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Temperature requirements of 
Colletotrichum spp. belonging 
to different clades
Irene Salotti , Tao Ji  and Vittorio Rossi *

Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 
Piacenza, Italy

The fungal genus Colletotrichum includes plant pathogens that cause 

substantial economic damage to horticultural, ornamental, and fruit tree 

crops worldwide. Here, we  conducted a systematic literature review to 

retrieve and analyze the metadata on the influence of temperature on four 

biological processes: (i) mycelial growth, (ii) conidial germination, (iii) infection 

by conidia, and (iv) sporulation. The literature review considered 118 papers 

(selected from a total of 1,641 papers found with the literature search), 19 

Colletotrichum species belonging to eight clades (acutatum, graminicola, 

destructivum, coccodes, dematium, gloeosporioides, and orbiculare), and 

27 host plants (alfalfa, almond, apple, azalea, banana, barley, bathurst burr, 

blueberry, celery, chilli, coffee, corn, cotton, cowpea, grape, guava, jointvetch, 

lentil, lupin, olive, onion, snap bean, spinach, strawberry, tomato, watermelon, 

and white bean). We used the metadata to develop temperature-dependent 

equations representing the effect of temperature on the biological processes 

for the different clades and species. Inter- and intra-clades similarities and 

differences are analyzed and discussed. A multi-factor cluster analysis 

identified four groups of clades with similar temperature dependencies. The 

results should facilitate further research on the biology and epidemiology of 

Colletotrichum species and should also contribute to the development of 

models for the management of anthracnose diseases.
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Introduction

The fungi in the genus Colletotrichum (phylum: Ascomycota, class: Sordariomycetes) 
include plant pathogens that cause substantial damages to a wide variety of woody and 
herbaceous plants (Sutton, 1992; Hyde et al., 2009; Cannon et al., 2012). Dean et al. (2012) 
rated the genus as the eighth most important group of plant pathogenic fungi in the world, 
based on scientific and economic importance. In the first half of the twentieth century, 
hundreds of species were identified as Colletotrichum based on morphology and the hosts 
from which they were isolated. The genus was then revised by Von Arx primarily based on 
specific morphological characteristics in culture, reducing about 750 species to only 11 (Du 
et  al., 2005). Nowadays, about 100 Colletotrichum species, which are divided into 

TYPE Original Research
PUBLISHED 22 July 2022
DOI 10.3389/fpls.2022.953760

OPEN ACCESS

EDITED BY

Tika Adhikari,  
North Carolina State University, 
United States

REVIEWED BY

Mark Angelo Balendres,  
University of the Philippines Los Baños, 
Philippines
Juan Manuel Tovar-Pedraza,  
Consejo Nacional de Ciencia y Tecnología 
(CONACYT), Mexico

*CORRESPONDENCE

Vittorio Rossi  
vittorio.rossi@unicatt.it

SPECIALTY SECTION

This article was submitted to  
Plant Pathogen Interactions,  
a section of the journal  
Frontiers in Plant Science

RECEIVED 26 May 2022
ACCEPTED 28 June 2022
PUBLISHED 22 July 2022

CITATION

Salotti I, Ji T and Rossi V (2022) 
Temperature requirements of 
Colletotrichum spp. belonging to different 
clades.
Front. Plant Sci. 13:953760.
doi: 10.3389/fpls.2022.953760

COPYRIGHT

© 2022 Salotti, Ji and Rossi. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that 
the original publication in this journal is 
cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.953760﻿&domain=pdf&date_stamp=2022-07-22
https://www.frontiersin.org/articles/10.3389/fpls.2022.953760/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.953760/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.953760/full
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.953760
mailto:vittorio.rossi@unicatt.it
https://doi.org/10.3389/fpls.2022.953760
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Salotti et al. 10.3389/fpls.2022.953760

Frontiers in Plant Science 02 frontiersin.org

phylogenetic clades based on multilocus molecular analysis, are 
now commonly accepted (Cannon et al., 2012; Vieira et al., 2020; 
Talhinhas and Baroncelli, 2021).

Detailed descriptions of the morphological characteristics of 
Colletotrichum species belonging to major phylogenetic clades 
were provided by Damm et al. (2009, 2012, 2013, 2014) and Weir 
et al. (2012). Colletotrichum species usually have hyaline, smooth-
walled, septate, branched vegetative hyphae, with diameters 
ranging from 1 to 11 μm; chlamydospores are seldom observed. 
Conidiomata are acervular or absent; conidiophores and setae 
form directly on hyphae. Setae measure from 40 to 150 μm, with 
color ranging from hyaline to dark brown. Conidia are hyaline, 
smooth-walled, aseptate, straight to curved, fusiform to 
cylindrical, 8.5–26 μm long, and 3–8 μm wide. Ascospores, which 
develop in 8-spore asci in perithecia, are oblong-elliptical, straight 
or rarely slightly curved, 9–43 μm long (mostly 13–23 μm), and 
3–8 μm wide.

