-stage resistance MutRenSeq (Zhang et al.,
2021a)

Sr33 1DS A CC-NBS-LRR protein of 961 amino acid residues All-stage resistance Map-based
cloning

(Periyannan
et al., 2013)

Sr35 3AL A CC-NBS-LRR protein of 919 amino acid residues All-stage resistance Map-based
cloning

(Saintenac
et al., 2013)

Sr45 1DS A CC-NBS-LRR protein of 1230 amino acid residues All-stage resistance MutRenSeq (Steuernagel
et al., 2016)

Sr46 2DS A CC-NBS-LRR protein of 924 amino acid residues All-stage resistance AgRenSeq (Arora et al.,
2019)

Sr50* 1D A CC-NBS-LRR protein of 956 amino acid residues All-stage resistance Map-based
cloning

(Mago et al.,
2015; Chen
et al., 2017b)

(Continued)
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displayed a wide range of mesothetic resistance responses with

different portions of hypersensitive flecks and leaf rust uredia.

Moreover, the Lr14a gene activity has been classified as

temperature sensitive (Kolodziej et al., 2021). Lr genes that are

unique to a certain race are effective in seedling plants and

continue to be functional in mature plants. Although certain

genes, such as Lr12 and Lr13, and Lr22a are responsible for

conditioning resistance in young plants, the resistance

conditioned by these genes is best manifested in mature

plants. In wheat lines that have combinations of resistance

genes, the gene that confers the most resistance to the most

severe infection type is epistatic to the gene that confers the least

resistance to the least severe infection type (Bolton et al., 2008).

Many studies have been conducted to characterize

temperature-responsive resistance genes using various pre and

post inoculation conditions, but the influence of temperature

change has seldom been examined. However, temperatures

change regularly in nature, and the influence of this on
Frontiers in Plant Science 06
resistance requires additional exploration. Understanding how

temperature variations impact resistance might lead to the

breeding of more stable pathogen resistance in wheat (Bryant

et al., 2014). Several studies predicted the severity of wheat leaf

rust epidemics using a number climate, crop and disease

variables and different disease management descriptors such as

disease-cycle, host-growth stages, planting date and cultivar

resistance (Rao et al., 1990; Rossi et al., 1997; Moschini and

Pérez, 1999; Räder et al., 2007; Naseri and Mousavi, 2013;

Naseri, 2014a; Naseri, 2014b; Savary et al., 2015; Naseri and

Marefat, 2019; Naseri and Sharifi, 2019; Naseri and Sasani, 2020;

Naseri and Sabeti, 2021). Recently, two studies established

interrelationships among disease onset date, leaf rust severity

area under disease progressive curve, planting time, maturity

time, relative humidity of greater than 60% mean six-monthly

and temperature range of 5-25°C (Naseri and Sasani, 2020;

Naseri and Sabeti, 2021). Such a close relationship between

wheat maturation and planting date as wheat leaf rust
TABLE 1 Continued

Gene
cloned

Chromosome
position

R-gene product R-gene class Cloning
Technique

References

Sr60
(WKS2)

5AS A tandem protein kinase of 724 amino acid residues All-stage resistance Map-based
cloning

(Chen et al.,
2020)

Sr61 6E A protein of 880 amino acid residues with CC, NB-ARC domains
and LRR motifs

All-stage resistance MutRenSeq (Zhang et al.,
2021a)

Sr62 1Ssh A tandem protein kinase of 740 amino acid residues All-stage resistance AgRenSeq (Yu et al.,
2022)

SrTA1662 1DS A CC-NBS-LRR protein All-stage resistance AgRenSeq (Arora et al.,
2019)

YrAS2388R 4DS A CC-NBS-LRR protein of 1068 amino acid residues All-stage resistance Map-based
cloning

(Zhang et al.,
2019)

Yr5a(Yr5),
Yr5b
(YrSP)**

2BL NBS-LRR proteins of 1522 and 876 amino acid residues,
respectively, with a distinct N-terminal zinc-finger BED domain

All-stage resistance MutRenSeq (Marchal
et al., 2018)

Yr7 2BL A NBS-LRR protein of 1586 amino acid residues with a distinct N-
terminal zinc-finger BED domain

All-stage resistance MutRenSeq (Marchal
et al., 2018)

Yr10
(Yr10cg)
***

1BL A CC-NBS-LRR protein of 824 amino acid residues, possessing 11
imperfect LRR units, P-loop, kinase-2a and kinase-3a conserved
domains,

All-stage resistance Map-based
cloning

(Liu et al.,
2014)

Yr15/
YrG303/
YrH52

1BS Tandem kinase-pseudokinase (TKP) of 665 amino acid residues. All-stage resistance Map-based
cloning

(Klymiuk
et al., 2018)

Yr27 2BS A highly variable NLR of 1072 amino acid residues with a variable
stretch withing its LRR domain that might serve for defining
recognition specificity. Allelic to leaf rust resistance gene Lr13

All-stage resistance Long-read
genome
sequencing

(Athiyannan
et al., 2022)

Yr36 6BS A protein of 645 amino acid residues with a combination of serine/
threonine kinase START domains

Adult plant resistance Map-based
cloning

(Fu et al.,
2009; Gou
et al., 2015)

YrU1 5AL An ANK-NLR-WRK protein of 1576 amino acid residues with N-
terminal ANK repeat and C-terminal WRKY domains

All-stage resistance
Homodimerization of the CC
and ANK domains resulting in
transduction of immune signals

Map-based
cloning

(Wang et al.,
2020b)
fr
Lr leaf rust, Sr stem rust, Yr stripe rust.
*Sr50 is located on 1D in wheat but in rye it is on 1RS.
**Yr5a and Yr5b are alleles.
***The cloned gene originally proposed to be Yr10, has been found to encode a different resistance gene, Yr10cg (Yuan et al., 2018).
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predictors appears significant, because planting date has also

been considered a primary disease management operation in a

wide range of agricultural crops (Moschini and Pérez, 1999;

Naseri, 2013; Naseri, 2014a; Naseri, 2014b; Naseri and Sharifi,

2019). Furthermore, these findings may enhance breeding for

more resistant genotypes given that a combination of climate,

maturity and planting date would be studied for screening wheat

varieties (Naseri and Sasani, 2020). Further research is required

to explore these links in diverse geographical locations with

varying host and pathogen genotypes, and climatic conditions

environmental circumstances. These new findings suggested that

current predicting models should be improved by including

dates of maturation and sowing as well as wheat resistance in

addition to rainfall-temperature-wetness variables. This would

allow for more efficient, cost-effective, and environmentally

friendly management of stem rust epidemics. This study also

laid a foundation for advanced understanding of stem rust

outbreaks in relation to more relevant climate-crop factors

which need to be confirmed in various geographical locations

in the future.
3.2 Non-race specific resistance

Non-race specific resistance is also known as quantitative

resistance, adult plant resistance, slow rusting resistance,

horizontal resistance, partial resistance, polygenic resistance,

standard resistance, discipline resistance, or minor gene

resistance. This type of resistance is referred to as quantitative

resistance because it is primarily determined by the amount of

disease symptom improvement, which can be quantified by

different infection types like necrotic and chlorotic regions

with constrained sporulation, reduced spore production per

infection site, smaller uredinial size, as well as lesion size and

area (Lagudah, 2011). Such resistance is often quantitative in

nature, featuring a partial resistance phenotype in which the

pathogen’s growth is inhibited but no evident immune response

is shown. It is referred to as horizontal resistance because it is

active against many different races of the pathogen. It is non-

specific resistance because the resistance is not necessarily

specific to a precise race for it to be most effective. It is

referred to as minor gene resistance since a small number of

genes control the resistance. When it comes to resistance

expression, minor genes have limited impacts and display

quantitative segregation, while major genes have substantial

effects (Maurya et al., 2021). It is referred to as standard/

partial/field resistance since it is the most effective partial and

field tolerant resistance. However, even though those

descriptions sound appealing, there are several exceptions to

this broad group. This resistance manifests itself in wheat at later

stages of development and is thus referred to as APR (Li

et al., 2014).
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After the successful cloning of many wheats adult plant rust

resistance genes in recent years, researchers have gained some

insights into the processes of non-race specific resistance. Pre-

infection components may also play a role in a few quantitative

resistance cases, while sporulation is not necessarily impacted in

a few qualitative resistance cases. Accurate levels of race non-

specific resistance need the participation of genes with effects

ranging from minor to moderate in importance. Slow rusting is

the term used to describe this trait, which is often related to adult

plant resistance (Lagudah, 2011). Even when 4 or 5 genes are

combined, most slow rusting genes do not provide a suitable

degree of resistance, particularly under severe disease pressure,

but the amount of resistance may reach up to near immunity

(Singh et al., 2000). It was observed that the interaction or

cumulative actions of known and undiscovered adult plant

resistance genes contribute significantly to the improvement of

resistance durability (Gupta and Saini, 1993). Using

transgressive segregation, combining various genes, including

slow rusting adult plant resistance genes, might increase the

expression of resistance (Singh et al., 2013). Yr36, Lr67/Yr46/

Sr55, and Yr34/Yr18/Sr57 cause leaf-tip necrosis and rapid

senescence, like the uncloned Lr46/Yr29/Sr58 gene. These

behavioral similarities suggest a single mechanism, consistent

with the lack of additivity when these genes are coupled.

Significantly, race-specific and race-non-specific resistance

genes commonly demonstrate additivity, suggesting they

should be employed together for improved protection (Ellis

et al., 2014).

Several genes are involved in quantitative disease resistance,

with each gene contributing to a different level of resistance.

