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The fruit flavor is a key economic value attribute of jujube. Here we compared
metabolomes and transcriptomes of “Mazao” (ST) and “Ping’anhuluzao” (HK)
with unique flavors during fruit development. We identified 437 differential
metabolites, mainly sugars, acids, and lipids. Fructose, glucose, mannose
and citric acid, and malic acid are the determinants of sugar and acid taste of
jujube fruit. Based on the transcriptome, 16,245 differentially expressed genes
(DEGs) were identified, which were involved in "glucosyltransferase activity,”
“lipid binding,” and "anion transmembrane transporter activity” processes.
Both transcriptome and metabolome showed that developmental stages
2 and 3 were important transition periods for jujube maturation. Based on
WGCNA and gene-metabolite correlation analysis, modules, and transcription
factors (ZJHAP3, ZjTCP14, and ZjMYB78) highly related to sugar and acid were
identified. Our results provide new insights into the mechanism of sugar and
acid accumulation in jujube fruit and provide clues for the development of
jujube with a unique flavor.
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Introduction

Ziziphus jujuba belongs to Ziziphus of Rhamnaceae, which is native to China. It is rich
in germplasm resources and has a long history of cultivation. There are many cultivars of
jujube, which can be traditionally divided into three categories according to their uses:
dried, fresh, dried, and fresh jujube. Among them, the production of dried fruits is the
largest in China, while fresh jujube is abundant in nutrition and tastes crisply (Liu and
Wang, 2009). Studies have shown that jujube is rich in carbohydrates, cyclic adenosine
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monophosphate, triterpenoids, flavonoids, vitamin compounds,
and inorganic salts such as phosphorus, calcium, and iron, which
have high nutritional and medicinal value (Li et al., 2007; Gao
etal, 2013). Understanding the differences and dynamic changes
in nutritional components of jujube fruits during ripening will
provide valuable information for the genetic improvement
of jujube.

Flavor quality is an important economic attribute of fruits that
affects people’s choices (Barrett et al., 2010; Goldenberg et al.,
2018). The acid, sugar composition and content of fruits determine
important factors of fruit flavor (Zhu et al., 2018). In the process
of jujube domestication, the sweetness/acidity of jujube fruit is
based on the genetic selection that determines the content of acid
and sugar (Huang et al.,, 2016). The dynamic analysis of sugar
components in jujube fruits showed that fructose and glucose
were the main accumulations in the early stages of fruit
accumulation, while sucrose was dominant in the later stages
(Zhang et al,, 2021). Zhao et al. (2021) revealed the content
characteristics of organic acid components in the fruits of 219
jujube germplasm and found that the contents of malic, quinic,
and citric acids in jujube fruits were in the top three. Glucose
metabolism produces pyruvate through glycolysis, which enters
the tricarboxylic acid (TCA) cycle to form citric acid, malic acid,
and others. The sugar content of jujube fruits is significantly
higher than that of wild jujube and other fruit trees, such as apples,
peaches, and grapes (Huang et al., 2021). Compared with Rosales
fruit, the gene families involved in glucose metabolism in the
jujube genome have a higher degree of expansion (Liu et al., 2014).
The sugar content in fruits largely depends on the balance between
the sugar source and the sink (Huang et al., 2021). Therefore, it is
of great significance to reveal the metabolite contents of sugars
and organic acids in jujube during different development
processes as well as the biosynthetic pathways and regulatory
mechanisms affecting their accumulation.

With the continuous development of omics technology,
metabolome and transcriptome analysis have been successfully
applied to study the regulatory mechanisms of leaf color, fruit
anthocyanin, flavonoids, and other nutrients accumulation in
jujube and apples (Shi et al., 2020; Xu et al., 2020; Li et al., 2021).
In addition, the betaine biosynthetic pathway determines the
pitaya fruit color formation including peel color (red and yellow)
and the pulp color (Zhou et al., 2020). Gong et al. (2021b) revealed
the differences in sugar accumulation between cultivated and wild
watermelon through transcriptomics and metabolomics and
found that UDP-glycosyltransferase was closely associated with
glycosylation of cucurbitacin. By combining the results of
WGCNA and metabolomics, Chu et al. (2022) identified genes
and metabolites for flesh sweetness, bitterness, and color of
watermelon. Xiong et al. (2020) analyzed the accumulation
patterns of sugars, organic acids, ascorbic acid, and related genes
throughout the development of yellow kiwifruit. Yang revealed the
expression patterns of sugar, acid, flavonoid metabolites and genes
during cherry ripening (Yang et al., 2021). Although we have
studied fruit quality at the level of transcription and metabolism,
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jujube flavor, as a complex trait, still varies significantly among
cultivars, so we need to explore its molecular mechanism.