As plant pathogens, Colletotrichum species are widely 
distributed in tropical and subtropical regions, affecting bananas, 
cassava, sorghum and other staple food crops grown by subsistence 
farmers in developing countries (Zakaria et al., 2009; Dean et al., 
2012; Sangpueak et al., 2018). Several species affect temperate and 
Mediterranean, high-value crops like strawberry (Xiao et al., 2004; 
Garrido et al., 2009), apple (Lee et al., 2007), citrus (Peres et al., 
2008), and olive (Talhinhas et al., 2011). The genus Colletotrichum 
also includes important post-harvest pathogens of fruits and 
vegetables (Freeman et  al., 1998; Timmer et  al., 1998; Peres 
et al., 2002).

Colletotrichum species are primarily reported as causal agents 
of anthracnose; anthracnose symptoms generally consist of 
necrotic lesions, often sunken, with defined borders, occurring on 
leaves, stems, flowers, and fruits. Other Colletotrichum diseases, 
however, have been described, such as brown blotch of cowpea, 
coffee berry disease, crown rot of strawberry and banana, and 
seedling blight (Lenné, 2002; Waller et al., 2002).

Colletotrichum species have similar life cycles. They are seed-
borne or grow saprophytically on plant debris in soil (Freeman 
et al., 2002; Begum et al., 2007). Epidemics are usually initiated by 
splash-dispersed conidia that germinate on plant surfaces under 
favorable conditions and penetrate the host tissue. Hemibiotrophy 
is the most common infection pattern of Colletotrichum species 
(Peres et al., 2005; Münch et al., 2008; Barimani et al., 2013), but 
some species can cause latent infections on fruits (Parikka and 
Lemmetty, 2004; Moral et  al., 2009). Epidemics caused by 
Colletotrichum species generally occur in rainy, humid, and warm 
weather, with temperatures ranging between 20°C and 30°C 
(Shabi and Katan, 1983; Ngugi et  al., 2000; Sharma and 
Kulshrestha, 2015; Kamle and Kumar, 2016). However, there is no 
clear understanding on whether temperature requirements for 
mycelial growth, conidial germination, infection, and sporulation 
are similar among the different species and clades (Baroncelli 
et al., 2015; Lima et al., 2015; Veloso et al., 2020).

In conducting this research, we had three main objectives: 
(i) to perform a systematic literature review in order to collect 

and organize knowledge regarding the effect of temperature on 
mycelial growth, conidial germination, conidial infection, and 
sporulation of Colletotrichum species, and in order to identify 
the main knowledge gaps; (ii) to identify similarities and 
differences in the temperature response among Colletotrichum 
species grouped into phylogenetic clades; and (iii) to develop 
mathematical equations accounting for the effect of 
temperature on mycelial growth, conidial germination, 
conidial infection, and sporulation for Colletotrichum 
phylogenetic clades.

Materials and methods

Systematic literature review

A systematic literature review was carried out to assemble a 
database concerning studies on the effect of temperature on the 
following biological processes of Colletotrichum spp.: (i) mycelial 
growth, (ii) conidial germination, (iii) conidial infection, and (iv) 
sporulation. A protocol was developed following Okoli and 
Schabram (2010) for retrieving published papers that contain data 
of interest for the development of the database.

The systematic literature review was performed in May 2021 
with the digital bibliographical databases Scopus (https://www.
scopus.com/ accessed on May 10), Web of Science (https://www.
webofscience.com/ accessed on May 11), CAB Abstract (https://
www.cabdirect.org/cabdirect/search/ accessed on May 13), and 
China National Knowledge Infrastructure (CNKI, https://global.
cnki.net/index/ accessed on May 28). To be included in this study, 
papers had to satisfy the following criteria: they (i) had to contain 
the term Colletotrichum in the title, abstract, and/or authors’ 
keywords; (ii) had to contain original data on the effect of 
temperature on at least one of the abovementioned biological 
processes of Colletotrichum spp.; and (iii) had to be published in 
journals, proceedings, or in other forms from competent 
authorities/organizations. Based on these criteria, specific queries 
were formulated to search the literature (Table 1).

The data collection process used in this work was based on 
Biesbroek et al. (2013) and is schematically described in Figure 1. 
Papers obtained from the first search were merged and duplicates 
were excluded. Papers were then screened by title and evaluated 
at the abstract level for relevance; full texts of papers considered 
of potential interest were reviewed to ensure relevance. Reference 
lists of reviewed papers were checked for other papers meeting the 
eligibility criteria but were not retrieved in the explored databases.

