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The fruit flavor is a key economic value attribute of jujube. Here we compared 

metabolomes and transcriptomes of “Mazao” (ST) and “Ping’anhuluzao” (HK) 

with unique flavors during fruit development. We  identified 437 differential 

metabolites, mainly sugars, acids, and lipids. Fructose, glucose, mannose 

and citric acid, and malic acid are the determinants of sugar and acid taste of 

jujube fruit. Based on the transcriptome, 16,245 differentially expressed genes 

(DEGs) were identified, which were involved in “glucosyltransferase activity,” 

“lipid binding,” and “anion transmembrane transporter activity” processes. 

Both transcriptome and metabolome showed that developmental stages 

2 and 3 were important transition periods for jujube maturation. Based on 

WGCNA and gene-metabolite correlation analysis, modules, and transcription 

factors (ZjHAP3, ZjTCP14, and ZjMYB78) highly related to sugar and acid were 

identified. Our results provide new insights into the mechanism of sugar and 

acid accumulation in jujube fruit and provide clues for the development of 

jujube with a unique flavor.
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Introduction

Ziziphus jujuba belongs to Ziziphus of Rhamnaceae, which is native to China. It is rich 
in germplasm resources and has a long history of cultivation. There are many cultivars of 
jujube, which can be traditionally divided into three categories according to their uses: 
dried, fresh, dried, and fresh jujube. Among them, the production of dried fruits is the 
largest in China, while fresh jujube is abundant in nutrition and tastes crisply (Liu and 
Wang, 2009). Studies have shown that jujube is rich in carbohydrates, cyclic adenosine 
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monophosphate, triterpenoids, flavonoids, vitamin compounds, 
and inorganic salts such as phosphorus, calcium, and iron, which 
have high nutritional and medicinal value (Li et al., 2007; Gao 
et al., 2013). Understanding the differences and dynamic changes 
in nutritional components of jujube fruits during ripening will 
provide valuable information for the genetic improvement 
of jujube.

Flavor quality is an important economic attribute of fruits that 
affects people’s choices (Barrett et al., 2010; Goldenberg et al., 
2018). The acid, sugar composition and content of fruits determine 
important factors of fruit flavor (Zhu et al., 2018). In the process 
of jujube domestication, the sweetness/acidity of jujube fruit is 
based on the genetic selection that determines the content of acid 
and sugar (Huang et al., 2016). The dynamic analysis of sugar 
components in jujube fruits showed that fructose and glucose 
were the main accumulations in the early stages of fruit 
accumulation, while sucrose was dominant in the later stages 
(Zhang et  al., 2021). Zhao et  al. (2021) revealed the content 
characteristics of organic acid components in the fruits of 219 
jujube germplasm and found that the contents of malic, quinic, 
and citric acids in jujube fruits were in the top three. Glucose 
metabolism produces pyruvate through glycolysis, which enters 
the tricarboxylic acid (TCA) cycle to form citric acid, malic acid, 
and others. The sugar content of jujube fruits is significantly 
higher than that of wild jujube and other fruit trees, such as apples, 
peaches, and grapes (Huang et al., 2021). Compared with Rosales 
fruit, the gene families involved in glucose metabolism in the 
jujube genome have a higher degree of expansion (Liu et al., 2014). 
The sugar content in fruits largely depends on the balance between 
the sugar source and the sink (Huang et al., 2021). Therefore, it is 
of great significance to reveal the metabolite contents of sugars 
and organic acids in jujube during different development 
processes as well as the biosynthetic pathways and regulatory 
mechanisms affecting their accumulation.