Since quantitative disease resistance reduces the selection

pressure against pathogen variants, those that overcome a

single quantitative resistance locus have no advantage over

their counterparts in survival and reproduction. Consequently,

quantitative disease resistance is more likely to be long-lasting

than R gene-mediated resistance (Parlevliet, 2002). Quantitative

resistance, in contrast to qualitative resistance, exhibits strikingly

different properties. Unlike the majority of NLR-encoding R

genes, certain adult plant resistance genes showed high

durability in the field, such as Sr2 (Ellis et al., 2014), and Lr34/

Yr18/Sr57 (Krattinger et al., 2009; Risk et al., 2013), which have

been very effective in the field against many races of stem rust

and leaf rust, respectively, in a variety of environments for

almost 100 years. Combining Lr34 with other adult plant

resistance genes namely Lr46, Lr67 and Lr68, significantly

reduced damage from leaf rust (Silva et al., 2015). The

determination of their genetic nature through cloning is

important to predict their durability. Most of the identified

wheat rust resistance genes are race specific all-stage

resistance, and only a few are adult plant resistance genes such

as Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55, Lr68, Sr2,

Sr13, Sr21, Yr30, Yr36. Among the adult plant resistance
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genes, Lr34/Yr18/Pm38/Sr57 (Singh et al., 2012), Lr46/Yr29/

Pm39/Sr58 (Singh et al., 2013b), and Lr67/Yr46/Pm46/Sr55

(Herrera-Foessel et al., 2014) confer pleiotropic adult plant

resistance to all three rust pathogens plus powdery mildew

caused by the fungal pathogen Blumeria graminis f. sp. tritici

(William et al., 2003; Lillemo et al., 2008).

Wall-associated kinases (WAKs) represent a diverse cell

surface immune receptor sub-family, specific to plants. WAKs

confer resistance via different mechanisms ranging from non-

specific quantitative resistance to a high level of specific

resistance against particular races of pathogens (Kou and

Wang, 2010). Wheat TaWAK6 a non-arginine-aspartate wall-

associated kinase, with an extracellular GUB domain, a calcium-

binding epidermal growth factor domain, and a cytoplasmic

serine/threonine kinase domain was shown to be important for

the development of quantitative and adult plant resistance

(Dmochowska-Boguta et al., 2020). When plants reach the

adult stage and the weather warms, high-temperature adult

plant resistance increases or rises, while high-temperature

seedling plant resistance is induced following exposure of

wheat seedling to a temperature of 20°C for just 24 hours

during the early stage of Pst incubation (Wang et al., 2017a;

Wang et al., 2019b). TaRPM1, an NBS-LRR gene in wheat, has

been shown to favorably control high-temperature seedling

plant resistance to Pst via the salicylic acid signaling pathway

(Wang et al., 2020c). Several genes are involved in quantitative

disease resistance, with each gene contributing to a different level

of resistance. Since quantitative disease resistance lessens the

selection pressure against pathogen variations, this increases

breakdown risks and there is need to incorporate other

influential disease management tools in particular proper

planting dates for each region and defense system induction

by natural products such as silicon. Silicon is a bioactive element

that has been shown to effectively alleviate biotic and biotic

stresses, and enhance resistance against pathogenic fungi (Wang

et al., 2017c). Silicon-induced biochemical or molecular

resistance during plant-pathogen interactions was dominated

as joint resistance, involving activation of defense-related

enzymes, regulation of the complex network of signal

pathways, stimulation of antimicrobial compound production,

and activation of the expression of defense-related genes (Wang

et al., 2017c). Understanding plant-microbe interactions

mediated by silicon will aid in the efficient usage of this

bioactive element to increase crop yield and improve plant

disease resistance. Because many plants are unable to

accumulate silicon at sufficient levels to be useful, genetically

modifying the root’s silicon absorption capacity may help plants

accumulate more silicon and, as a result, increase their ability to

withstand biotic and abiotic challenges (Ma and Yamaji, 2006).

Recently, concurrently occurring of leaf rust infection and

drought stress was alleviated by exogenous silicon and

hydrogen sulfide (Naz et al., 2021). The expression of stress

and pathogenesis-related proteins will be studied in the future
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under individual and interactive stress conditions. Although

numerous studies have shed light on the physical, biochemical,

and molecular levels of silicon-mediated resistance, detailed

mechanisms of silicon-mediated plant-microbe interactions,

such as plant signaling transduction and transcriptome

regulation of defense-related pathways, require further

investigation (Wang et al., 2017c). Apart from our limited

knowledge about the structural and functional characteristics

of silicon transport proteins, there are many unanswered

questions, such as the role of silicon in interactions with

signaling molecules under normal and stress conditions, its

impact on nutrient uptake, its influence on the photosynthetic

machinery, and its role in phytohormones integration. Gaining a

deeper understanding of silicon biology may be beneficial to a

variety of disciplines such as agriculture, ecology, and industrial

applications. Although significant progress has been made in the

development of methods for the control of wheat stripe rust,

research on the interplay between climate-disease-planting-date-

resistance interaction in this pathosystem merits further

investigation. Naseri and Marefat (2019) reported the first

study that integrated the effects of relative humidity and air

temperature, disease onset, maturity date, planting date, and

wheat resistance on the severity of stripe rust. Because of the

relationship between environment, maturity, and planting date,

we now have a better knowledge of cultivar resistance in a rust-

wheat pathosystem. Therefore, these findings provide a basis for

using climatic conditions, maturity, and planting date as

influential traits for selecting wheat varieties to improve

disease prediction accuracy, resistance durability, and

management efficacy (Naseri and Marefat, 2019). Further

study is needed to assess the relevance of current linkages to

diverse geographical locations, pathogen and host genotypes,

and environmental variables.
4 Cloning and characterization of
wheat R genes

Over the past century, the wheat-rust pathosystem was

researched intensively among host–pathogen interactions

because of its significance to the economy. Wheat rust

resistance genes started to be isolated and cloned in the late

1990s, and the first rust resistance gene to be successfully isolated

and characterized was reported in 2003 (Feuillet et al., 2003).

The allele of Lr34/Yr18/Sr57 which in wheat confers durable

resistance against rust pathogens, was cloned in 2009 (Krattinger

et al., 2009). 32 rust resistance genes have been cloned so far

using a variety of strategies, with more than half of these having

been cloned only in the last 5 years (Zhang et al., 2020b; Hafeez

et al., 2021). This was made possible by the availability of the

world’s first high-quality reference genome for wheat (Chinese

Spring RefSeq v1.0) and the development of various approaches

for reducing genome complexity in order to allow targeted
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resequencing analyses to be conducted. Target-sequence

enrichment and sequencing (TEnSeq) pipelines, in particular,

were utilized for the discovery of 16 out of the 32 genes. TEnSeq

pipelines have several approaches that include mutagenesis and

the resistance gene enrichment and sequencing (MutRenSeq)

(Steuernagel et al., 2016; Marchal et al., 2018; Zhang et al., 2021a;

Yan et al., 2021; Hewitt et al., 2021), association genetics with

resistance gene enrichment sequencing (AgRenSeq) (Arora et al.,

2019; Yu et al., 2022), mutagenesis chromosome flow sorting and

short-read sequencing (MutChromSeq) (Sánchez-Martıń et al.,

2016), targeted chromosome-based cloning (TACCA) (Thind

et al., 2017), mutagenesis isoform sequencing and transcriptome

deep sequencing (MutIsoSeq), and bulked segregant RNA-Seq

(BSR-Seq) (Lin et al., 2022). TACCA and MutChromSeq are

based on the purification of individual chromosomes from

wheat lines, whereas MutRenSeq and AgRenSeq are based on

NLR-targeted DNA capture by hybridization (Zhang et al.,

2020b). MutIsoSeq integrates isoform sequencing (Iso-seq) and

transcriptome deep sequencing (RNA-seq) (Wang et al., 2022).

Three major R gene families in wheat have been reported

based on their sensitivity, specificity, and durability (Krattinger

et al., 2016). The families include genes that provide resistance to

a single pathogen race only (NLR family), genes that confer non-

race specific resistance to multiple races of multiple pathogens

concurrently (ABC family); and genes that confer non-race

specific resistance to all races of a single pathogen species

(START family proteins). The most prevalent type of proteins

encoded by plant R genes are nucleotide-binding site leucine-

rich repeat (NBS-LRR) proteins, which act primarily by

recognizing the effector molecules secreted by pathogens to

suppress host defense responses (Jones et al., 2016). Plant NLR

gene families have radiated and diversified to aid in the battle

against potentially infectious pathogens, for example, through

localized gene duplication or mutation within their LRR

domains that bind pathogen effectors (Sarris et al., 2016).

Furthermore, certain NBS-LRRs have additional integrated

domains, the most common of which are kinase and DNA-

binding domains (Andersen et al., 2020; Steuernagel et al., 2020),

which are thought to be important in receptor activation or

downstream signaling (Sarris et al., 2016). RAR1 and SGT1 are

molecular chaperones needed for R gene expression, such as

Lr21 (Huang et al., 2003) and Lr24 (Zhang et al., 2011).

25 out of 32 cloned wheat R genes that give all-stage

resistance encode NBS-LRRs (Table 1). Furthermore, all except

two of these 25 NBS-LRRs have CC domains near their N-

termini; the exceptions are Yr7 and the allelic R genes Yr5/YrSP,

which each have an N-terminus integrated BED zinc finger

domain (Marchal et al., 2018). Sr60, is race-specific but confers a

partial resistance phenotype and encodes a protein with two

putative kinase domains (Chen et al., 2020). YrU1 encodes a

protein with N-terminal ANK repeat and C-terminal WRKY

domains (Wang et al., 2020b). The activity of YrU1 in wheat’s

resistance to stripe rust is dependent upon the homo-
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dimerization of CC and ANK repeats (Wang et al., 2020b).

Lr14a encodes a protein with an N-terminal domain containing

12 ANK repeats followed by six predicted transmembrane

helices (Kolodziej et al., 2021). There is an increasing interest

in more long-lasting sources of resistance due to continuing

alterations and swift spread of Pst populations worldwide. Four

adult plant Yr genes have so far been cloned. Yr36 encodes a

protein with a kinase and START lipid-binding domain,

WHEAT KINASE START 1 (WKS1) (Fu et al., 2009) WKS1

mediates resistance by phosphorylating the photosystem II

manganese-stabilizing polypeptide (PsbO) protein complex

found in the chloroplast’s thylakoid membrane (Figure 1).