Equation development

Data on the effect of temperature on the four biological 
processes for the 19 selected species were retrieved in text,  
tables, and figures of the collected papers and were used for 
equation development; the GetData Graph Digitizer 2.24  
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(http://getdata-graph-digitizer.com accessed on 3 July 2019) was 
used to obtain precise data from graphs.

To make data collected in experiments conducted with 
different Colletotrichum and host species, and with different 
methods (e.g., mycelial growth was expressed as colony diameter 
in mm or cm, or as rate of growth in mm/day) comparable, 
original data were rescaled between 0 and 1 by dividing each 
value by the highest one obtained in each experiment. For 
instance, Miles et al. (2013) reported that Cerastium acutatum 
cultured on PDA for 10 days at 26°C (the optimal temperature) 
and at 15°C had a colony diameter of 70.5 and 25.7 mm, 
respectively; therefore, the rescaled data were x26 = 70.5/70.5 = 1, 
and x15 = 25.7/70.5 = 0.37.

Rescaled data were organized in a hierarchical database 
according to the four biological process, the 8 clades, and finally 
the species within the clades. Rescaled data were regressed against 
temperature; the nonlinear regression equations were compared 
based on the shape of data and Akaike’s Information Criterion 
(AIC). The following Bete equation (Analytis, 1977) always 
provided the smallest AIC values and was therefore considered the 
most likely to be correct (Burnham and Anderson, 2002):

 
y Teq Teq= ´ ´ -( )é

ë
ù
ûa b c

1
 

(1)

TABLE 1 Search strings for biological processes considered for the literature search in four databases and the corresponding number of papers 
found.

Biological process Database Search string N

Mycelial growth Scopus TITLE-ABS-KEY((Colletotrichum)AND(temperature*)AND(growth OR “mycel* growth”)) 269

Web of Science TS = ((Colletotrichum)AND(temperature*)AND(growth OR “mycel* growth”)) 245

CAB Abstract (Colletotrichum and temperature and mycelial growth).af. 116

CNKI (Title, Keyword and Abstract = Colletotrichum) AND (Title, Keyword and Abstract = temperature) AND 

(Title, Keyword and Abstract = mycelial growth)

194

Conidial germination Scopus TITLE-ABS-KEY((Colletotrichum)AND(temperature*)AND(germination OR “spore germination”)) 92

Web of Science TS = ((Colletotrichum)AND(temperature*)AND(germination OR “spore germination”)) 103

CAB Abstract (Colletotrichum AND temperature AND germination).af. 161

CNKI (Title, Keyword and Abstract = Colletotrichum) AND (Title, Keyword and Abstract = temperature) AND 

(Title, Keyword and Abstract = germination)

171

Infection by conidia Scopus TITLE-ABS-KEY ((Colletotrichum)AND(temperature*)AND(infection OR “spore infection” OR 

“conidia infection”))

153

Web of Science TS = ((Colletotrichum)AND(temperature*)AND(infection OR “conidia infection” OR “spore infection”)) 196

CAB Abstract (Colletotrichum AND temperature AND infection AND conidia).af. 35

CNKI (Title, Keyword and Abstract = Colletotrichum) AND (Title, Keyword and Abstract = temperature) AND 

(Title, Keyword and Abstract = infection)

112

Sporulation Scopus TITLE-ABS-KEY((Colletotrichum)AND(temperature*)AND(sporulation OR “spore production” OR 

“conidia production” OR “conidia development” OR “spore development”))

38

Web of Science TS = ((Colletotrichum)AND(temperature*)AND(sporulation OR “conidia production” OR “spore 

production” OR “conidia developmen” OR “spore development”))

48

CAB Abstract (Colletotrichum AND temperature AND sporulation).af. 99

CNKI (Title, Keyword and Abstract = Colletotrichum) AND (Title, Keyword and Abstract = temperature) AND 

(Title, Keyword and Abstract = sporulation)

109

The operator AND indicates that both terms must be present somewhere in the search field; the operator OR indicates that at least one term must be present in the search field. The high 
quotes (“”) allow more than one word to be considered as a single item. The wildcard (*) allows the selection of multiple word endings.

FIGURE 1

Schematic representation of the systematic literature review 
(based on Biesbroek et al., 2013).
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where y = rescaled mycelial growth, rescaled germination of 
conidia, rescaled infection by conidia, or rescaled sporulation (on 
a 0–1 scale); Teq = equivalents of temperature calculated as  
(T–Tmin)/(Tmax–Tmin), where T is the temperature regime (°C), 
and Tmin and Tmax are minimal and maximal temperatures for 
growth, germination, infection, or sporulation, which were 
considered as equation parameters; a to c = the equation 
parameters, with a, b, and c, defining the top, symmetry, and size 

of the bell-shaped curve, respectively. As an example, curves that 
fit the temperature response of infection by conidia in the eight 
clades are shown in Figure 2.