With the continuous development of omics technology, 
metabolome and transcriptome analysis have been successfully 
applied to study the regulatory mechanisms of leaf color, fruit 
anthocyanin, flavonoids, and other nutrients accumulation in 
jujube and apples (Shi et al., 2020; Xu et al., 2020; Li et al., 2021). 
In addition, the betaine biosynthetic pathway determines the 
pitaya fruit color formation including peel color (red and yellow) 
and the pulp color (Zhou et al., 2020). Gong et al. (2021b) revealed 
the differences in sugar accumulation between cultivated and wild 
watermelon through transcriptomics and metabolomics and 
found that UDP-glycosyltransferase was closely associated with 
glycosylation of cucurbitacin. By combining the results of 
WGCNA and metabolomics, Chu et al. (2022) identified genes 
and metabolites for flesh sweetness, bitterness, and color of 
watermelon. Xiong et  al. (2020) analyzed the accumulation 
patterns of sugars, organic acids, ascorbic acid, and related genes 
throughout the development of yellow kiwifruit. Yang revealed the 
expression patterns of sugar, acid, flavonoid metabolites and genes 
during cherry ripening (Yang et  al., 2021). Although we  have 
studied fruit quality at the level of transcription and metabolism, 

jujube flavor, as a complex trait, still varies significantly among 
cultivars, so we need to explore its molecular mechanism.

In this study, we sequenced the metabolome and transcriptome 
datasets of “Mazao” (ST) and “Ping’anhuluzao” (HK) jujube 
cultivars at 30, 60, 80, 100, and 110 days after anthesis. These two 
cultivars have good flavor and rich nutrients. The dynamic 
accumulation patterns of sugars, organic acids, fatty acids and 
other nutrients at five developmental stages were analyzed for 
their primary metabolome, and gene expression patterns were 
analyzed by transcriptomics, to explore possible regulatory genes 
affecting jujube flavor by joint analysis. This study provided a rich 
genetic basis for further enriching the flavor of jujube fruits.

Materials and methods

Plant materials

“Mazao” (ST) and “Ping’anhuluzao” (HK) were excellent new 
cultivars selected in recent years for live breeding (Lu et al., 2022). 
Among them, ST jujube is flat and round while HK possesses 
constricted type (Figure 1), HK accumulates high total soluble 
sugar contents (22.68%) and low total organic acid contents 
(0.76 g/kg) at maturity, while ST was the opposite of its, with total 
soluble sugar contents of 14.71% and total organic acid contents 
of 1.04 g/kg. The trees were cultivated under normal field 
conditions, including irrigation, fertilization, and disease and pest 
control. The fruits of HK and ST were collected from the town of 
Qinglonghu (116°5′E, 39°47′N), Fangshan District, Beijing, China 
in 2021 at five different periods of 30 (young), 60 (enlarged), 80 
(white-ripened), 100 (half-red), and 110 (full-red) days after 
anthesis. Fruits were pitted and chopped, then rapidly placed in 
liquid nitrogen and stored at −80°C until used for metabolomic 
analysis and transcriptomic sequencing. Three biological replicates 
were taken from each period of the two cultivars.

UPLC–MS/MS system-based widely 
targeted metabolomics analysis

The primary metabolites were extracted and identified by 
Metware Biotechnology Co., Ltd.1 Biological samples were freeze-
dried using a vacuum freeze-dryer (Scientz-100F), and 100 mg of 
the powder was dissolved in 1.2 ml of 70% methanol solution and 
kept at 4°C overnight. The filtered extracts were used for 
metabolite profiling by UPLC–MS/MS system (Applied 
Biosystems 4500 Q TRAP) analysis and quantification was 
performed by multiple reaction monitoring (MRM) in a triple 
quadrupole spectrometer (Chen et al., 2013). Metabolites were 
identified by comparing the exact mass, fragmentation patterns, 

1 www.metware.cn
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and retention times with the standards from a self-compiled 
database (MetWare, Wuhan, China) (Chen et al., 2013).