Phosphorylation of PsbO results in the production of reactive

oxygen species and ultimately H2O2, which induces cell-death-

mediated defense against the stripe rust fungus. WKS1 then

phosphorylates the enzyme thylakoid ascorbate peroxidase

(tAPX) to inhibit H2O2 degradation (Gou et al., 2015; Wang

et al., 2019d). Interestingly, Yr36 showed additive resistance with

both Lr34 and Lr67 suggesting different mode of action to these

other two genes. Hordeum vulgare (Hv)STP13, like the

pathogen-susceptible version of wheat Lr67, encodes a protein

involved in the transport of glucose molecules. Because

pathogens are sensitive to changes in these sugar transporter

functions, powdery mildew-resistant barley lines were recently

developed by mutating HvSTP13 (Skoppek et al., 2022).

Following that, it was discovered that introducing wheat Lr67

into barley disrupted the functioning of HvSTP13, since the

resulting transgenic lines were resistant to barley leaf rust and

powdery mildew diseases. This resistant form of HvSTP13, like

Lr34 in barley, is produced early in plant development in

transgenic barley lines, and its protein product triggers

pathogenesis-related genes to induce defense (Dinglasan et al.,

2022). Nevertheless, Lr67-mediated multi-pathogen resistance is

conferred by a sugar transporter protein (STP) which belongs to

the sub-group STP13 (Figure 1).

However, not all adult plant resistance genes confer broad-

spectrum resistance. Notably, wheat tandem kinase 1 (WTK1),

expressed by the gene Yr15, and wheat tandem kinase 3, which is

encoded by the gene Pm24, both confer broad spectrum all-stage

resistance against more than three thousand genetically varied

Pst isolates and thirty-six tested isolates of Bgt, respectively

(Klymiuk et al., 2018; Lu et al., 2020). Yr15 has recently been

found to be allelic with YrG303/YrH52 (Klymiuk et al., 2019). In

recent years, a hitherto unknown category of intracellular

receptors known as tandem kinase proteins (TKPs) has

emerged as an example of an unusual class of resistance

proteins. TKPs consists of two distinct kinase domains that are

linked together by a linker region (Klymiuk et al., 2021). Wheat

and its relatives have been responsible for the discovery of five

out of a total of six TKPs that have been functionally

characterized in plants (Klymiuk et al., 2018; Chen et al., 2020;

Lu et al., 2020; Gaurav et al., 2022). Sr62 is a tandem kinase gene

that was recently discovered to confer significant levels of
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resistance against twelve geographically diverse Pgt isolates in

wheat (Yu et al., 2022). According to mutation study results,

both of the kinase domains of Sr62 were necessary for resistance

(Yu et al., 2022). There is currently a lack of understanding about

the molecular mechanism behind TKP-mediated resistance. It

has been suggested that the pseudokinase domain, or one of the

kinase domains, might serve as a decoy for the detection of

pathogen effectors, and the kinase domain once activated, could

begin downstream defense signaling (Klymiuk et al., 2021).

Recently, a MutIsoSeq study unraveled the evolving function

of kinase fusion proteins in wheat rust resistance. Lr9 and Lr58

were found to have the same coding sequence and cytogenic and

haplotype analyses revealed that they originated from an

identical translocation event (Wang et al., 2022). Both genes

encode an unusual tandem kinase fusion protein with an N-

terminal tandem kinase domain followed by a von Willebrand

factor A (vWA) domain and a Vwaint domain in the C-

terminus. Furthermore, the two genes both confer strong

broad-spectrum resistance against many Pt races under

regulated conditions (Wang et al., 2022). A comprehensive

study on the hexaploid wheat genome identified NLR, ABC,

and START genes, as well as how they are physically linked to R

genes at both seedling and adult stages (Peng and Yang, 2017).

According to the findings, the ABC and START genes are more
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likely to be co-located with non-race specific adult resistance

genes, while the NLR genes are more likely to be co-located with

race-specific resistance genes that are often expressed at the

seedling stage (Peng and Yang, 2017). Given the tendency of

NLR genes to be overcome by pathogen mutation to virulence it

seems unlikely that this latter type of adult plant resistance will

remain durable. Resistance genes that have been cloned might be

potentially beneficial in the assembly of transgenic multigene

cassettes for the purpose of producing robust and long-lasting

resistant cultivars to battle rapidly emerging virulent fungal

pathogens (Wulff and Moscou, 2014; Luo et al., 2021).
5 Molecular basis of interactions
between wheat and rusts

Plants have a complex innate immune system that helps

them to fight different pathogens. Wheat defense responses

against pathogens consist of a strongly regulated and

multifaceted molecular network which involves an extensive

gene expression reprogramming during pathogen infections

(Waheed et al., 2021). Distinct plant immune receptors

recognize pathogen-derived chemicals, inducing different

defensive responses that converge into common signaling
FIGURE 1

Proposed model of adult plant resistance gene function. Pathogen-specific (Yr36) and multi-pathogen (Lr34 and Lr67) adult plant resistance
genes and their involvement in plant cell signaling and defense pathways. Yr36, a wheat kinase START1 (WKS1) protein, mediates resistance to
wheat stripe rust through phosphorylation of photosystem II manganese-stabilizing polypeptide protein complex (PsbO) found in the
chloroplast thylakoid membrane. Phosphorylated PsbO is rapidly degraded by proteases, yielding PsbO-free PSII, which has a lower
photosynthesis rate and serves as a source of O−

2 , which is then converted to H2O2. Due to WKS1-mediated phosphorylation, H2O2 cannot be
effectively destroyed by thylakoid ascorbate peroxidase (tAPX) and it accumulates, inducing cell death which curbs Pst growth. Lr34 and Lr67 are
adenosine triphosphate-binding cassette (ABC) and sugar transporter (STP) proteins that confer multi-pathogen resistance through regulation of
abscisic acid (ABA) and hexose sugar molecules, respectively.
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pathways (Lu and Tsuda, 2020). PRRs recognize PAMPs/

MAMPs, and activate PTI to induce defensive mechanisms

against non-adapted infections. PAMPs recognition cause

plant signals such as an oxidative burst, calcium influx,

activation of the mitogen-activated protein kinase (MAPK)

cascades, nitric oxide burst, ethylene synthesis, callose

deposition at the cell wall, and expression of defense-related

genes implicated in immune responses (Boller and Felix, 2009).

Calcium signals affect salicylic-mediated plant immunity.

Calcium acts as a secondary messenger in intra- and

extracellular communication, including signal transfer

(DeFalco et al., 2009). Because of its cytotoxicity, cytosolic

Ca2+ levels in living cells must be kept low (approximately 10˗8

to 10˗7 M), so Ca2+ is sequestered in intracellular stores or the

apoplast via active transport, generating enormous

electrochemical potential gradients across membranes

(Clapham, 2007; Edel et al., 2017; Costa et al., 2018).

Calmodulins (CaMs), calcium-dependent protein kinases

(CDPKs), and calcineurin B-like proteins (CBLs) sense and

decode transient Ca2+ changes. CIPKs are necessary for biotic

stress tolerance when plants interact with pathogens (Liu et al.,

2019). CaM protein was shown to be involved in the early stages

of signal transduction pathway during wheat-Pt interactions.

Preceding findings revealed that TaCaMs were involved in early

stages of incompatible interaction processes and play a critical

role in the wheat resistance signal transduction pathway against

Pt. TaCAMTA4, a putative calmodulin-binding transcription

activator, was found to function as a negative regulator of wheat

defense response to Pt (Wang et al., 2019e). Calcineurin B-like

interacting protein kinases (CIPKs) are critical for the plant’s

tolerance to biotic stresses during plant-pathogen interactions

(Liu et al., 2019). TaCIPK10 was demonstrated to positively

regulate wheat defense responses to Pst by acting as molecular

bridges between Ca2+ and downstream defense components.

Regulation of wheat resistance to Pst was also found to be

enhanced by the interaction and phosphorylation of

TaCIPK10 with TANH2 (Liu et al., 2019).

Wheat resistance to Pt was induced by extracellular Ca2+

influx, which is regulated by the calcium signaling system (Liu

et al., 2015). Ca2+ mediates Pt’s incompatible hypersensitive

response mechanism (Hou et al., 2007; Liu et al., 2010b; Qiao

et al., 2015). TaCRK2 expression was upregulated after Pt

infection and was highly inhibited by ethylene glycol

tetraacetic acid, a chelating agent, in incompatible interactions

between wheat and Pt, while it was not expressed in compatible

interactions. This led Liu and colleagues to hypothesize that it

could be related to Ca2+ signaling and resistance to Pt (Liu et al.,

2019). In a recent study, it was also discovered that TaCRK2 gene

is controlled by a Ca2+ signal and positively regulates leaf rust

resistance in wheat (Gu et al., 2020). It can be concluded that,

during wheat-rust pathogens interactions, the complex

molecular network of wheat cells undergoes extensive
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transcriptional reprogramming to activate a cascade of plant

defense responses to combat infections.
5.1 The network of resistance to different
rust races

The network of resistance can be analyzed using RNA-seq

and metabolomics. Six Pt races were inoculated onto a

susceptible wheat variety, and samples were collected six days

later, shortly before pustule eruption (Neugebauer et al., 2018). A

time course study was utilized to analyze the expression pattern

of 63 wheat genes during infection over the first seven days after

inoculation. Differential expression of 47 wheat genes was

confirmed, with two genes being linked to race-specific gene

expression, indicating that variation in Pt effector repertoires

resulted in distinct wheat interactions. Races from two separate

Pt lineages were linked to differential expression of an

endoplasmic reticulum molecular chaperone gene. In addition,

differential expression of an alanine glyoxylate aminotransferase

gene was shown in Pt races with virulence changes for leaf rust

resistance (Neugebauer et al., 2018). cDNA AFLPs were used to

identify transcript-derived fragments that were differentially

expressed during the first week of Pst infection (Wang et al.,

2009). A downregulation of the expression of chlorophyll a-b

binding proteins and RuBisCO, and an upregulation of the

expression of ten transcript-derived fragments associated with

signal transduction functions was found during the early stages

of infection (Wang et al., 2009). Seventy-three transcripts were

induced by Pst infection in a compatible interaction and

accumulation of transcripts peaked at 24 hpi (Coram et al.,

2010). Of the transcripts discovered, 25 were related to defense,

six to signal transduction, seven to protein and carbohydrate

transport, eight to metabolism, 19 to biotrophic interactions,

four associated with electron transport, and 25 had unidentified

functions (Coram et al., 2010). Furthermore, 42 probe sets were

found to be upregulated and one probe set was found to be

repressed in a Pst-wheat compatible interaction (Bozkurt et al.,

2010). The bulk of the probe sets were involved in defense

responses, whereas nine of them were associated with glucose

metabolism (Bozkurt et al., 2010).