In this study, we sequenced the metabolome and transcriptome
datasets of “Mazao” (ST) and “Pinganhuluzao” (HK) jujube
cultivars at 30, 60, 80, 100, and 110days after anthesis. These two
cultivars have good flavor and rich nutrients. The dynamic
accumulation patterns of sugars, organic acids, fatty acids and
other nutrients at five developmental stages were analyzed for
their primary metabolome, and gene expression patterns were
analyzed by transcriptomics, to explore possible regulatory genes
affecting jujube flavor by joint analysis. This study provided a rich
genetic basis for further enriching the flavor of jujube fruits.

Materials and methods
Plant materials

“Mazao” (ST) and “Ping’anhuluzao” (HK) were excellent new
cultivars selected in recent years for live breeding (Lu et al., 2022).
Among them, ST jujube is flat and round while HK possesses
constricted type (Figure 1), HK accumulates high total soluble
sugar contents (22.68%) and low total organic acid contents
(0.76 g/kg) at maturity, while ST was the opposite of its, with total
soluble sugar contents of 14.71% and total organic acid contents
of 1.04g/kg. The trees were cultivated under normal field
conditions, including irrigation, fertilization, and disease and pest
control. The fruits of HK and ST were collected from the town of
Qinglonghu (116°5’E, 39°47'N), Fangshan District, Beijing, China
in 2021 at five different periods of 30 (young), 60 (enlarged), 80
(white-ripened), 100 (half-red), and 110 (full-red) days after
anthesis. Fruits were pitted and chopped, then rapidly placed in
liquid nitrogen and stored at —80°C until used for metabolomic
analysis and transcriptomic sequencing. Three biological replicates
were taken from each period of the two cultivars.

UPLC-MS/MS system-based widely
targeted metabolomics analysis

The primary metabolites were extracted and identified by
Metware Biotechnology Co., Ltd.! Biological samples were freeze-
dried using a vacuum freeze-dryer (Scientz-100F), and 100 mg of
the powder was dissolved in 1.2 ml of 70% methanol solution and
kept at 4°C overnight. The filtered extracts were used for
metabolite profiling by UPLC-MS/MS system (Applied
Biosystems 4500 Q TRAP) analysis and quantification was
performed by multiple reaction monitoring (MRM) in a triple
quadrupole spectrometer (Chen et al., 2013). Metabolites were
identified by comparing the exact mass, fragmentation patterns,
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FIGURE 1

Phenotype of five developmental stages in “Mazao" (A) and “Ping'anhuluzao” (B)

and retention times with the standards from a self-compiled
database (MetWare, Wuhan, China) (Chen et al., 2013).

RNA extracted and RNA-sequencing

Total RNA was extracted from fruits (HK1, HK2, HK3, HK4,
HKS5, ST1, ST2, ST3, ST4, and ST5 with three biological replicates)
using the RNAprep Pure Plant Plus Kit (TTANGEN, Beijing, China).
A total amount of 1 ug RNA per sample was used for the sequenced
library by NEBNext® UltraTM RNA Library Prep Kit for Illumina®
(NEB, United States). The cDNA library products were sequenced
by the Illumina Hiseq platform with 125bp/150bp paired-end reads.
The raw data was filtered using fastp v 0.19.3 (Chen et al., 2018),
mainly removing reads with adapters; when any sequencing read
contained more than 10% of the bases of the read, the paired reads
were removed; when any sequencing read contained more than 50%
of the bases of the read with low quality (Q<20), the paired reads
were removed. Clean reads were compared to a reference genome
(Ziziphus jujuba Mill. “Dongzao”) using HISAT v2.1.0 (Liu et al,
2014). Novel gene prediction was performed using StringTie v1.3.4d
(Pertea et al., 2015). Feature Counts v1.6.2 (Liao et al., 2014) was

used to calculate the gene alignments and FPKM.