RNA extracted and RNA-sequencing

Total RNA was extracted from fruits (HK1, HK2, HK3, HK4, 
HK5, ST1, ST2, ST3, ST4, and ST5 with three biological replicates) 
using the RNAprep Pure Plant Plus Kit (TIANGEN, Beijing, China). 
A total amount of 1 μg RNA per sample was used for the sequenced 
library by NEBNext® UltraTM RNA Library Prep Kit for Illumina® 
(NEB, United States). The cDNA library products were sequenced 
by the Illumina Hiseq platform with 125 bp/150 bp paired-end reads. 
The raw data was filtered using fastp v 0.19.3 (Chen et al., 2018), 
mainly removing reads with adapters; when any sequencing read 
contained more than 10% of the bases of the read, the paired reads 
were removed; when any sequencing read contained more than 50% 
of the bases of the read with low quality (Q ≤ 20), the paired reads 
were removed. Clean reads were compared to a reference genome 
(Ziziphus jujuba Mill. “Dongzao”) using HISAT v2.1.0 (Liu et al., 
2014). Novel gene prediction was performed using StringTie v1.3.4d 
(Pertea et al., 2015). Feature Counts v1.6.2 (Liao et al., 2014) was 
used to calculate the gene alignments and FPKM.

Differential metabolites and genes 
analysis

Unsupervised principal component analysis (PCA) was 
performed by statistics function “prcomp” within R v4.1.2. variable 
importance in projection (VIP) values were extracted from 
OPLS-DA result by using the R package “MetaboAnalystR” (Chong 

and Xia, 2018). Metabolites with VIP ≥ 1 and log2(fold change) ≥1 
were considered significantly differential accumulation metabolites 
(DAMs) between groups (HK2 vs. HK1, HK3 vs. HK2, HK4 vs. 
HK3, HK5 vs. HK4, ST2 vs. ST1, ST3 vs. ST2, ST4 vs. ST3, and ST5 
vs. ST4). To analyze the changing trend of metabolites, DAMs were 
standardized (z-score) and clustered by K-means.

DESeq2 v1.22.1 (Love et al., 2014) was used to analyze the 
differential expression genes (DEGs) with |log2FC(fold 
change)| ≥ 1 and p-value <0.05 (Varet et al., 2016). The functions 
of the unigenes were annotated by the NR, KOG, SwissProt, GO, 
and KEGG databases (Ashburner et al., 2000; Bairoch and 
Apweiler, 2000; Kanehisa and Goto, 2000; Natale et al., 2000; 
Ogata et al., 2000; Wilke et al., 2012).

Combined metabolome and 
transcriptome analysis

The quantitative values of genes and metabolites in all samples 
were used for correlation analysis. The “cor” function in R was 
used to calculate the Pearson correlation coefficient of genes and 
metabolites with an absolute threshold larger than 0.85 and a 
p-value <0.05. The correlation analysis results of different genes 
and metabolites were selected. Differential genes and differential 
metabolites in each pathway were analyzed by CCA (canonical 
correlation analysis) (González et al., 2008). WGCNA v1.69 was 
used for weighted gene co-expression network analysis 
(WGCNA). Before WGCNA analysis, the genes with FPKM <0.1 
were filtered out from all samples. Pearson’s correlation, 
calculation of soft-power threshold (β), and the division of 
modules were performed according to previous studies (Chen 
et al., 2021; Lu et al., 2022), in this study, soft-power threshold (β) 

A

B

FIGURE 1

Phenotype of five developmental stages in “Mazao” (A) and “Ping’anhuluzao” (B).
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was set to 7, the minimum number of genes contained in the 
modules was set to 50, while the threshold for merging similar 
modules was set to 0.25. Cytoscape 3.8 was used for visualization 
of the control network with default settings (Otasek et al., 2019).

qRT-PCR

Ten DEGs were selected for qRT-PCR analysis, and ZjUBQ 
was used as the internal reference gene. The primers were listed in 
Supplementary Table S2. The RNA was extracted from jujube fruit 
as described above. qRT-PCR was performed using TB Green® 
Premix Ex Taq™ II (Takara, Beijing, China). Three technical 
replicates and three biological replicates were performed. The 
relative expression levels were calculated using the 2−ΔΔCtmethod 
(Livak and Schmittgen, 2001).