Wheat-Pt incompatible interactions triggered peroxidases

and NADPH oxidases, dubbed respiratory burst oxidase

homologs (Rboh), and reactive oxygen species (ROS)

accumulation in stomata and mesophyll cells around the

infection site (Orczyk et al., 2010). Rboh proteins are directly

controlled by calcium ions through N-terminal EF-hand

calcium-binding motifs (Sagi and Fluhr, 2006). Before

pathogen-induced defense reactions, cytosolic Ca2+ spikes

trigger Rboh activity and an oxidative burst (Zhao et al.,

2005). The expression of the Rboh-like expressing gene

(JG968934) closely matches oxidative burst in both Thatcher
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and TcLr9 lines (Orczyk et al., 2010; Dmochowska-Boguta et al.,

2013). Incompatible interaction reactions increased the

transcription of WAKs, which may function as signal

transducers due to their transmembrane localization, calcium-

mediated signaling, and Rboh-like proteins, which may have

roles in oxidative burst and micronecrotic processes

(Dmochowska-Boguta et al., 2013). Altogether, these findings

showed the involvement of NADPH oxidases and peroxidases in

wheat defense against pathogen infections. De novo

transcriptome assemblies discovered differentially expressed

genes during wheat-Pt compatible interaction. There was an

upregulation of the expression of glutathione-transferase genes

and reactive oxygen species enzymes, resulting in oxidation state

reduction in susceptible cultivars compared to resistant ones

(Chandra et al., 2016). Fifty-nine putative rust-induced RNAs

were found in the flag leaves of Thatcher-Lr34/Yr18/Sr57 spring

wheat isogenic line (Hulbert et al., 2007). Furthermore, 102 and

113 rust response wheat genes linked to the Yr5 and Yr39 genes,

respectively were identified (Chen et al., 2013). When infected

with str ipe rust or powdery mildew, comparat ive

transcriptomics revealed distinct changes in the defense

response genes (Zhang et al., 2014; Hao et al., 2016). In a

stripe rust adult plant resistance study, an upregulation of

pathways involved in systemic symptom development in

response to Pst infection in adult wheat plants was reported

(Hao et al., 2016). However, in seedling wheat-stripe rust

reaction, qualitative resistance was established, where a

major Yr gene was influencing the energy-related, defense-

related, signal transduction, transcription regulation and

metabolism related pathways (Wang et al., 2010). Similarly, a

study on Lr10-mediated wheat leaf rust interaction revealed

specific gene sets contributing to cell wall fortification, signaling,

peroxide oxidation and energy metabolism (Manickavelu et al.,

2010). However, plant survival is ensured by excessive ROS

detoxification viaMAE and oxidase genes due to the presence of

the Lr28 gene which mediates effector recognition and induces a

strong hypersensitive response through upregulation of

candidate MSC, CK, RBOH and terpene synthase genes.

Transcriptome profiling and quantification of differential

expression of genes and proteins is essential in elucidating

regulatory pathways and gene-networks due to their broad

transcript coverage, high sensitivity, and allele-specific

differential expression, (Lindlöf et al., 2015; Chawade et al.,

2016; Chawade et al., 2018). RNA-seq analysis of wheat

seedling leaves infected with Pst identified 520, 148, and 1439

differentially expressed genes that were either transiently

upregulated or downregulated at 1-, 3-, and 7-days

post inoculat ion, respect ively . Gene ontology and

Kyoto Encyclopedia of Genes and Genomes enrichment

analysis revealed the involvement of various biological

processes including MAPK signaling pathway, oxidative

phosphorylation, flavonoid biosynthesis, phenylalanine

metabolism, and photosynthesis, in wheat cultivar SM126’s
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response to Pst infection (Wang et al., 2021b). Four genes

were differently expressed in SM126’s response to Pst infection

at the three time periods. Two of them (TraesCS3B02G192400

and TraesCS5B02G018700) were previously shown to be

involved in the metabolism of zinc (Bhatta et al., 2018) and

nitrogen (Karim et al., 2020). Zinc affects plant-pathogen

interactions through its crucial function in the activation/

stabilization of metalloenzymes (Fones et al., 2010; Cabot

et al., 2019). Nitrogen contributes to plant defense responses

through the control of plant primary metabolism during plant-

pathogen interactions (Wang et al., 2019c). Therefore, it was

postulated that these genes may play essential roles in the unique

resistance networks of SM126. This study also revealed the

involvement of various differentially expressed genes in PTI

and ETI pathways (Wang et al., 2021b).

Cysteine-rich receptor-like kinases (CRKs) are involved in

transduction pathways upon pathogen perception. A wheat CRK

gene (TaCRK10) from wheat variety Xiaoyan 6 (XY6) carries

high temperature seedling plant resistance to Pst stripe rust.

TaCRK10 serves as an important sensor of Pst infection and high

temperatures and activates wheat resistance by regulating

nuclear processes. These findings paved a way for the

elucidation of molecular mechanisms of wheat high

temperature seedling plant resistance to Pst and promoted

efforts in developing wheat varieties with resistance to stripe

rust (Wang et al., 2021a). When wheat plants reach the adult

stage, high temperature adult plant resistance expresses or rises

when the weather warms, while high temperature seedling plant

resistance expresses when wheat seedlings are momentarily

exposed to 20°C for just 24 hours during the early stage of Pst

incubation (Wang et al., 2017a; Wang et al., 2019b). TaRPM1, an

NBS-LRR gene in wheat, was shown to positively regulate high

temperature seedling plant resistance to Pst via salicylic acid-

signaling pathway (Wang et al., 2020c). RNA-seq analysis

established an upregulation of TuRLK1 transcript level after

inoculation with Pst in the presence of YrU1 in Triticum

urartu accession PI428309. Silencing of TuRLK1 severely

compromised the resistance of YrU1 to Pst CY33. This study

demonstrated the importance of TuRLK1 in immune response

mediated by the unique NLR protein YrU1, and TuRLK1 might

play an important role in disease resistance to other pathogens

(Zou et al., 2022). Therefore, YrU1 likely functions as a typical

NLR protein that elicits effective ETI after recognition of the

cognate effector proteins derived from biotrophic pathogen Pst.

How YrU1 activates plant immunity, and whether PRRs/co-

receptors or other key components of PTI are required for

YrU1-mediated plant immunity remains to be determined.

This study clearly showed that an RLK, a key PTI component,

is indispensable for ETI in fungal disease resistance, which is

consistent with the previous studies on bacterial disease

resistance (Zou et al., 2022). Chaperones confer plant

resistance by maintaining cell homeostasis during infection.

Heat shock proteins (Hsp) Hsp60, Hsp70, and Hsp90 have
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been identified as pathogenesis-related (PR) proteins. Wheat

resistance to Pgt provided by TaRLK-R and wheat resistance to

Pt conferred by Lr21 both rely on Hsp90s (Scofield et al., 2005;

Botër et al., 2007).
5.2 Resistance related genes

5.2.1 PR proteins for resistance against rusts
The expression of a collection of genes, including PR genes,

is specifically associated with the manifestation of systemic

acquired resistance (SAR) in plant defense responses against

pathogen infection. The induction of PR proteins by different

pathogens in many plants has been reported, and are thought to

function as a key component of the SAR machinery within

signaling pathways (Ward et al., 1991; Van Loon and Van Strien,

1999; Prasad et al., 2020). Further defense response mechanisms

are elicited by the enzymatic products of PR proteins (Fritig

et al., 1998). To date, well known and documented inducible PR

proteins (PR1-PR17) consist of 17 families (Sels et al., 2008), and

the most prevalent are PR1, PR2, and PR5, which accumulate

both locally and systemically, implying that they are involved in

SAR (van Loon et al., 2006). Several studies have also shown that

PR1, PR2, and PR4 are essential in enhancing wheat leaf rust

resistance (Gao et al., 2015; Casassola et al., 2015; Zhang et al.,

2017a; Prasad et al., 2019). Accumulating evidence from genetic

and biochemical studies showed that pathogen invasive growth

and proliferation is inhibited by the binding of PR1 to sterols

(Gamir et al., 2017). PR1 is a conserved gene that encodes an

enzyme called b-1,3 glucanase which is essential for breaking

down cells wall of fungal pathogens and hydrolysis of cell wall

glucans. b-1,3-glucanases and chitinases are the most two

studied classes of PR proteins in pathogen-host interaction

studies (Prasad et al., 2020). Some wheat-Pt interaction studies

reported the existence of a synergistic function between b-1,3-
glucanase and chitinase (Anguelova-Merhar et al., 2001; Gupta

et al., 2013). Consequently, the secretion and accumulation of b-
1,3- glucanase and chitinase in the apoplastic space upon fungal

infection highly contributes to plant defense against pathogen

invasion (Kauffmann et al., 1987). Liu and colleagues reported

an upregulation of TaGlu, a wheat b-1,3-glucanase gene in both

compatible and incompatible wheat-Pst interactions, but no

transcript change occurred during the first 12 hours in both

interactions (Liu et al., 2010a). Similarly, TcLr19Glu isolated

from near isogenic wheat line TcLr19, was induced by Pt

infection. The expression of TcLr19Glu in incompatible

interaction appeared earlier than that in the compatible

interaction and the accumulation of transcripts was much

higher than in the compatible interaction at different time

points. This showed that TcLr19Glu is involved in wheat

resistance against Pt (Gao et al., 2016). Nonexpressor of

pathogenesis-related genes 1 (NPR1) was discovered to be a

crucial transcriptional regulator in defense responses of various
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plants against pathogen infections. Although nine NPR1

homologues (TaNPR1) were identified in wheat, little is yet

known about the functions of the NPR1-like genes in wheat

defense response against rust pathogens. Downregulation of all

the TaNPR1 homologues by virus-induced gene co-silencing led

to increased resistance to stem rust (Wang et al., 2020d). Wang

and colleagues proposed a novel mechanism of NPR1 activity in

wheat at the Ta7ANPR1 locus, via a NB-ARC–NPR1 fusion

protein, which negatively regulates the resistance against stem

rust infection (Wang et al., 2020d).