Differential metabolites and genes
analysis

Unsupervised principal component analysis (PCA) was
performed by statistics function “prcomp” within R v4.1.2. variable
importance in projection (VIP) values were extracted from
OPLS-DA result by using the R package “MetaboAnalystR” (Chong
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and Xia, 2018). Metabolites with VIP > 1 and log,(fold change) >1
were considered significantly differential accumulation metabolites
(DAMs) between groups (HK2 vs. HK1, HK3 vs. HK2, HK4 vs.
HK3, HK5 vs. HK4, ST2 vs. ST1, ST3 vs. ST2, ST4 vs. ST3, and ST5
vs. ST4). To analyze the changing trend of metabolites, DAMs were
standardized (z-score) and clustered by K-means.

DESeq2 v1.22.1 (Love et al., 2014) was used to analyze the
(DEGs) with |log,FC(fold
change)| >1 and p-value <0.05 (Varet et al., 2016). The functions
of the unigenes were annotated by the NR, KOG, SwissProt, GO,
and KEGG databases (Ashburner et al., 2000; Bairoch and
Apweiler, 2000; Kanehisa and Goto, 2000; Natale et al., 2000;
Ogata et al., 2000; Wilke et al., 2012).

differential expression genes

Combined metabolome and
transcriptome analysis

The quantitative values of genes and metabolites in all samples
were used for correlation analysis. The “cor” function in R was
used to calculate the Pearson correlation coefficient of genes and
metabolites with an absolute threshold larger than 0.85 and a
p-value <0.05. The correlation analysis results of different genes
and metabolites were selected. Differential genes and differential
metabolites in each pathway were analyzed by CCA (canonical
correlation analysis) (Gonzélez et al., 2008). WGCNA v1.69 was
used for weighted gene co-expression network analysis
(WGCNA). Before WGCNA analysis, the genes with FPKM <0.1
were filtered out from all samples. Pearson’s correlation,
calculation of soft-power threshold (B), and the division of
modules were performed according to previous studies (Chen
etal, 2021; Lu et al,, 2022), in this study, soft-power threshold (f)
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was set to 7, the minimum number of genes contained in the
modules was set to 50, while the threshold for merging similar
modules was set to 0.25. Cytoscape 3.8 was used for visualization
of the control network with default settings (Otasek et al., 2019).

qRT-PCR

Ten DEGs were selected for qRT-PCR analysis, and ZjUBQ
was used as the internal reference gene. The primers were listed in
Supplementary Table S2. The RNA was extracted from jujube fruit
as described above. qRT-PCR was performed using TB Green®
Premix Ex Taq™ II (Takara, Beijing, China). Three technical
replicates and three biological replicates were performed. The
relative expression levels were calculated using the 27#*“‘method
(Livak and Schmittgen, 2001).

Results

Overview of metabolite accumulation
patterns during jujube fruit development

To define a comprehensive landscape of metabolite profile
during fruit development of HK and ST, we performed metabolite
profiling by using LC-MS. During fruit ripening, the pericarp
changed from green to yellow and red, and flavonoids accumulated
rapidly. A total of 508 metabolites of 10 categories were obtained
at different development stages of jujube fruits, including organic
acids, amino acids and derivatives, saccharides and alcohols, free
fatty acids, nucleotides and derivatives, lysophosphatidyl cholines
(LPCs), lysophosphatidyl ethanolamines (LPEs), vitamins,
glycerol esters, and sphingolipids (Supplementary Table S1).

Principal component analysis was used to analyze the data for
all compounds from five developmental stages for two cultivars
with three biological replicates; the objective was to provide a
preliminary understanding of the overall metabolic differences
between groups of samples including different fruit development
stages and cultivars and the magnitude of variability between
samples within groups. PC1 and PC2 explained 33.68% and
25.94% of the variation, respectively (Figure 2A). The results
showed that the variation between different fruit development
stages was greater than the variation between the two cultivars. In
addition, there was a large gap between the metabolomes of the
third stage and the other four stages of development.