Results

Overview of metabolite accumulation 
patterns during jujube fruit development

To define a comprehensive landscape of metabolite profile 
during fruit development of HK and ST, we performed metabolite 
profiling by using LC-MS. During fruit ripening, the pericarp 
changed from green to yellow and red, and flavonoids accumulated 
rapidly. A total of 508 metabolites of 10 categories were obtained 
at different development stages of jujube fruits, including organic 
acids, amino acids and derivatives, saccharides and alcohols, free 
fatty acids, nucleotides and derivatives, lysophosphatidyl cholines 
(LPCs), lysophosphatidyl ethanolamines (LPEs), vitamins, 
glycerol esters, and sphingolipids (Supplementary Table S1).

Principal component analysis was used to analyze the data for 
all compounds from five developmental stages for two cultivars 
with three biological replicates; the objective was to provide a 
preliminary understanding of the overall metabolic differences 
between groups of samples including different fruit development 
stages and cultivars and the magnitude of variability between 
samples within groups. PC1 and PC2 explained 33.68% and 
25.94% of the variation, respectively (Figure  2A). The results 
showed that the variation between different fruit development 
stages was greater than the variation between the two cultivars. In 
addition, there was a large gap between the metabolomes of the 
third stage and the other four stages of development.

Analysis of metabolite differences and 
K-means analysis during fruit ripening in 
jujube

Heatmap and cluster analysis yielded an overview of dynamic 
metabolome changes during fruit development. To further explore 
the metabolic differences in the developmental stages and between 

cultivars, we  conducted a different analysis. A total of 437 
differential accumulation metabolites (DAMs) were identified 
(Figures 2B,C), with 308 DAMs in HK, 289 DAMs in ST, and 392 
DAMs between HK and ST. There were more differential 
metabolites in HK3 vs. HK2 and ST3 vs. ST2, which was consistent 
with the results of PCA. In other words, the shift from stage 2 to 3 
was an important transition in jujube fruit development. There 
were 33 common differential metabolites between the two 
cultivars at different periods, including 18 organic acids, eight 
amino acids and derivatives, two nucleotides and derivatives, two 
LPCs, one glycerol ester, one saccharide and alcohol, and one 
vitamin (Figure 2D).

To analyze the trends in metabolite content throughout fruit 
development, the relative contents of all the different metabolites 
identified in all group comparisons were standardized according 
to the screening criteria and then subjected to K-means cluster 
analysis (Figure 3A). Class1 contained 78 DAMs (organic acids, 
saccharides, alcohols, etc.) that accumulated mainly during the 
early stage (1, 2), and were reduced during the later stages (3, 4, 5) 
of fruit development (Figures 3B,C). The DAMs of Class 2 were 
mainly concentrated in stages 4 and 5 of HK. It contained a large 
number of organic acids and almost all lipids (LPC and LPE), 
which were specifically high in HK (Figures  3B,D) 0.77 
metabolites, such as amino acids and derivatives and organic acids 
in Class 5, accumulated in large amounts in ST fruit at later stages 
(3, 4, 5), which is opposite to the metabolite accumulation mode 
in Class 2 (Figures  3B,E). This showed that the accumulation 
patterns of organic acids and saccharides were similar in both 
cultivars, but there were significant differences in lipids and amino 
acids, which may lead to the different nutritional value and taste 
of jujube.