Equation parameters were then estimated using the 
function nls in the “stats” package of R software (Team, R Core. 
R: A Language and Environment for Statistical Computing 
2021; available at https://www.r-project.org/). The equations 
were evaluated for goodness-of-fit based on the adjusted R2, the 

A B

C D

E F

G H

FIGURE 2

Infection by conidia for (A) acutatum, (B) graminicola, (C) destructivum, (D) coccodes, (E) dematium, (F) gloeosporioides, (G) truncatum, and 
(H) orbiculare clades. Symbols show the average conidial infection in (A) ● Colletotrichum acutatum, ■ C. godetiae, ♦ Cossonus lupini, ▲  
C. simmondsii; in (B) ● Chironomus graminicola; in (C) ● C. lentis; in (D) ● C. coccodes; in (E) ● C. dematium, ■ C. spinaciae; in (F) ●  
C. gloeosporioides, ■ C. fragariae, ♦ C. gossypii, ▲ C. musae; in (G) ● C. capsici; in (H) ● Carpolipum orbiculare, ■ C. trifolii, ♦  
C. lindemuthianum. The dotted lines show the fit of data using a Bete Equation (1); equation parameters for each clade are summarized in Table 2.
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concordance correlation coefficient (CCC), the root mean 
square error (RMSE), and the coefficient of residual mass 
(CRM; Nash and Sutcliffe, 1970; Lin, 1989). The adjusted R2 was 
estimated by conducting a linear regression between the 
observed values and the model predicted values; the linear 
regression was conducted with the lm function in the R “stats” 
package (Wickham, 2019). CCC is the product of two terms: the 
Pearson product–moment correlation coefficient between 
observed and predicted values, and the coefficient Cb, which 
indicates the difference between the best fitting line and the 
perfect agreement line (if CCC = 1, the agreement is perfect; 
Lin, 1989). CCC was obtained using the CCC function of the R 
“DescTools” package (Signorell, 2020). RMSE, which represents 
the average distance of real data from the fitted line (Nash and 
Sutcliffe, 1970), was obtained using the rmse function in the R 
“modeler” package (Wickham, 2019). CRM is a measure of the 
tendency of the equation to overestimate or underestimate the 
observed values (a negative CRM indicates a tendency of the 
model toward overestimation; Nash and Sutcliffe, 1970). After 
Equation (1) was parametrized, residuals were calculated as 
observed—predicted values, and their distribution 
was analyzed.

According to Analytis (1977), the optimal temperature (Topt) 
for each biological process and clade was calculated as follows:

 
Topt Tmax Tmin Tmin=

´( )
´ +( )
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(2)

where b, c, Tmax, and Tmin are as described for Equation (1).
The estimates of the three cardinal temperatures (Tmin, Topt, 

and Tmax) describe the temperature range over which the 
biological processes can occur. Tmin is the lowest temperature at 
which mycelium grows, conidia germinate, conidia cause 
infection, and the fungus produces conidia; this temperature was 
also referred to as the base temperature, and no growth occurs 
below Tmin. Topt is the temperature at which the biological 
process is at its maximum. Tmax is the highest temperature at 
which the process can occur (Bebber et al., 2020).

Equation (1) was fit to the data of each Colletotrichum species 
(for each biological process) and for all of the species in a clade. 
The between-clade variability in temperature response was 
evaluated by comparing the cardinal temperatures and the shape 
of bell-shaped curves as determined by the estimates of equation 
parameters a, b, and c (Table 2); the three equation parameters 
(with their standard errors) were plotted in 3-dimensional space 
to better visualize differences (Figure 3). The intra-clade variability 
was analyzed as residuals of observed—estimated values; observed 
values were the values for each species, and estimated values were 
for the clade. Therefore, the residual represents the (positive or 
negative) distance of each value of a species from the average of 
the clade; the higher the residual, the greater the difference of the 
species from the clade average. These data are shown as box-plots 
in Figure 4.

Cluster analysis

A hierarchical cluster analysis was conducted for grouping 
Colletotrichum clades based on the within-group similarities and 
between-group differences in cardinal temperatures (Tmin, Topt, 
and Tmax) and the values of parameter a, b, and c of Equation (1) 
for the four biological processes. Ward’s method was used for 
clustering, in which the distance between two clusters is indicated 
by the increase in the sum of squares caused by the merging of 
clusters, with the Euclidean square distance for measuring 
similarities. Because the temperatures and equation parameter 
values were measured on different scales, some being much larger 
than others, the data were standardized by using z-scores as 
follows: (xi–x)/sd, where xi is any value of a variable, x is the 
average for the variable, and sd is the SD.