PR2 proteins can also be classified as b-1,3-glucanases with
b-1.3-endoglucanase functions in their structure (Lata et al.,

2022). They were reported to be responsible for weakening

fungal cell wall by catalyzing the hydrolytic cleavage of 1,3-b-
D-glucosidic linkages found in b-1,3-glucans (Singh et al., 2014).
Throughout the course of wheat-Pst interaction, these enzymes

displayed consistent expression at every time point (Lata et al.,

2022), and they restricted pathogen invasive growth and

proliferation by inhibiting formation of haustorial mother cells

and secondary infection transmission. This clearly demonstrated

the involvement of PR2 proteins in wheat defense responses

against pathogen infection. PR4 genes encode endochitinase

enzymes which are responsible for the breakdown of fungal

cell wall chitins (Lata et al., 2022). During the early infection

phases, PR4 expression was increased in response to

incompatible interaction (Lata et al., 2022). In many

agricultural plants as well as model plants, the PR4 proteins

are considered to be the signature genes that are involved in the

jasmonic acid pathway (Ali et al., 2018). Thaumatin-like

proteins (TLPs) commonly known as the PR5 family proteins

are strongly induced by various abiotic and biotic stresses and

they confer resistance in different plant species (Fierens et al.,

2009; Petre et al., 2011). A PR5 protein, also known as

TaLr35PR5, was discovered to be important in leaf rust

resistance (Li et al., 2015). TaLr35PR5 expression was

upregulated during the early stages of wheat-Pt incompatible

interaction, and this was linked to Lr35-mediated resistance in

wheat (Zhang et al., 2018a). It was also established that, leaf rust

resistance is linked to peroxidases (PR9) which is involved in

different physiological functions such as plant defense (War

et al., 2012). Peroxidases help to maintain host resistance by

synthesizing structural barriers or by producing ROS and

reactive nitrogen species that inhibit pathogen proliferation.

Some peroxidases are involved in the reduction of H2O2,

which may contribute to the susceptibility of wheat to leaf rust

and powdery mildew (Savadi et al., 2018; Prasad et al., 2019).

The PR9 proteins played a crucial role in the production of ROS,

the development of mechanical barriers to prevent the pathogen

from spreading, and the death of the pathogens during wheat-Pst

interactions (Lata et al., 2022). The limited development and

eventual death of the pathogen was associated with a higher

expression of PR9 under incompatible interactions. The

expression of PRA2, a Class III peroxidases family gene, was
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observed to be considerably higher under wheat-Pst

incompatible interaction from 6 hpi, which might aid plant

cells in mediating host resistance. Furthermore, it may limit

pathogen invasion before the development of haustoria and limit

pathogen dissemination through ROS-mediated resistance (Lata

et al., 2022).

Many phenyl-propanoid pathways, including those

involving lignin, flavonoid, and phenyl propanoid production,

have been shown to play a key role in plant defense. There are

eleven enzymes involved in these pathways, with the most

important being phenylalanine ammonia-lyase (PR10) (Li

et al., 2014). PR10 genes display ribonuclease activity

(Casassola et al., 2015). It was shown that enhanced PR10

expression is associated with increased wheat resistance

against Pt (Casassola et al., 2015; Prasad et al., 2019). PR10

expression was enhanced exponentially during early infection

stages in wheat-Pst compatible interactions; however, it was

unable to maintain its level of expression and did not inhibit the

development of the fungal pathogen (Lata et al., 2022). Type 1

non-specific lipid transfer protein precursor (LTP; PR14) is

involved in plant defense through the deposition of

extracellular cutin or wax which acts as a mechanical barrier

to pathogen invasion (Serrano et al., 2014), or lipids required for

membrane repair (Molina et al., 1993; Kader, 1996). After being

infected with Pt, it was shown that the PR14 proteins, which

represent a number of wheat LTPs, were upregulated in wheat

cultivars harboring the Lr34/Yr18/Sr57 genes (Hulbert et al.,

2007). These LTPs bind to membrane lipids and transport them

across membranes, making them plant innate immunity critical

components. It was hypothesized that wheat TaLTP3 plays an

important role in defense response to rust infections since Pst

effector PNPi targeted it (Bi et al., 2020). Wang and colleagues

discovered that TaPR1 interacts with TaTLP1 (TaPR5) in the

apoplastic region, resulting in enhanced antifungal activity

(Wang et al., 2020a). A considerable increase in resistance to

both Pst and Pt was observed when a PR1 homology, TaPR1a

was overexpressed in a transgenic wheat line (Bi et al., 2020).

TaLTP3 was suggested to be important in wheat resistance to Pt

infection through the formation of a TaLTP3-TaPR1a complex

in the apoplast, and this gives fresh insights into the functional

roles of wheat PR proteins (Zhao et al., 2021). LTPs were

discovered to be upregulated under wheat-Pst incompatible

interaction during the time of membrane injury. This makes

sense given that the transport of lipids is required for the healing

of damaged tissue. On the other hand, during early stages of

infection there was an upregulation of LTPs expression in

compatible interaction (Lata et al., 2022). This suggests

that some efforts are being made by the susceptible cultivar to

defend itself from pathogen attack. However, at subsequent

infection phases the pathogen was able to overcome such

barriers that the host has constructed, leading to vulnerability

(Lata et al., 2022).
Frontiers in Plant Science 14
Transporters in wheat resistance against rusts
Several studies have shed light on the function of membrane-

localized transporter proteins in the resilience of plants to abiotic

and biotic stresses (Krattinger et al., 2009; Krattinger et al., 2011;

Moore et al., 2015). Membrane-localized transporter proteins

are essential to the growth and development of plants. Pathogens

directly target sugar transporters to get the carbohydrates

necessary for their continued development and survival

(Moore et al., 2015; Julius et al., 2017). ABC transporters are

transmembrane proteins that utilize energy from hydrolysis of

ATP for the transportation of substances across the cell

membrane (Walter et al., 2015). The ABC transporters have

two domains: a transmembrane domain and the nucleotide-

binding domain. Plant ABC transporters serve vital functions in

disease resistance and environmental interactions. Genome-

wide transcription profiling of ABCG transporters in

Arabidopsis revealed that 50% of these transporters are

induced by jasmonic acid and salicylic acid (Osbourn, 1996;

Kang et al., 2011). The Lr34 gene encodes a full-size ABC

transporter of the ABCG type, and its nucleotide-binding

domain and C-terminal transmembrane domain comprise of a

single polypeptide chain, organized as NBDTMD-NBD-TMD

(Keller et al., 2012). The Lr34 ABC transporter was shown to be

involved in plasma membrane remodeling characterized by

intracellular phosphatidic acid accumulation and increased

outward translocation of phosphatidylserine. In addition, the

content of phosphatidylinositol 4,5-bisphosphate in the

cytoplasmic leaflet of the plasma membrane was reduced in

the presence of the ABC transporter (Deppe et al., 2018). The

Lr34res allele is one of the most long-lasting sources of

quantitative resistance in wheat (Krattinger et al., 2019). The

encoded LR34res ABC transporter is essential in modifying the

accumulation of 1-O-p-coumaroyl-3-O-feruloylglycerol, leading

to increased accumulation of antifungal metabolites, essentially

priming the wheat for defense (Rajagopalan et al., 2020).

Metabolomics revealed the accumulation of phenylpropanoid

diglyceride with an antifungal activity in Lr34res wheat cultivars

which was later depleted upon rust infection. This emphasized a

possible Lr34res role in mediating rust resistance by promoting

higher accumulation of antifungal phenylproponoid metabolites

(Rajagopalan et al., 2020).

The Lr67 resistance allele was found to encode a protein that

has lost its transport function, and this might as a result alter

sugar balance between intracellular and extracellular leaf regions

(Milne et al., 2019; McCallum and Hiebert, 2022). This may limit

internal nutrients availability, demonstrating the importance of

this gene is in defense responses (Figure 1). Alternatively,

changing concentration of sugar within the apoplast may

promote instigation of defense mechanisms (Dodds and

Lagudah, 2016). Metallic phytosiderophores transportation

necessitates yellow stripe-like (YSL) transporters which are

similar to metal-nicotianamine complexes in structure.
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Recently, YSL transporters were found to be involved in

pathogen-induced defense response (Islam et al., 2020).

TaYS1A positively regulates wheat resistance to pathogen

invasion by modulating the salicylic acid (SA) signaling

pathway via ROS-dependent signals (Islam et al., 2020).

During pathogen infection in plants, iron uptake and

homeostasis might result in a burst of reactive oxygen species

(Ryals et al., 1996; Ryals et al., 1997). Since TaYS1A transcription

is stimulated by TaNH2 by SA induction, it was postulated that

its metal ion homeostasis role is responsible for reactive oxygen

species accumulation that results in hypersensitive response in

plant defense against pathogen infections (Islam et al., 2020).

However, future studies need to verify this hypothesis.
5.3 The regulatory role of transcription
factors in wheat resistance against rusts

Efficiency of plant defense responses is enhanced by a wide

range of transcription factors that are involved in downstream

signaling cascades. They also orchestrate key processes involved

in the growth and development of plants including transcription,

post-transcription, translation and post-translation.