Accumulation pattern and correlation 
analysis of sugars and organic acids in 
jujube fruits

Sugar and acids are important factors affecting fruit flavor. 
We found 50 saccharides and alcohol metabolites with differential 
accumulation in either developmental stage or cultivar, among 
which fructose, glucose, mannose, and galactose were the main 
soluble sugars of jujube. The contents of four sugars showed 
similar trends in ST and HK, with higher contents in stages 1 and 
2 and a decreasing trend in the later stages (Figure 4A). The results 
indicated that sugar accumulation, which determines fruit 
sweetness, mainly occurred in the early stages of fruit 
development. Furthermore, 151 kinds of organic acids were 
found, including the common soluble acids citric acid, malic acid 
and quinic acid. Citric acid and malic acids were found to be the 
most abundant. Their accumulation pattern was opposite to the 
trend of sugar content, and the content increased with fruit 
ripening. In addition, the organic acid content of ST was higher 
than that of HK (Figure 4B). To further explain the relationship 
between sugar and organic acids, the correlation between organic 
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acids and sugar content was analyzed. The results showed that 
there was a positive correlation among the four sugars except for 
maltose. Citric acid, malic acid, and quinic acid were negatively 
correlated with sugars, while succinic acid was positively 
correlated with sugars (Figure 4C).

Transcriptome analysis of the jujube fruit 
of two cultivars at different development 
stages

To further explore the possible regulatory genes affecting 
DAMs, we also sequenced the transcriptomes of jujube fruits at 
each stage. After removing the unknown reads, low-quality reads, 

and adaptor sequences, a total of 206.95 Gb clean data were 
obtained from 30 libraries with an average GC content of 43.88% 
(Supplementary Table S3). A total of 16,245 differentially 
expressed genes (DEGs) were identified from 13 differential 
comparisons (between different developmental stages and 
different cultivars). The number of DEGs between the comparison 
combinations ranged from 304 to 9,342, with ST3 vs. ST2 reaching 
a maximum of 9,342 DEGs (Supplementary Figure S1).

To reveal the molecular functions of DEGs, GO enrichment 
analysis indicated that they were more widely distributed in three 
categories of biological processes, molecular functions, and cell 
components. Multiple comparative combinations were enriched 
into the categories of “glucosyltransferase activity,” “lipid binding,” 
“anion transmembrane transporter activity,” “anion transport,” 

A C

B

D

FIGURE 2

Comparison of metabolites in different developmental stages of jujube fruit. (A) Principal component analysis (PCA) score plot of all metabolites in 
30 samples. HK1 (ST1), HK2 (ST2), HK3 (ST3), HK4 (ST4), and HK5 (ST5) represent the samples at 30, 60, 80, 100, and 110 days after anthesis, 
respectively. (B) The number of differentially accumulation metabolites (DAMs) by comparing HK1 vs. HK2, HK2 vs. HK3, HK3 vs. HK4, HK4 vs. HK5, 
ST1 vs. ST2, ST2 vs. ST3, ST3 vs. ST4, ST4 vs. ST5, ST1 vs. HK1, ST2 vs. HK2, ST3 vs. HK3, ST4 vs. HK4, ST5 vs. HK5. (C) Overview of DAMs of two 
cultivars in five periods. (D) Venn diagram of the number of different developmental stages and cultivars.
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“photosynthesis,” “thylakoid” membrane” and “photosystem.” ST3 
vs. ST2 contained the most DEGs, which were significantly 
enriched in “phosphatase activity,” “metal cluster binding,” 
“ribonucleoside binding.” DEGs of HK3 vs. HK2 were enriched in 
multiple cell structure related categories, including 
“supramolecular polymer,” “polymeric cytoskeletal fiber,” and 
“microtubule” (Supplementary Figure S2). KEGG enrichment 
indicated that DEGs were involved in starch and sucrose 
metabolism as well as secondary metabolites in periods 2 and 3. 
Among them, HK was uniquely enriched in fatty acid biosynthesis, 
metabolism, and degradation (Supplementary Figures S3, S4).