Results

Overview of selected papers

A total of 1,641 papers were obtained through the literature 
search; among these, 367 papers were selected based on their titles 
and abstracts. After full texts were read, 81 of the 367 papers were 
selected. Then, 37 papers were added based on the listed references 
of selected papers. As a result, a total of 118 papers were 
considered; these papers included a total of 142 cases (where a 
“case” is a specific study in which a Colletotrichum species was 
investigated in the selected papers). The 118 papers refer to 19 
Colletotrichum species belonging to eight clades (Table 3), i.e., 
acutatum (Damm et al., 2012), gloeosporioides (Du et al., 2005; 
Weir et al., 2012), coccodes (Du et al., 2005), dematium (Damm 
et al., 2009), destructivum (Damm et al., 2014), graminicola (Du 
et al., 2005; Crouch et al., 2006), orbiculare (Damm et al., 2013), 
and truncatum (Damm et al., 2009). Among the cases, 33.8% and 
29.6% concerned the gloeosporioides clade and the acutatum 
clade, respectively, with C. gloeosporioides (30 cases) and 
C. acutatum (25 cases) being the most studied species, followed by 
C. capsici (10 cases; Figure 5).

Mycelial growth was the most studied biological process, with 
72 of the 142 cases conducted under laboratory conditions on 
different media (e.g., PDA, malt agar, or V8 juice agar); data on the 
effect of temperature on mycelial growth were available for all 
Colletotrichum species, except C. spinaciae (Table 3). Among the 
142 cases, 46 had data on the effect of temperature on conidial 
germination; no data were found for four species (C. godetiae, 
Cossonus lupini, C. lentis, and C. spinaciae), and only information 
on the optimal temperature was found for C. simmondsii (Table 3). 
Data on the effect of temperature on infection by conidia were 
found in 51 of the 142 cases and for 17 species; no information was 
found for Clupea nymphaea or C. destructivum. Infection studies 
were carried out on 27 host species belonging to 16 families, 
including horticultural crops, agronomical crops, fruit trees, and 
ornamentals (Figure 6). Fruit tree crops, especially apple and olive 
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TABLE 2 Cardinal temperatures, calculated optimum temperature, estimates of parameters with their SE, and goodness-of-fit of Equation (1) for each biological process and clade.

Clade Tmin (°C) Tmax (°C) Topt (°C) a b c R2 CCC RMSE CRM

Mycelial growth acutatum 4 38 23.4 4.883 ± 0.111 1.323 ± 0.037 2.740 ± 0.213 0.903 0.95 0.115 0.014

graminicola 5 35 26.1 7.626 ± 0.678 2.370 ± 0.911 0.462 ± 0.024 0.929 0.968 0.094 −0.003

destructivum 5 36 25 6.258 ± 0.488 1.824 ± 0.155 1.635 ± 0.313 0.809 0.898 0.172 0.071

coccodes 4 36 27.9 9.364 ± 0.86 2.973 ± 0.51 0.587 ± 0.188 0.869 0.993 0.143 0.055

dematium 5 40 24.8 4.837 ± 0.207 1.307 ± 0.064 1.551 ± 0.172 0.986 0.994 0.04 0.008

gloeosporioides 4 40 26 5.569 ± 0.134 1.57 ± 0.044 2.199 ± 0.167 0.908 0.953 0.109 0.015

truncatum 6 40 27.5 5.956 ± 0.15 1.711 ± 0.05 1.16 ± 0.069 0.992 0.996 0.033 0.004

orbiculare 4 36 25.3 6.65 ± 0.448 1.986 ± 0.151 1.012 ± 0.156 0.877 0.938 0.125 0.004

Conidial 

germination

acutatum 5 36 22.2 4.666 ± 0.469 1.249 ± 0.148 0.614 ± 0.13 0.784 0.884 0.162 0.004

graminicola 10 40 24.7 4.563 ± 0.717 1.208 ± 0.248 1.631 ± 0.839 0.954 0.979 0.09 0.002

destructivum 5 40 27.4 6.109 ± 0.417 1.77 ± 0.13 3.675 ± 0.817 0.902 0.952 0.113 0.062

coccodes 7 40 24.7 4.397 ± 0.453 1.15 ± 0.139 0.9 ± 0.248 0.911 0.958 0.106 −0.017

dematium 5 40 21.2 3.624 ± 0.319 0.863 ± 0.095 1.517 ± 0.357 0.942 0.974 0.087 −0.007

gloeosporioides 9 38 26.7 3.765 ± 0.16 0.909 ± 0.051 1.558 ± 0.184 0.884 0.94 0.004 0.032

truncatum 5 40 26.4 4.55 ± 0.071 1.2 ± 0.08 3.104 ± 0.577 0.93 0.961 0.104 −0.083

orbiculare 5 40 24.1 4.532 ± 0.26 1.195 ± 0.086 2.259 ± 0.411 0.79 0.884 0.184 −0.007