Analysis of metabolite differences and
K-means analysis during fruit ripening in
jujube

Heatmap and cluster analysis yielded an overview of dynamic

metabolome changes during fruit development. To further explore
the metabolic differences in the developmental stages and between
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cultivars, we conducted a different analysis. A total of 437
differential accumulation metabolites (DAMs) were identified
(Figures 2B,C), with 308 DAMs in HK, 289 DAMs in ST, and 392
DAMs between HK and ST. There were more differential
metabolites in HK3 vs. HK2 and ST3 vs. ST2, which was consistent
with the results of PCA. In other words, the shift from stage 2 to 3
was an important transition in jujube fruit development. There
were 33 common differential metabolites between the two
cultivars at different periods, including 18 organic acids, eight
amino acids and derivatives, two nucleotides and derivatives, two
LPCs, one glycerol ester, one saccharide and alcohol, and one
vitamin (Figure 2D).

To analyze the trends in metabolite content throughout fruit
development, the relative contents of all the different metabolites
identified in all group comparisons were standardized according
to the screening criteria and then subjected to K-means cluster
analysis (Figure 3A). Class1 contained 78 DAMs (organic acids,
saccharides, alcohols, etc.) that accumulated mainly during the
early stage (1, 2), and were reduced during the later stages (3, 4, 5)
of fruit development (Figures 3B,C). The DAMs of Class 2 were
mainly concentrated in stages 4 and 5 of HK. It contained a large
number of organic acids and almost all lipids (LPC and LPE),
which were specifically high in HK (Figures 3B,D) 0.77
metabolites, such as amino acids and derivatives and organic acids
in Class 5, accumulated in large amounts in ST fruit at later stages
(3, 4, 5), which is opposite to the metabolite accumulation mode
in Class 2 (Figures 3B,E). This showed that the accumulation
patterns of organic acids and saccharides were similar in both
cultivars, but there were significant differences in lipids and amino
acids, which may lead to the different nutritional value and taste
of jujube.

Accumulation pattern and correlation
analysis of sugars and organic acids in
jujube fruits

Sugar and acids are important factors affecting fruit flavor.
We found 50 saccharides and alcohol metabolites with differential
accumulation in either developmental stage or cultivar, among
which fructose, glucose, mannose, and galactose were the main
soluble sugars of jujube. The contents of four sugars showed
similar trends in ST and HK, with higher contents in stages 1 and
2 and a decreasing trend in the later stages (Figure 4A). The results
indicated that sugar accumulation, which determines fruit
sweetness, mainly occurred in the early stages of fruit
development. Furthermore, 151 kinds of organic acids were
found, including the common soluble acids citric acid, malic acid
and quinic acid. Citric acid and malic acids were found to be the
most abundant. Their accumulation pattern was opposite to the
trend of sugar content, and the content increased with fruit
ripening. In addition, the organic acid content of ST was higher
than that of HK (Figure 4B). To further explain the relationship
between sugar and organic acids, the correlation between organic
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FIGURE 2
Comparison of metabolites in different developmental stages of jujube fruit. (A) Principal component analysis (PCA) score plot of all metabolites in
30 samples. HK1 (ST1), HK2 (ST2), HK3 (ST3), HK4 (ST4), and HK5 (ST5) represent the samples at 30, 60, 80, 100, and 110days after anthesis,
respectively. (B) The number of differentially accumulation metabolites (DAMs) by comparing HK1 vs. HK2, HK2 vs. HK3, HK3 vs. HK4, HK4 vs. HK5,
ST1vs. ST2, ST2 vs. ST3, ST3 vs. ST4, ST4 vs. ST5, ST1 vs. HK1, ST2 vs. HK2, ST3 vs. HK3, ST4 vs. HK4, ST5 vs. HK5. (C) Overview of DAMs of two
cultivars in five periods. (D) Venn diagram of the number of different developmental stages and cultivars.

acids and sugar content was analyzed. The results showed that
there was a positive correlation among the four sugars except for
maltose. Citric acid, malic acid, and quinic acid were negatively
correlated with sugars, while succinic acid was positively
correlated with sugars (Figure 4C).