Identification of WGCNA modules 
associated with fruit quality

To reveal potential relationships between genes and fruit 
quality, we performed the WGCNA on DEGs. The differential 
genes were divided into 13 modules (Figure 5A). The modules 
were related to sugars and acids in fruit. The turquoise module was 

positively correlated with the four main sugars and succinic acids 
(0.41–0.93) but negatively correlated with the levels of citric, 
malic, and quinic acid (−0.75 to −0.69). In addition, the brown 
and red modules were negatively correlated with sugar content 
and positively correlated with organic acid content. This further 
suggests that there is a negative correlation between sugars and 
acids (Figure  5A). Further analysis showed that ZjSKU5 
(monocopper oxidase-like protein SKU5, LOC107403720), 
ZjYABBY1 (C2C2-YABBY, LOC107403723), ZjTOPP4 (serine/
threonine-protein phosphatase PP1-like, LOC107412332), and 
ZjMYB78 (LOC107426114) are the core genes of the module 
turquoise and red (Figures 5B,C).

Differentially expressed genes involved in 
sugar and organic acid metabolism

The analysis of genes related to sugar biosynthesis and transport 
and organic acid metabolism is of great significance to analyze and 
understand the accumulation of sugars and organic acids. During 

A

C D E

B

FIGURE 3

Cluster analysis of differential metabolites. (A) K-means cluster analysis of differential metabolites. (B) The number of metabolites in each 
category. Nodes from small to large and light to dark represent the number of metabolites. The accumulation pattern metabolites of class 1 (C), 
2 (D), and 5 (E).
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the 2/3 stage of jujube fruit development, more DEGs and DAMs 
were involved in the pathway of starch and sucrose metabolism and 
carbon metabolism (Supplementary Figure S4). In this study, eight 
fructokinases (ZjFK), nine sucrose synthases (ZjSUSY), 26 
glucosidase-like (ZjGLU, four alpha-, 22 beta-), two hexokinases 
(ZjHK), six sucrose-phosphatases (ZjSPS), and six alactinol–sucrose 
galactosyltransferases (ZjSIP) were identified. Moreover, 45 sugar 
transporter genes were found, including three sucrose transport 
proteins (ZjSUC), three sugar transporters (ZjSTP), 10 ERD6-like 
sugar transporters (ZjERD6-like), eight SWEET sugar transporters 
(ZjSWEET), seven polyol transporters (ZjPLT), three inositol 
transporters (ZjINT), five phosphatidylinositol transfer proteins, 
four plastidic glucose transporters (ZjpGlcT), and two UDP-glucose 
transporters (Figures 6A,B).

Citric and malic acids are the main organic acids of jujube 
fruits, and they are also vital intermediates in the tricarboxylic 
acid cycle (TAC) downstream of glycolysis. In our analysis, 35 
DEGs of the TAC pathway were found, including six aconitate 
hydratases (ZjACO), two ATP-citrate synthase alpha chain 
proteins (ZjACLA), one citrate synthase (ZjCSY), six dihydrolipoyl 
dehydrogenases (ZjLPD), two isocitrate dehydrogenase [NAD] 
catalytics (ZjIDH), three isocitrate dehydrogenase [NADP] 
(ZjCICDH), seven malate dehydrogenase (ZjMDH), three 
phosphoenolpyruvate carboxykinase (ZjPCK), and five pyruvate 
dehydrogenase E1 component subunit alpha (ZjPDH) (Figure 6C).

Transcriptional regulation is an important cause of gene 
expression and regulation of metabolite content. We  jointly 
analyzed and screened transcription factors and structural genes 

A

C

B

FIGURE 4

Patterns of sugar and acid accumulation and their correlation in jujube. Accumulation patterns of six major sugars (A) and seven major acids (B). 
(C) Correlation between sugars and acids.
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related to sugars and organic acids. We  found 3,118 genes 
associated with mannose, glucose, galactose, fructose, quinic acid, 
citric acid, and malic acid, including 202 transcription factors in 
57 gene families distributed in modules turquoise, brown and red 
(Supplementary Table S4) (|coefficient| ≥ 0.85, p < 1.38 × 10−12). 
Therefore, a co-expression network of sugar and acid metabolites 
with transcription factors and metabolic pathway structural genes 

was further constructed (Figure  6D). The results showed that 
candidate genes such as ZjHAP3 (HEME ACTIVATOR PROTEIN 
(YEAST) HOMOLOG 3, LOC107409505), ZjTCP14 (TEOSINTE 
BRANCHED, CYCLOIDEA AND PCF14, LOC107428978), and 
ZjAGL61 (AGAMOUS-LIKE 61, LOC112488991) (At2g24840) 
may be involved in the accumulation of major sugars and acids in 
jujube fruits.