Infection by 

conidia

acutatum 9 36 20.4 3.236 ± 0.274 0.735 ± 0.082 1.708 ± 0.401 0.762 0.871 0.199 0.001

graminicola 15 35 30.4 10.043 ± 1.363 3.38 ± 0.51 0.522 ± 0145 0.985 0.99 0.055 −0.036

destructivum 15 40 21.5 2.15 ± 0.11 0.351 ± 0.042 1.349 ± 0.348 0.984 0.993 0.047 0.001

coccodes 7 40 26.9 5.447 ± 0.366 1.522 ± 0.128 2.057 ± 0.468 0.929 0.968 0.091 0.002

dematium 5 33 22.6 5.908 ± 0.323 1.689 ± 0.111 5.523 ± 0.698 0.876 0.942 0.134 0.048

gloeosporioides 9 38 26.7 5.797 ± 0.371 1.702 ± 0.128 1.598 ± 0.298 0.842 0.918 0.153 0.002

truncatum 5 36 24.7 5.991 ± 0.285 1.736 ± 0.135 0.963 ± 0.187 0.891 0.946 0.128 −0.042

orbiculare 5 31 21.4 5.98 ± 0.541 1.698 ± 0.162 1.204 ± 0.248 0.831 0.913 0.169 0.009

Sporulation acutatum 4 36 21.2 4.392 ± 0.186 1.151 ± 0.053 2.571 ± 0.372 0.841 0.917 0.153 −0.051

graminicola 10 35 26.4 6.274 ± 0.539 1.908 ± 0.233 0.664 ± 0.161 0.983 0.99 0.055 −0.039

destructivum 4 37 25.9 6.661 ± 0.339 1.968 ± 0.117 3.864 ± 0.351 0.686 0.837 0.223 −0.072

coccodes 10 40 24.8 3.905 ± 0.369 0.976 ± 0.109 1.496 ± 0.383 0.918 0.96 0.117 0.054

dematium 5 40 25.1 4.975 ± 0.071 1.354 ± 0.025 9.409 ± 0.33 0.994 0.993 0.039 0.148

gloeosporioides 5 40 26.1 5.411 ± 0.267 1.512 ± 0.088 3.138 ± 0.56 0.822 0.909 0.154 −0.041

truncatum 12 40 28.2 5.036 ± 0.261 1.377 ± 0.088 7.163 ± 0.426 0.851 0.926 0.141 0.081

orbiculare 5 40 24.1 4.557 ± 0.264 1.199 ± 0.089 3.996 ± 0.969 0.836 0.915 0.167 −0.017

Optimum temperatures were calculated as in Equation (2).
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(four cases each), were considered in 19 cases. Sixteen cases 
focused on horticultural crops, with strawberry and tomato being 
the most important. Agronomical crops were studied in 14 cases, 
which concerned leguminous species (11 cases, in which lentil was 
the most studied species), cereals (two cases), and cotton (one 
case). Only one case was retrieved for infection of ornamental 
crops (azalea), and one for weeds (Bathurst burr). The effect of 

temperature on sporulation was investigated in 36 of the 142 cases; 
no data were found for C. godetiae, C. nymphaea, and C. simmondsii 
in the acutatum clade or for C. spinaciae in the dematium clade.

Most of the papers (97%) were published after 1950; only four 
papers were published before 1950, i.e., in 1889, 1906, 1928, and 
1944. The number of papers concerning the effect of temperature 
on the considered biological processes has increased since the 

A B

C D

FIGURE 3

Three-dimensional distribution of eight Colletotrichum clades based on the temperature requirements of the pathogens, described by a, b, and c 
parameters in Equation (1) for (A) mycelial growth, (B) conidial germination, (C) sporulation, and (D) conidial infection. The parameter a is plotted 
on the x-axis, b is plotted on the y-axis, and c is plotted on the z-axis. Black bars represent the standard error of estimates of equation parameters 
in the three dimensions. Clades are indicated by different colors: red is acutatum, orange is graminicola, pink is destructivum, brown is coccodes, 
blue is dematium, purple is gloeosporioides, gray is truncatum, and green is orbiculare.
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FIGURE 4

Box-plot of the residuals of observed data for (A) mycelial growth, (B) conidial germination, (C) infection, and (D) sporulation of Colletotrichum 
spp. versus the data estimated by Equation (1) for the clades to which species belong. Clades are indicated by different colors: red is acutatum, 
orange is graminicola, pink is destructivum, brown is coccodes, blue is dematium, purple is gloeosporioides, gray is truncatum, and green is 
orbiculare.