Transcription factors have the ability to precisely bind to cis-

acting regions in the promoter region of eukaryotic genes,

thereby regulating the expression of many target genes

(Figure 2) (Nakashima et al., 2009). In plants, transcriptional

regulation of expression of stress-response genes is a critical

component of their response to a variety of abiotic and biotic

stresses (Singh et al., 2002). Transcription factors regulate

differentially expressed gene products such as enzymes and

dehydrins involved in reactive oxygen species elimination

(Boller and He, 2009; Pieterse et al., 2009), which protect plant

cells from infection (Jensen et al., 2007; Spitz and Furlong, 2012;

Wang et al., 2019a; Liu et al., 2021). Transcription factors can be

classified into families based on characteristics of their DNA-

binding domains, which include WRKY, bZIP, MYB, NAC,

ARF, bHLH, ERF/AP2, and MYC (Rushton and Somssich,

1998; Banerjee and Roychoudhury, 2015; Aslam et al., 2019;

Falak et al., 2021). Although many studies have been focusing on

the regulatory functions of transcription factors in plants, the

role of transcription factors in biotic stress responses hasn’t been

comprehensively reviewed, particularly in wheat. Therefore, this

section will briefly discuss the regulatory role of WRKY, bZIP,

MYB, and NAC transcription factors in wheat resistance

pathways, emphasizing their functions in defense response to

pathogen infection.

5.3.1 WRKY transcription factors
WRKY is one of the best-studied classes of plant

transcription factors involved in the regulation of a wide range

of biological processes including development, physiology, and
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metabolism (Chen et al., 2017a). WRKY proteins are zinc-finger

transcription factors that contain a DNA-binding domain and

can bind to W-box repeats in defense-related gene promoters.

The interaction between different WRKY transcription factors

alter the activity of sequence-specific DNA binding, leading to

varying degrees of plant defense responses (Figure 2) (Eulgem

et al., 2000). The link between WRKY transcription factors and

pathogen sensors is critical in the transmission of signals during

host-pathogen interactions. WRKY transcription factors are

nodes for a cross-talk across salicylic acid, jasmonic acid, and

ethylene signaling pathways and they are involved in plant

defense via these pathways (Li et al., 2006; Pandey and

Somssich, 2009; Bakshi and Oelmüller, 2014). WRKY

transcription factors were reported to be key components of

plant innate immune system (Eulgem and Somssich, 2007).

Wheat has more than 160 WRKY family members that has

been identified (Okay et al., 2014; Satapathy et al., 2014). A few

studies have so far reported the role of WRKY transcription

factors in wheat resistance against rust pathogens. When

HD2329 wheat cultivar was infected with a severe leaf rust

fungus, TaWRKY1B expression was upregulated by 146-fold

(Kumar et al., 2014a), demonstrating its involvement in wheat

defense response to leaf rust pathogens. Degradome sequencing

found an orthologue of TaWRKY2 in Xingzi 9104 that inhibits

Pst CYR 32 (Feng et al., 2015). WRKY transcription factors can

either positively or negatively regulate plant defense responses to

pathogens. Recently, it was demonstrated that TaWRKY70

positively regulates high temperature seedling plant resistance

to Pst in wheat through salicylic acid- and ethylene -mediated

signaling pathways (Wang et al., 2017a). Wheat TaWRKY62 and

TaWRKY49 confer differential high temperature seedling plant

resistance to Pst. It was established that TaWRKY62 and

TaWRKY49 positively and negatively regulates wheat

resistance to Pst respectively, by differential regulation of

salicylic acid-, jasmonic acid-, ethylene-, and reactive oxygen

species-mediated signaling (Wang et al., 2017b). TaXa21 was

speculated to be positioned upstream of the signaling pathway

and responsible for perceiving environmental signals and

transmit t ing them downstream such as to WRKY

transcription factors. However, further research is needed to

explore whether TaXa21 in high temperature seedling plant

resistance to Pst causes PTI or ETI responses (Wang

et al., 2019b).

5.3.2 bZIP transcription factors
In plants, basic leucine zipper (bZIP) regulates growth and

responses to stress as a key transcription factor of the abscisic

acid signaling pathway (Liang et al., 2022). bZIP transcription

factors have two distinct motifs; a basic region for specific target

DNA binding and a leucine zipper for transcription factor

dimerization (Jakoby et al., 2002). Proteins containing bZIP

domains bind to DNA sequences with an ACGT core
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(Hong et al., 2018). Genetic, molecular, and biochemical studies

showed that bZIPs regulate a broad variety of plant functions,

including pathogen defense (Thurow et al., 2005; Kaminaka

et al., 2006). However, there is limited knowledge about the bZIP

genes involved in defense responses in monocotyledonous

plants, especially in wheat, because most studies have been

focusing on the bZIP defense related genes of dicotyledonous

plants like Arabidopsis, potato, tobacco and tomato. Therefore,

identification and characterization of wheat bZIP genes involved

in defense responses will help us understand disease resistance

molecular mechanisms. Transcriptional analysis revealed that

Pst stress promptly and significantly upregulated TabZIP1

transcripts during the early stages of incompatible interaction.

This suggested the involvement of TabZIP1 in fungal-plant

recognition and defense response against penetration (Zhang

et al., 2008). Furthermore, TabZIP1 transcripts were upregulated

by exogenously applied methyl jasmonate (MeJA) and ethylene

(ET). However, TabZIP1 expression was not affected by salicylic

acid treatment. This showed that the transcription factor protein
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encoded by TabZIP1 gene may be involved in wheat defense

response to Pst infection through the ethylene/methyl

jasmonate-dependent signal transduction pathways (Zhang

et al., 2008). bZIP transcription factors may either positively

or negatively regulate plant defense responses to pathogens

(Pontier et al., 2001; Singh et al., 2002). TabZIP74 was found

to positively regulate wheat stripe rust resistance and root

development via mRNA splicing (Wang et al., 2019a).

Triticum aestivum and Triticum urartu have 102 and 62 bZIP

protein members, respectively (Jin et al., 2014).
5.3.3 MYB TFs
Members of the myeloblastosis (MYB) gene superfamily

contribute to plant growth and defense, garnering the interest

of various global plant experts (Fujita et al., 2006; Wang et al.,

2015b). MYB1R, R2R3, and MYB3R factors are subfamilies of

MYB proteins with one, two, or three contiguous repetitions in

the MYB domain. Plants have MYB-protein subfamily
FIGURE 2

Schematic illustrations of a cross-talk between plant immune responses to fungal infection and the role transcription factors in gene expression
regulation. Pathogen-derived conserved molecules (MAMPs) are recognized by pattern recognition receptors (PRRs), and this activates PTI.
Pathogens induce susceptibility by interfering with the immune signaling network through effectors, resulting in effector-triggered susceptibility
(ETS). Following direct or indirect effector recognition, plant R proteins activate host defense responses to stop pathogen growth, and this is
regarded as effector-triggered immunity (ETI). Also, effector recognition triggers the induction of hormone signals and manipulated ERF, TGA,
MYB and WRKY transcription factors to regulate the expression of R genes either directly or indirectly. Some transcription factors reciprocally
regulate gene expression by binding to the corresponding promoter. There are many W-boxes within the NPR1 promoter that are necessary for
gene expression. The NPR1 protein interacts with specific TGA/OBF proteins, which are bZIP transcription factors, to regulate the expression of
the PR1 gene. This increases their activity of DNA binding to the as-1/ocs element in the PR1 promoter (indicated by purple arrow) resulting in
enhanced resistance to pathogen infection. In the PR1 promoter, WRKY proteins seem to exert both transcriptional activation and repression,
hence their regulatory functions are complicated.
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distinguished by the presence of the R2R3-type MYB domain

(Hong et al., 2018). There are roughly 52 amino acid residues in

total in the MYB domain, which adopts a helix-turn-helix

conformation and intercalates into the primary groove of

DNA (Dubos et al., 2010; Al-Attala et al., 2014). Members of

the R2R3-MYB transcription factor superfamily were speculated

to play a vital role in plant development, defense responses to

abiotic and biotic stresses as well as enhanced disease resistance

(Zhu et al., 2021). A member of the R2R3-MYB superfamily,

TaMYB29 have two highly conserved MYB domains and it

regulates crosstalk across signaling pathways in wheat’s

response to stripe rust. The expression of TaMYB29 was

significantly upregulated by Pst infection, salicylic acid,

jasmonic acid, ethylene and abscisic acid treatment, indicating

its involvement in wheat defense response to Pst (Zhu et al.,

2021). Compared to non-silenced plants, knockdown of

TaMYB29 gene enhanced hyphal growth, substantially

downregulated expression of pathogenesis-related genes and

significantly reduced wheat resistance to Pst (Zhu et al., 2021).

Therefore, these findings demonstrated that TaMYB29 serves an

indispensable role in wheat defense response to Pst through the

regulation of crosstalk between multiple signaling pathways.

Late elongated hypocotyl (LHY), a 1R-MYB transcription

factor, is a plant essential gene that regulates the plant’s

biological cycles. TaLHY gene encodes a protein with an

MYB-DNA binding domain (Zhang et al., 2015). Pst

influences the expression of TaLHY in wheat, similar to

disease-resistance-related MYB TFs (Maeda et al., 2005).

Zhang and colleagues demonstrated that TaLHY gene

positively regulates wheat defense response against Pst

infection (Zhang et al., 2015). Pst infection significantly

upregulated TaLHY expression in wheat disease-resistant

cultivars than in susceptible ones, indicating different effects of

pathogenic fungal infestation on TaLHY. Pst infestation

upregulated TaLHY expression was shown to be closely related

to the salicylic acid-signal transduction pathway (Zhang et al.,

2015). Given the intricacy of a plant’s systemic regulatory

network, accurate gene regulation requires several

transcription factors and signal molecules. Pst infection of

SM126 leaves resulted in the establishment of robust and

noticeable inductions in the MYB and WRKY transcription

factors. Following Pst inoculation, the MYB and WRKY

transcription factors were differentially expressed in SM126

leaves, indicating that the establishment of SM126 resistance

to Pst necessitates the up- or down-regulation of transcription

factors in order to regulate the plant defense signaling network

(Wang et al., 2021b).