A

B C

FIGURE 5

Weighted gene co-expression network analysis (WGCNA) of DEGs. (A) The relationship between modules and fruit quality. Weighted module-trait 
correlations and corresponding p values. The color scale on the right shows module-trait correlations from −1 (blue) to 1 (red). Cytoscape 
representation of co-expressed genes with edge weight ≥ 0.50 in the “turquoise” module (B) and ≥ 0.30 in the “red” module (C).
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To further verify the correctness of the transcriptome data, 
we selected 10 genes for qRT-PCR validation. The results showed 
that the transcriptome expression trends were consistent with the 

qRT-PCR results. ZjTCP14, ZjYABBY1, and ZjSKU5 were highly 
expressed at the early stages of fruit development, while the other 
genes were highly expressed at late stages (Supplementary Figure S5).

A

D

B C

FIGURE 6

The expression profile of genes involved in organic acid and sugar biosynthetic pathways. Expression patterns of sugar-related kinases (A), sugar 
transporters (B), and tricarboxylic acid biosynthesis structural genes (C) during jujube ripening. The expression levels were standardized by Z-
score. (D) The regulatory network of key flavor metabolites in jujube fruit. Yellow circles represent sugars and organic acids, turquoise diamonds 
represent transcription factors, purple parallelograms represent structural genes of the TCA cycle, and green triangles represent sugar 
biosynthesis-related genes.
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Discussion

The combined analysis of metabolomics and transcriptomics 
are important technical tools for studying the flavor and nutrition 
of fruits such as watermelon, apple and jujube (Xu et al., 2020; 
Gong et  al., 2021a), but there is still a lack of comprehensive 
understanding of the accumulation patterns of sugars, acids, and 
substances at different development stages of jujube. To reveal 
fruit flavor differences between the two cultivars that differed in 
flavor due to the different sugar and acid accumulation, this study 
constructed a global metabolome dataset of the two cultivars at 
five periods to provide a basis for studying the molecular 
accumulation of jujube metabolites. We identified 437 DAMs and 
16,245 DEGs during fruit ripening. There were some special 
metabolites, such as LPC and LPE, that were highly accumulated 
between the two cultivars in the later stage of HK, with high levels 
of amino acids (leucine, arginine, and homoarginine) in ST 
(Figures  3D,E). This may have contributed to the different 
nutritional values of the two cultivars.

Soluble sugars, organic acids, and volatiles are important 
attributes that determine the color, flavor, and economic value of 
fruits (Gong et al., 2021a). Jujube is the largest economic tree 
species in China. Organic acids and soluble sugars change 
dramatically during the process of fleshy fruits from young to full 
maturity. Consistent with previous studies, the major sugar 
components in jujube fruits are fructose, glucose, and sucrose, 
and organic acids including citric acid and quinic acid (Zhang 
et al., 2021; Zhao et al., 2021). In this study, we found that both 
dominant sugars and organic acids were high in the early stages 
of development and decreased during later stages (Figure 4). 
Unlike other research that suggested that malic acid was 
dominant in the later stages of fruit development (Zhen et al., 
2016), citric acid was the main content of both cultivars at all 
stages of fruit development, and the content of quinic acid was 
higher than that of malic acid. Citric acid and succinic acid are 
the main factors affecting acidity.