1980s, with an average of about three papers published annually 
in the last 20 years (Figure 7).

Mycelial growth

The majority of Colletotrichum species grew at temperatures 
ranging from 10°C to 35°C (Figure 8A). Only C. musae showed 
vigorous mycelial growth at 5°C (Ranjitham Thangamani et al., 
2011), and no growth was observed at 0°C for C. godetiae and 
C. musae, the only two species tested at that temperature (Lim 
et al., 2002). Growth at >35°C was observed in the gloeosporioides 
clade (Ling and Yang, 1944; Smith and Black, 1990; Kenny et al., 
2012; Zhang et al., 2014; Han et al., 2016) and in two species of the 
acutatum clade, i.e., C. acutatum and C. simmondsii (Smith and 
Black, 1990; Uematsu et al., 2012). Species belonging to the same 
clade had similar optimal temperatures, mostly between 24°C and 
28°C. Lower optimal temperatures (20°C–23°C) were recorded for 
C. godetiae and C. lupini (Nirenberg et al., 2002; Baroncelli et al., 
2015; López-Moral et al., 2017), while higher optimal temperatures 
(25°C–30°C) were recorded for species in the gloeosporioides clade.

Germination of conidia

Conidial germination was studied in vitro for 13 of the 19 
species in the database (Table 3; Figure 8B). Conidia of species in 
the graminicola, destructivum, coccodes, dematium, 

gloeosporioides, and truncatum clades were able to germinate 
between 10°C and 30°C, with the exception of C. musae, 
Chironomus graminicola, and C. capsici, whose conidia did not 
germinate at temperatures <15°C (Goos and Tschirsch, 1962). 
Optimal temperatures differed among the clades. In acutatum, 
coccodes, and dematium clades, optimal temperatures ranged 
from 20°C to 25°C. In graminicola, destructivum, and truncatum 
clades, optimal temperatures for conidial germination ranged 
from 25°C to 28°C. In the gloeosporioides clade, optimal 
temperatures were higher than in the other clades, ranging from 
25°C to 32°C. In the orbiculare clade, conidial germination was 
highest between 20°C and 30°C, depending on the species. High 
intra-clade variability in temperature requirements was observed 
for acutatum and orbiculare clades. Conidia of C. acutatum were 
able to germinate from 6°C to 36°C, while conidia of C. nymphaea 
germinated between 10°C and 30°C. Nevertheless, both species 
had similar optimal temperatures of about 25°C. In the orbiculare 
clade, minimal temperatures for germination of conidia of 
C. lindemuthianum and C. trifolii were 12°C and 15°C, respectively 
(Miehle and Lukezic, 1972; Bardas et al., 2009). Conidia of these 
species did not germinate at temperatures >30°C–31°C (Miehle 
and Lukezic, 1972; Li et al., 1995), and had optimal temperatures 
between about 22°C and 26°C. On the contrary, conidia of 
Carpolipum orbiculare were able to germinate from 10°C to 40°C 
(Zhou et al., 2012), with the optimum of about 30°C.

Partial information was retrieved for C. simmondsii and 
C. fragarie. The optimal temperature for conidia germination of 
C. simmondsii was similar to those for C. acutatum and C. nymphaea 
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TABLE 3 Species of Colletotrichum grouped by clade (Cannon et al., 2012) included in this work, and publications reporting specific experiments 
concerning the effect of temperature on four biological processes.

Clade Specie Mycelial growth Germination of 
conidia

Infection by conidia Sporulation

acutatum C. acutatum Es-Soufi et al. (2018); Greer et al. (2011); 
Kenny et al. (2012); Liu et al. (2006); Miles 
et al. (2013); Smith and Black (1990); Wilson 
et al. (1990)

Everett (2003); Fernando et al. 
(2000); Greer et al. (2011); 
Kenny et al. (2012); Lima et al. 
(2011); Liu et al. (2006)

Almond: Diéguez-Uribeondo 
et al. (2011); López-Moral et al. 
(2019); Apple: Everett et al. 
(2018); Wilson et al. (1990); 
Azalea: Bertetti et al. (2009); 
Blueberry: Gillett and Schilder 
(2009); Wilson et al. (1990); 
Celery: Rodriguez-Salamanca 
et al. (2015); Coffee: Kenny 
et al. (2012); Grape: Steel et al. 
(2012); Guava: Soares-Colletti 
and Lourenço (2014); Olive: 
Moral et al. (2012); Strawberry: 
Wilson et al. (1990)

Es-Soufi et al. (2018); Everett 
et al. (2018); Fernando et al. 
(2000); King et al. (1997); Liu 
et al. (2006)