5.3.4 NAC TFs
The regulation of cross-talk between various signaling

pathways and transmission of pathogen-derived defense

signals necessitates transcription factors to either suppress or

activate downstream defense gene expression (Lorenzo et al.,
Frontiers in Plant Science 17
2003; Anderson et al., 2004). NAC-type transcription factors

(NAM, ATAF, and CUC) are involved in a wide range of plant

biological regulating activities including developmental

processes, plant growth, senescence, secondary cell wall

synthesis, and biotic and abiotic stress responses (Nakashima

et al., 2012; Puranik et al., 2012). Plant NAC proteins have a

large family consisting of at least 151 members from rice and 117

members from Arabidopsis (Nuruzzaman et al., 2010; Xue et al.,

2011). Several studies reported the involvement of certain NAC

proteins in the regulation of plant defense responses through the

activation of pathogenesis-related genes and hypersensitive

response (Figure 2) (Jensen et al., 2007; Lin et al., 2007), whilst

other few NAC genes may function as negative regulators of

plant defense response through the inhibition of defense-related

genes expression (Delessert et al., 2005; Le Hénanff et al., 2013;

Wang et al., 2018). NAC transcription factors can also serve as

virulence targets of pathogen effectors or as hypersensitive

response and stomatal immunity modulators (Yuan et al.,

2019). The expression patterns of NAC transcription factors

are tissue-specific (Lin et al., 2007; Meng et al., 2009). TaNAC4

expression was upregulated by Pst infection and also by methyl

jasmonate, abscisic acid, abscisic acid, ethylene treatments.

However, salicylic acid had no substantial effects on TaNAC4

expression, indicating that TaNAC4 gene serves as a key

transcriptional activator in wheat defense responses to abiotic

and biotic stresses (Xia et al., 2010a). TaNAC8 protein N-

terminus and C-terminus contains a NAC domain and a

transmembrane helices motif, respectively. Xia and colleagues

demonstrated that the TaNAC8 C-terminal region has a

transcriptional activity (Xia et al., 2010b), and TaNAC8

protein positively regulates wheat defense response to Pst (Xia

et al., 2010b). During wheat-Pst incompatible interaction,

TaNAC8 expression was significantly upregulated at 24 hpi,

with no significant increase in expression during compatible

interactions. Also, the TaNAC8 expression was upregulated by

methyl jasmonate and ethylene treatments suggesting its

involvement in wheat defense response against Pst through the

ethylene/methyl jasmonate-dependent signal transduction

pathway (Xia et al., 2010b). Furthermore, during wheat-Pst

incompatible interaction, microscopic studies established that

the formation of Pst haustorial mother cells and haustorium

occurred at 18-24 hpi, suggesting that TaNAC8 is key in defense

response for signal transduction (Xia et al., 2010b).

TaNAC21/22 binds ta-miR164 in the nucleus and functions

as a transcriptional activator; and silencing this gene reduces

wheat stripe rust resistance (Feng et al., 2014). TaNAC1, a novel

NAC member of the NAC1 subgroup, negatively regulates plant

disease resistance and may alter jasmonic acid- and salicylic

acid-signaling defense signals in wheat (Wang et al., 2015a).

Zhang and colleagues demonstrated that silencing TaNAC2

increases resistance to various pathogens (Zhang et al., 2018b),

and similar results were also reported by Wang and colleagues

who found that TaNAC30 was a negative regulator of wheat
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resistance to Pst isolate CYR31 (Wang et al., 2018). Knockdown

of TaNAC30 gene resulted in improved resistance to Pst, but also

resulted in a substantial accumulation of H2O2 (Wang et al.,

2018). When the wheat line Thatcher+Lr14b (TcLr14b) was

challenged with a Pt virulent isolate, TaNAC35 gene was found

to negatively regulate leaf rust resistance (Zhang et al., 2021b).

Histological studies showed that silencing TaNAC35 lowered

haustorial mother cell formation and mycelial proliferation,

suggesting that this gene is a negative regulator of defense

response of wheat line TcLr14b to Pt pathotype THTT in a

compatible interaction (Zhang et al., 2021b). TaNAC069 was

found to positively regulate wheat resistance to Pt infection by

activating pathogenesis-related genes and suppressing ROS

scavenging-related genes (Zhang et al., 2021c). Another

transcription factor, TaBZR2, binds to the promoter region of

the chitinase gene TaCht20.2, resulting in increased chitinase

activity, thereby conferring broad spectrum resistance to the

stripe rust fungus (Bai et al., 2021). TuNAC69 significantly

contributed to immune response mediated by NLR protein

YrU1, and it was anticipated to confer resistance to other

pathogens (Xu et al., 2022). Still unanswered questions include

how plants transmit immune signals to TuNAC69 to regulate

transcriptional reprogramming in defense responses, and which

genes are TuNAC69’s direct target which contribute to YrU1-

mediated resistance and basal immunity (Xu et al., 2022).
5.4 Regulatory role of transcription
factors in responses to abiotic
stresses in wheat

Abiotic stress is one of the most important variables affecting

plant growth, development, and production globally. In the

recent past years, the use of transgenic approaches led to a

significant progress in the identification of key regulators of

drought tolerance in wheat. Many transcription factor families

have been shown to have a function in plant stress responses.

Differential expression of cytochrome P450, glutathione

transferase, dehydrins, proteinase inhibitors, heat shock

proteins, and regulatory proteins such as transcription factors

is a frequent response to abiotic stresses. Several transcription

factors, including bHLH, bZIP, ERF, HD-ZIP, NAC, and

WRKY, were shown to be differentially expressed in a

drought-tolerant wheat genotype compared to a susceptible

genotype (Ergen et al., 2009). Transcriptomic and proteomic

analyses of a drought-stressed pale green durum wheat mutant

revealed expression modulation of many genes encoding

photosystem components, antioxidant enzymes, and enzymes

involved in carbohydrate metabolism and the tricarboxylic acid

cycle, which may be useful in addressing drought resistance in

wheat (Peremarti et al., 2014). In wheat, six novel heat-induced

MYB genes were identified and TaMYB80 was found to confer

heat and drought tolerance in transgenic Arabidopsis (Zhao
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et al., 2017). These findings add to our knowledge of the roles

of heat-induced MYB genes and serve as the foundation for

identifying the best candidates for in-depth functional research

of heat-responsive MYB genes in wheat. Abiotic and biotic

stresses lead to rapid upregulation of ethylene response factors

(He et al., 2012), and they have been the focus of many

overexpression experiments to determine their use in

enhancing drought tolerance. Overexpression of wheat

TaERF1 activated stress-related genes, including pathogenesis-

related genes, and enhanced drought, cold, and salt tolerance in

transgenic plants (Xu et al., 2007). Overexpression of TaERF3 in

wheat improved drought and salinity tolerance (Rong et al.,

2014), possibly due to increased accumulation of proline and

chlorophyll content compared to non-transformed lines and

activation of several downstream genes by binding to GCC-box

cis-elements present in target gene promoter regions (Rong et al.,

2014). Recently, AtERF019 was shown to play a role in drought

tolerance, with a phenotype of delayed blooming and maturity

under drought stress, suggesting that overexpression of its

orthologs might be exploited to provide greater drought

tolerance in wheat without sacrificing the seed set (Scarpeci

et al., 2017).

TaNAC69 was found to play a role in the response to abiotic

stimuli such as cold, drought, and abscisic acid treatments. The

expression of three highly homologous TaNAC69 genes was

upregulated by the aforementioned conditions, particularly

drought stress (Xue et al., 2006). TaNAC69 genes were

expressed at high levels in the root in unstressed conditions, in

addition to being upregulated by drought. This shows that

TaNAC69 genes are involved not only in drought stress, but

also in regular cellular functions of roots (Xue et al., 2006).

TaNAC69 overexpression in transgenic wheat increased

dehydration tolerance and improved water usage efficiency

(Xue et al., 2011). TaNAC4 expression was enhanced in

response to biotic and abiotic challenges such as high salinity,

wounding, and low temperature, indicating that TaNAC4 serves

as a transcriptional activator during biotic and abiotic stress

responses in wheat (Xia et al., 2010). TaNAC47 was differentially

expressed in various tissues and was induced by stress

treatments such as exogenous abscisic acid, polyethylene

glycol, cold, and salt. Surprisingly, overexpression of TaNAC47

was discovered to trigger the expression of downstream genes

and affect various physiological indices, potentially allowing

transgenic plants to resist adverse environmental conditions.

These findings suggest that the wheat TaNAC47 gene plays a

crucial role in response to abscisic acid and abiotic stresses

(Zhang et al., 2016a). TaNAC2 was shown to be implicated in the

response to drought, salt, cold, and abscisic acid treatment based

on gene expression profiling. TaNAC2 overexpression in

Arabidopsis resulted in increased tolerance to salt, drought,

and cold conditions, as well as increased expression of abiotic

stress-response genes and various physiological markers indices

(Mao et al., 2012). The integration of the wheat genome
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sequence, with transcriptome, proteome, and metabolome

profiling of genes associated with various drought-tolerant

traits, will help in overcoming the challenges posed by the

complexity of the genome and will make it easier to analyze

the genetic basis of drought tolerance in wheat. In addition to

this, it will aid in the integration of phenotypic, biochemical, and

genomics-assisted selection approaches for enhanced breeding

of drought-resistant wheat cultivars.
6 Non-coding RNAs regulate the
resistance against wheat rusts

Non-coding RNAs (ncRNAs) consists of an array of

different RNAs. Housekeeping and regulatory ncRNAs are the

two main classes of ncRNAs. ncRNAs used to be regarded as

trash DNA, but now they are an important part of a variety of

regulatory processes (Urquiaga et al., 2021; Waheed et al., 2021).