Transcriptome analysis of the jujube fruit
of two cultivars at different development
stages

To further explore the possible regulatory genes affecting
DAMs, we also sequenced the transcriptomes of jujube fruits at
each stage. After removing the unknown reads, low-quality reads,
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and adaptor sequences, a total of 206.95Gb clean data were
obtained from 30 libraries with an average GC content of 43.88%
(Supplementary Table S3). A total of 16,245 differentially
expressed genes (DEGs) were identified from 13 differential
comparisons (between different developmental stages and
different cultivars). The number of DEGs between the comparison
combinations ranged from 304 to 9,342, with ST3 vs. ST2 reaching
a maximum of 9,342 DEGs (Supplementary Figure S1).

To reveal the molecular functions of DEGs, GO enrichment
analysis indicated that they were more widely distributed in three
categories of biological processes, molecular functions, and cell
components. Multiple comparative combinations were enriched
into the categories of “glucosyltransferase activity;,” “lipid binding,’

» .

“anion transmembrane transporter activity, “anion transport,”
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» «,

“photosynthesis,” “thylakoid” membrane” and “photosystem.” ST3
vs. ST2 contained the most DEGs, which were significantly
enriched in “phosphatase activity, “metal cluster binding,’
“ribonucleoside binding” DEGs of HK3 vs. HK2 were enriched in
multiple cell structure related categories, including
“supramolecular polymer;” “polymeric cytoskeletal fiber; and
“microtubule” (Supplementary Figure S2). KEGG enrichment
indicated that DEGs were involved in starch and sucrose
metabolism as well as secondary metabolites in periods 2 and 3.
Among them, HK was uniquely enriched in fatty acid biosynthesis,

metabolism, and degradation (Supplementary Figures S3, S4).

Identification of WGCNA modules
associated with fruit quality

To reveal potential relationships between genes and fruit
quality, we performed the WGCNA on DEGs. The differential
genes were divided into 13 modules (Figure 5A). The modules
were related to sugars and acids in fruit. The turquoise module was
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positively correlated with the four main sugars and succinic acids
(0.41-0.93) but negatively correlated with the levels of citric,
malic, and quinic acid (—0.75 to —0.69). In addition, the brown
and red modules were negatively correlated with sugar content
and positively correlated with organic acid content. This further
suggests that there is a negative correlation between sugars and
acids (Figure 5A). Further analysis showed that ZjSKU5
(monocopper oxidase-like protein SKU5, LOC107403720),
ZjYABBY1 (C2C2-YABBY, LOC107403723), ZjTOPP4 (serine/
threonine-protein phosphatase PP1-like, LOC107412332), and
ZjMYB78 (LOC107426114) are the core genes of the module
turquoise and red (Figures 5B,C).

Differentially expressed genes involved in
sugar and organic acid metabolism

The analysis of genes related to sugar biosynthesis and transport

and organic acid metabolism is of great significance to analyze and
understand the accumulation of sugars and organic acids. During
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Patterns of sugar and acid accumulation and their correlation in jujube. Accumulation patterns of six major sugars (A) and seven major acids (B).
(C) Correlation between sugars and acids.

the 2/3 stage of jujube fruit development, more DEGs and DAMs Citric and malic acids are the main organic acids of jujube
were involved in the pathway of starch and sucrose metabolism and fruits, and they are also vital intermediates in the tricarboxylic
carbon metabolism (Supplementary Figure S4). In this study, eight acid cycle (TAC) downstream of glycolysis. In our analysis, 35

fructokinases (ZjFK), nine sucrose synthases (ZjSUSY), 26 DEGs of the TAC pathway were found, including six aconitate
glucosidase-like (ZjGLU, four alpha-, 22 beta-), two hexokinases hydratases (ZjACO), two ATP-citrate synthase alpha chain
(ZjHK), six sucrose-phosphatases (ZjSPS), and six alactinol-sucrose proteins (ZjACLA), one citrate synthase (ZjCSY), six dihydrolipoyl
galactosyltransferases (ZjSIP) were identified. Moreover, 45 sugar dehydrogenases (ZjLPD), two isocitrate dehydrogenase [NAD]
transporter genes were found, including three sucrose transport catalytics (ZjIDH), three isocitrate dehydrogenase [NADP]
proteins (ZjSUC), three sugar transporters (ZjSTP), 10 ERD6-like (ZjCICDH), seven malate dehydrogenase (ZiMDH), three
sugar transporters (ZjERD6-like), eight SWEET sugar transporters phosphoenolpyruvate carboxykinase (ZjPCK), and five pyruvate