Elucidating the underlying molecular mechanisms of sugar 
and organic acid changes and their spatiotemporal interactions is 
a crucial step in understanding fruit development (Yu et  al., 
2021). The fruit flavor is controlled by the environmental 
signaling pathways, developmental signaling pathways, metabolic 
signaling pathways, and transcription factors play important roles 
in these processes (Hanson et  al., 2008; Bastías et  al., 2011). 
Overexpression of SlAREB1 (ABA-response element binding 
factors) promoted levels of citric acid, malic acid, glutamic acid, 
glucose, and fructose in tomato (Bastías et al., 2011). While in 
apple (Malus domestica Borkh.), MdAREB2 promoted sucrose 
and soluble sugar accumulation by activating MdSUT2 (sugar 
transporter) (Ma et al., 2017). AcERF182 regulated AcBAM3.5, a 
key structural gene involved in soluble sugar accumulation in 
kiwifruit (Actinidia chinensis Planch) (Wang et  al., 2022). 
MdbHLH3 directly activated MdcyMDH to promote malic acid 
accumulation in the apple. Additionally, overexpression of 
MdbHLH3 increased photosynthetic capacity and carbohydrate 

content in apple leaves and also increased carbohydrate 
accumulation in fruits by regulating carbohydrate distribution 
from source to sink (Yu et al., 2021). Frank et al. (2018) reported 
that BASIC LEUCINE ZIPPER63 (bZIP63) affects the circadian 
rhythm of Arabidopsis in response to sugar changes by regulating 
PSEUDO RESPONSE REGULATOR7 (PRR7). In this study, 
we analyzed the genes that may be related to sugar and organic 
acid metabolites through WGCNA and Person’s relation, and 
identified transcription factors such as ZjYABBY1, ZjMYB78, 
ZjHAP3, ZjTCP14, and ZjAGL61, which can be  co-expressed 
with metabolites and related structural genes at the same time 
(Figures 5B,C, 6D).

In the present study, ZjYABBY1, ZjHAP3 and ZjAGL61were 
identified as candidate genes regulating the accumulation and 
metabolism of sugars and organic acids, suggesting that they may 
participate in fruit development through the metabolic pathways 
of sugars and organic acids. It is known that fruit formation and 
ripening is a very complex process, many aspects of fruit size, 
shape, and further developmental changes depending on organ 
identities are determined at an early stage (Karlova et al., 2014), 
Therefore, genes that regulate the dynamic changes of sugar and 
acid contents during fruit ripening may also be related to fruit 
morphology. For example, the ZjYABBY1 gene, which is related to 
sugar and acid metabolism in this study, has a homologue, 
AtYABBY, that functions in Arabidopsis flower as CRABS CLAW 
(CRC), which is involved in organ polarity in carpel and nectary 
development (Bowman and Smyth, 1999; Huang et al., 2013). 
Another AtAGL61 regulates central cell development in 
Arabidopsis. MADS-domain proteins TOMATO AGAMOUS-
LIKE1 (TAGL1) and MADS1 were found to be involved in fruit 
ripening in tomato (Itkin et al., 2009; Dong et al., 2013; Karlova 
et  al., 2014). ZjHAP3 is a homologous gene of AtHAP3 
(At2g38880), which controls the initiation and development of 
plant seed embryonic (Su et  al., 2021). In contrast, previous 
studies have shown that OsHAP3E participated in the 
determination of meristem identity in both vegetative and 
reproductive developments of rice (Zhang and Xue, 2013). It was 
shown that AtTCP14 (At3g47620) can break seed dormancy 
(Zhang et al., 2019; Ferrero et al., 2021). ZjMYB78 functions in 
response to abscisic acid and plant drought stress (Dalal 
et al., 2018).

Conclusion

In general, this study identified the differences in gene 
expression and nutrient accumulation in different developmental 
stages of jujube through transcriptome and metabolome 
analysis. The accumulation of sugars and acids showed opposite 
trends. Several transcriptional regulators that may affect fruit 
flavor (sugar and acid) accumulation were identified by joint 
analysis. The mining of these candidate regulatory genes 
provides a basis for further improving the flavor and economic 
value of jujubes.
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