Regulatory ncRNAs can be classified according to their length

into small RNAs (siRNAs) and long non-coding (lncRNAs) that

only generate small peptides without being translated into

proteins (Amor et al., 2009; Urquiaga et al., 2021; Waheed

et al., 2021).
6.1 sRNAs in wheat defense against
rust infection

Immune responses of plants are strongly regulated by an

array of immunity-associated regulators like sRNAs and some

transcription factors. sRNAs can be classified into three

categories based on their biogenesis and structural features

and these classes are: short-interfering RNAs (siRNAs), dicer-

independent microRNAs (miRNAs) and dicer-independent piwi

interacting RNAs (piRNAs) (Chapman and Carrington, 2007;

Axtell, 2013; Dubey et al., 2019). sRNAs and miRNAs are similar

in size and range between 18–30 nucleotides in length but vary

in biogenesis, precursor structures, and mode of action (Waheed

et al., 2021). siRNAs are produced from the genome’s hairpin-

structured or double-stranded RNA (dsRNA), with the help of

RNase II-like endonucleases called dicers, but this does not

follow the canonical way towards protein translation (Bartel,

2004; Waters and Storz, 2009). siRNAs are referred to as a

subcategory of RNA molecules that play key roles in the diverse

strategies that help in imitating, adaptation or suppressing the

immune system of the host (González Plaza et al., 2016),

alongside other molecules partaking in this multifaceted

process. This implies that, the fundamental siRNA pathway

components and other various sRNAs function as critical gene

expression regulators to fine-tune the immunity of some cereal

plants like wheat and rice against pathogen invasion. miRNAs

play a crucial role in gene expression regulation via chromatin
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methylation, translational inhibition, or mRNA cleavage (Yu

et al., 2017). Various miRNAs associated with different abiotic

and biotic stresses were identified and characterized in durum

and bread wheat (Alptekin et al., 2017). In wheat, the differential

expression of miR159, miR164, miR167, miR171, miR444,

miR408, miR1129, and miR1138, a group of miRNAs found in

stem rust-infected wheat, appeared to have a regulatory role over

R genes (Gupta et al., 2012). The role of pathogen-responsive

miRNAs in the fine regulation of resistance genes, particularly

NBS-LRRs, and PR proteins was demonstrated in some recent

studies (Gupta et al., 2012; Kumar et al., 2017). According to the

findings, accumulation of miRNAs during the early stages of

infection may play a critical role in the host’s hypersensitive

response, which decreases as the disease progresses. The

differential expression of these miRNAs in the presence and

absence of the R gene gives a plausible explanation for the

distinct pathways mediated by miRNA-controlled R genes

(Gupta et al., 2012). Twenty-two differentially expressed

miRNAs were identified between wheat resistant and

susceptible near-isogenic l ines inoculated with Pt.

Upregulation of most miRNAs occurred in susceptible near-

isogenic lines compared to resistant near-isogenic lines. This

study unraveled the insight into the potential involvement of

miRNAs in leaf rust pathogenesis and their wheat target genes

(Kumar et al., 2014b). NB-LRR defense genes were reported to

target some five miRNA families (Zhang et al., 2019). Multiple

types of NB-LRR genes are regulated by these miRNAs, the

majority of which have coiled-coiled domains, and cause

secondary siRNAs formation in the target site in a phased

pattern. This shows that non-conserved miRNAs, which

control disease resistance genes in gymnosperms and

angiosperms, display fast flexibility in sequence variants, gene

copy number, functions, and expression level (Zhang et al.,

2019). Trans-acting-small interfering RNAs (Ta-siRNAs) were

also found in wheat (Dutta et al., 2017). Comparative expression

analysis of TAS, ta-siRNAs, and their target genes showed a

differential and reciprocal relationship as well as discrete

patterns between resistant and susceptible near-isogenic lines.

The expression profiles of the target genes of the identified ta-

siRNAs advocate more towards ETS favoring pathogenesis

(Dutta et al., 2017). However, the mechanisms by which ta-

siRNAs influences pathogenesis remains a mystery.
6.2 lncRNAs in wheat defense
against rust infection

Plants use ETI-driven programmed cell death as an efficient

defense response since obligate biotrophic fungi require living

plant cells for sustenance (Mendgen and Hahn, 2002). These

defense responses need rigorous gene expression regulation in

the background, which allows the accomplishment of significant
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transcriptional reprogramming in the infected plant (Bhatia

et al., 2021). lncRNAs involvement in the regulation of plant

defense mechanisms against obligatory biotrophs has only

recently been explored in depth, with a few of studies having

been carried out so far (Zhang et al., 2020a). Even so, the

majority of the studies in plants focus on hemi-biotrophic

fungal pathogen-responsive lncRNAs. Following these studies,

Zhang and colleagues carried out a genome-wide analysis of long

intergenic ncRNAs (lincRNAs) in a wheat line with great

resistance to Pst, and 52 lincRNAs were shown to be highly

expressed in response to stripe rust infection (Zhang et al.,

2016b). As part of the research to better understand their

regulatory activities, miRNA target sites were anticipated, with

5 lincRNAs being identified as probable targets and endogenous

target mimics (eTM) of miRNAs. lincRNAs can function as

eTMs, allowing miRNAs to rescue their intended targets of

miRNAs (mRNAs). This showed that lincRNAs can play a

more complex function in the regulation of miRNAs, rather

than simply serving as their precursor molecules. It was

concluded that, the interactions between lincRNAs, miRNAs,

and their corresponding mRNAs may regulate plant responses

to Pst (Zhang et al., 2016b). However, when compared to

functional gene expression, the identification of lincRNAs in

wheat is still in its early stages. Future studies should focus on the

mechanisms exploited by lincRNAs in response to different

biotrophic pathogens as well as other biotic and abiotic factors.
7 Conclusion and future
perspectives

Without a doubt, rust diseases continue to threaten present

and future maximization of wheat yields. Plants have evolved a

complex network of biochemical pathways, some of which respond

to fungal infection and colonization. Recent advances in wheat

genome, pan-genome sequencing, mutant genomics, gene capture,

and high throughput genomics technologies such as genome

editing and gene cloning are enhancing more insights into the

interactions between wheat and rust pathogens. A wide range of

resistance gene classes, including receptor kinases, are anticipated

to be targeted in the future by mutational genomics tools such as

MutRenSeq. The identification of novel R genes is increasing our

understanding of plant innate immunity beyond classic ETI, even

though experimental confirmation of some postulated pathways is

still pending. The recent breakthroughs in the discovery of

resistosome formation by NLRs in Arabidopsis made significant

contributions to our knowledge of NLR function at molecular level.

However, neither the Lr, Yr, nor Sr genes have been subjected to

comparative research involving the formation of resistosomes, as

have the other genes. Consequently, this is a crucial issue for

further investigation in the future. Rust pathologists and the wheat

breeding community’s focus has shifted towards the identification

and use of non-race specific adult plant resistance genes for durable
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resistance because of the emergence of new rust fungi races and the

quick inefficacy of race-specific genes. Combining race-specific

resistance genes with non-race specific genes is the most promising

deployment strategy for minimizing pathogen virulence evolution

and ensuring resistance persistence. Such resistance gene pyramids

might be created using conventional breeding methods such as

marker-assisted selection based on cloned gene sequences or by

deploying resistance gene cassettes that incorporate many cloned

genes into a single locus. Translational research on gene stacksmay

give also an answer for biotrophs, and specific breeding strategies

based on resistance gene toolkits may enhance long-term disease

resistance strategies. A number of proof-of-concept experiments

have shown that gene stacking and genome editing may be utilized

to develop broad-spectrum disease resistance. Incorporating a five-

gene cassette Sr22–Sr35–Sr45–Sr50–Sr55 into wheat to achieve

broad spectrum resistance against stem rust exemplifies the

potential of enhancing durable resistance (Luo et al., 2021).

Understanding the potential for additive interactions between R

genes is critical for determining the most successful combinations

to pursue, while discovering rust Avr genes is also vital for

monitoring pathogen development and prioritizing R genes for

deployment. In-depth research has been conducted on

transcriptional regulatory variables associated with disease

resistance, as well as the regulatory mechanism of sRNAs in rust

resistance. The development of wheat cultivars with enhanced

characterization, including pathogen stress requires basic

knowledge about physiological, gene regulatory, and biochemical

networks. The elucidation of the transcriptional reprogramming

andmultifaceted mechanisms involved in defense responses can be

enhanced by integrating experimental and bioinformatic

approaches. Deciphering the roles of different transcription

factors in defense responses necessitates functional analysis and

molecular characterization based experimental approaches. This

will ultimately help in genetic engineering and resistance breeding

against rust pathogens. Future breeding projects should also aim to

identify exploited and unexploited R genes for each disease and the

combination of these genes for the generation of numerous

pathogens-resistant varieties by CRISPR-Cas9 or classical

breeding technology.

Although great gains have been achieved in the research of

interaction between pathogen and host, however, we have failed

to manage rusts because of ignoring that outcomes of disease

resistance are highly dependent on agronomic and

environmental factors either reported earlier or need further

research. Considering the significant contribution of different

abiotic and biotic factors in the development of plant disease

epidemics, modeling tools need to be strengthened for precise

and timely prediction of possible changes occurring in the agro-

climate scenarios as influenced under changing climate and its

effect on different host-pathosystems and impact assessment.

Exhaustive coordination is required among the researchers from

different disciplines like plant pathologists, agronomists,

climatologists, epidemiologists, computer scientists, and agro-
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meteorologists, to further streamline the future work related to

the effect of climate change on fluctuating severity, prevalence,

and distribution of wheat diseases and shift in the pathogen

population. Future climate change research should primarily

focus on minimizing the harmful effects of both biotic and

abiotic stresses on plant growth and health, and generating

inclusive and pertinent prediction model (s) to predict the

effect of changing climate on wheat health and productivity in

the future. Future resistance breeding strategies will need to be

modified to account for the long-term shifts in disease incidence,

placing a premium on stability and longevity of disease

resistance in the face of heat and water stress. This review

serves as a reference point for molecular plant pathologists to

better understand the complexities of these diseases and to

approach them in a more holistic way.
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