(ZISWEET), seven polyol transporters (ZjPLT), three inositol dehydrogenase E1 component subunit alpha (ZjPDH) (Figure 6C).
transporters (ZjINT), five phosphatidylinositol transfer proteins, Transcriptional regulation is an important cause of gene
four plastidic glucose transporters (ZjpGlcT), and two UDP-glucose expression and regulation of metabolite content. We jointly
transporters (Figures 6A,B). analyzed and screened transcription factors and structural genes
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FIGURE 5

Weighted gene co-expression network analysis (WGCNA) of DEGs. (A) The relationship between modules and fruit quality. Weighted module-trait
correlations and corresponding p values. The color scale on the right shows module-trait correlations from —1 (blue) to 1 (red). Cytoscape
representation of co-expressed genes with edge weight>0.50 in the "turquoise” module (B) and>0.30 in the "red” module (C).

related to sugars and organic acids. We found 3,118 genes was further constructed (Figure 6D). The results showed that
associated with mannose, glucose, galactose, fructose, quinic acid, candidate genes such as ZjHAP3 (HEME ACTIVATOR PROTEIN
citric acid, and malic acid, including 202 transcription factors in (YEAST) HOMOLOG 3, LOC107409505), ZjTCP14 (TEOSINTE
57 gene families distributed in modules turquoise, brown and red BRANCHED, CYCLOIDEA AND PCF14, LOC107428978), and

(Supplementary Table 54) (|coefficient| >0.85, p<1.38 x 107"2). ZjAGL61 (AGAMOUS-LIKE 61, LOC112488991) (At2g24840)
Therefore, a co-expression network of sugar and acid metabolites may be involved in the accumulation of major sugars and acids in
with transcription factors and metabolic pathway structural genes jujube fruits.
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The expression profile of genes involved in organic acid and sugar biosynthetic pathways. Expression patterns of sugar-related kinases (A), sugar
transporters (B), and tricarboxylic acid biosynthesis structural genes (C) during jujube ripening. The expression levels were standardized by Z-
score. (D) The regulatory network of key flavor metabolites in jujube fruit. Yellow circles represent sugars and organic acids, turquoise diamonds
represent transcription factors, purple parallelograms represent structural genes of the TCA cycle, and green triangles represent sugar
biosynthesis-related genes.

To further verify the correctness of the transcriptome data,
we selected 10 genes for qRT-PCR validation. The results showed
that the transcriptome expression trends were consistent with the

qRT-PCR results. ZjTCP14, ZjYABBY1, and ZjSKUS5 were highly
expressed at the early stages of fruit development, while the other
genes were highly expressed atlate stages (Supplementary Figure S5).
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Discussion

The combined analysis of metabolomics and transcriptomics
are important technical tools for studying the flavor and nutrition
of fruits such as watermelon, apple and jujube (Xu et al., 2020;
Gong et al,, 2021a), but there is still a lack of comprehensive
understanding of the accumulation patterns of sugars, acids, and
substances at different development stages of jujube. To reveal
fruit flavor differences between the two cultivars that differed in
flavor due to the different sugar and acid accumulation, this study
constructed a global metabolome dataset of the two cultivars at
five periods to provide a basis for studying the molecular
accumulation of jujube metabolites. We identified 437 DAMs and
16,245 DEGs during fruit ripening. There were some special
metabolites, such as LPC and LPE, that were highly accumulated
between the two cultivars in the later stage of HK, with high levels
of amino acids (leucine, arginine, and homoarginine) in ST
(Figures 3D,E). This may have contributed to the different
nutritional values of the two cultivars.

Soluble sugars, organic acids, and volatiles are important
attributes that determine the color, flavor, and economic value of
fruits (Gong et al., 2021a). Jujube is the largest economic tree
species in China. Organic acids and soluble sugars change
dramatically during the process of fleshy fruits from young to full
maturity. Consistent with previous studies, the major sugar
components in jujube fruits are fructose, glucose, and sucrose,
and organic acids including citric acid and quinic acid (Zhang
etal, 2021; Zhao et al, 2021). In this study, we found that both
dominant sugars and organic acids were high in the early stages
of development and decreased during later stages (Figure 4).
Unlike other research that suggested that malic acid was
dominant in the later stages of fruit development (Zhen et al.,
2016), citric acid was the main content of both cultivars at all
stages of fruit development, and the content of quinic acid was
higher than that of malic acid. Citric acid and succinic acid are
the main factors affecting acidity.

Elucidating the underlying molecular mechanisms of sugar
and organic acid changes and their spatiotemporal interactions is
a crucial step in understanding fruit development (Yu et al,
2021). The fruit flavor is controlled by the environmental
signaling pathways, developmental signaling pathways, metabolic
signaling pathways, and transcription factors play important roles
in these processes (Hanson et al., 2008; Bastias et al., 2011).
Overexpression of SIAREBI (ABA-response element binding
factors) promoted levels of citric acid, malic acid, glutamic acid,
glucose, and fructose in tomato (Bastias et al., 2011). While in
apple (Malus domestica Borkh.), MAAREB2 promoted sucrose
and soluble sugar accumulation by activating MdSUT?2 (sugar
transporter) (Ma et al., 2017). AcERF182 regulated AcBAM3.5, a
key structural gene involved in soluble sugar accumulation in
kiwifruit (Actinidia chinensis Planch) (Wang et al, 2022).
MdbHLH3 directly activated MdcyMDH to promote malic acid
accumulation in the apple. Additionally, overexpression of
MdbHLH3 increased photosynthetic capacity and carbohydrate
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content in apple leaves and also increased carbohydrate
accumulation in fruits by regulating carbohydrate distribution
from source to sink (Yu et al., 2021). Frank et al. (2018) reported
that BASIC LEUCINE ZIPPER63 (bZIP63) affects the circadian
rhythm of Arabidopsis in response to sugar changes by regulating
PSEUDO RESPONSE REGULATOR7 (PRR7). In this study,
we analyzed the genes that may be related to sugar and organic
acid metabolites through WGCNA and Person’s relation, and
identified transcription factors such as ZjYABBYI, ZjMYB78,
ZjHAP3, ZjTCP14, and ZjAGL61, which can be co-expressed
with metabolites and related structural genes at the same time
(Figures 5B,C, 6D).

In the present study, ZjYABBY1, ZjHAP3 and ZjAGL61were
identified as candidate genes regulating the accumulation and
metabolism of sugars and organic acids, suggesting that they may
participate in fruit development through the metabolic pathways
of sugars and organic acids. It is known that fruit formation and
ripening is a very complex process, many aspects of fruit size,
shape, and further developmental changes depending on organ
identities are determined at an early stage (Karlova et al,, 2014),
Therefore, genes that regulate the dynamic changes of sugar and
acid contents during fruit ripening may also be related to fruit
morphology. For example, the ZjYABBYI gene, which is related to
sugar and acid metabolism in this study, has a homologue,
AtYABBY, that functions in Arabidopsis flower as CRABS CLAW
(CRC), which is involved in organ polarity in carpel and nectary
development (Bowman and Smyth, 1999; Huang et al., 2013).
Another AtAGL61 regulates central cell development in
Arabidopsis. MADS-domain proteins TOMATO AGAMOUS-
LIKEI (TAGL1) and MADS1 were found to be involved in fruit
ripening in tomato (Itkin et al., 2009; Dong et al., 2013; Karlova
et al, 2014). ZjHAP3 is a homologous gene of AtHAP3
(At2g38880), which controls the initiation and development of
plant seed embryonic (Su et al., 2021). In contrast, previous
studies have shown that OsHAP3E participated in the
determination of meristem identity in both vegetative and
reproductive developments of rice (Zhang and Xue, 2013). It was
shown that AtTCPI14 (At3g47620) can break seed dormancy
(Zhang et al., 2019; Ferrero et al., 2021). ZiMYB78 functions in
response to abscisic acid and plant drought stress (Dalal
etal., 2018).

Conclusion

In general, this study identified the differences in gene
expression and nutrient accumulation in different developmental
stages of jujube through transcriptome and metabolome
analysis. The accumulation of sugars and acids showed opposite
trends. Several transcriptional regulators that may affect fruit
flavor (sugar and acid) accumulation were identified by joint
analysis. The mining of these candidate regulatory genes
provides a basis for further improving the flavor and economic
value of jujubes.
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