C. godetiae Förster and Adaskaveg (1999); López-Moral 
et al. (2017)

- Almond: López-Moral et al. 
(2019)

-

C. lupini Baroncelli et al. (2015); Dubrulle et al. 
(2020); Jiang et al. (2021); Nirenberg et al. 
(2002); Thomas et al. (2008)

- Lupin: Dubrulle et al. (2020); 
Thomas et al. (2008)

Jiang et al. (2021); Thomas 
et al. (2008)

C. nymphaea Baroncelli et al. (2015); Han et al. (2016) Moreira et al. (2020, 2021) - -
C. simmondsii Baroncelli et al. (2015); Uematsu et al. (2012) Moral et al. (2011) Olive: Moral et al. (2011, 2012) -

graminicola C. graminicola Ali (1962); Yang et al. (2000) Skoropad (1967); Yang et al. 
(2000)

Barley: Skoropad (1967); Corn: 
Leonard and Thompson (1976)

Ghouse (1975); Yang et al. 
(2000)

destructivum C. destructivum Kawaradani et al. (2008); Ma et al. (2016); 
Sun et al. (2020)

Ma et al. (2016); Tiffany and 
Gilman (1954)

- Ma et al. (2016); Sun et al. 
(2020)

C. lentis Gibson (1994); Xu et al. (2017) - Lentil: Chongo and Bernier 
(2000a, 2000b); Gibson (1994)

Chongo and Bernier (2000b)

coccodes C. coccodes Dillard (1988); Glais-Varlet et al. (2004); 
Nitzan and Lahkim (2003); Yang et al. (2013)

Dillard (1988); Yang et al. 
(2013)

Onion: Rodriguez-Salamanca 
et al. (2018); Tomato: Byrne 
et al. (1998); Dillard (1989); 
Sanogo et al. (2003);

Dillard (1989); Yang et al. 
(2013)

dematium C. dematium Kumar and Dubey (2007); Wong et al. 
(1983); Yang et al. (2017)

Wong et al. (1983); Yang et al. 
(2017)

Cowpea: Pakela et al. (2002) Kumar and Dubey (2007); 
Wong et al. (1983)

C. spinaciae - - Spinach: Uysal and Kurt (2017) -
gloeosporioides C. gloeosporioides Denner et al. (1986); Estrada et al. (2000); 

Greer et al. (2011); Han et al. (2016); Kenny 
et al. (2012); Kumara and Rawal (2008); Lei 
and Li (2004); Mello et al. (2004); Smith and 
Black (1990); Veloso et al. (2020); Wang 
et al. (2009); Wastie (1972); Zhang et al. 
(2014)

Denner et al. (1986); Estrada 
et al. (2000); Everett (2003); 
Greer et al. (2011); Kenny et al. 
(2012); Lima et al. (2011); 
Moraes et al. (2015); Peries 
(1973); Wang et al. (2009); 
Wastie (1972); Yun and Park 
(1990); Zhang et al. (2014)

Apple: Wang et al. (2015); 
Coffee: Kenny et al. (2012); 
Grape: Yun and Park (1990); 
Guava: Pandey et al. (1997); 
Jointvetch: Luo and TeBeest 
(1999); Soares-Colletti and 
Lourenço (2014)

Fitzell and Peak (1984); King 
et al. (1997); Mello et al. 
(2004); Pandey et al. (1997); 
Veloso et al. (2020); Wastie 
(1972); Wang et al. (2009)

C. fragariae Gunnell and Gubler (1992); Smith and Black 
(1990); Veloso et al. (2020)

Veloso et al. (2020) Strawberry: Smith and Black 
(1987); Zhao et al. (2020)

Horn and Carver (1963); King 
et al. (1997); Veloso et al. (2020)

C. gossypii de Carvalho and e Carvalho (1973); Ling 
and Yang (1944); Liu et al. (2016)

Liu et al. (2016) Cotton: Monteiro et al. (2009) de Carvalho and e Carvalho 
(1973)

C. musae Goos and Tschirsch (1962); Lim et al. 
(2002); Ranjitham Thangamani et al. (2011); 
Razakamanantsoa (1966)

Al Zaemey et al. (1994); Goos 
and Tschirsch (1962)

Banana: De Lapeyre de Bellaire 
et al. (2000); Misra and Singh 
(1962); Pessoa et al. (2007)

Goos and Tschirsch (1962)

truncatum C. capsici Akhtar et al. (2018); Hartman and Wang 
(1992); Misra and Dutta (1963); Prajapati 
et al. (2020); Sinha et al. (2004); Tripathi 
et al. (2016); Xie et al. (1992)

Solanki et al. (1974); Xie et al. 
(1992)

Chilli: Datar (1995); Neelam 
and Khirbat (2015)

Sinha et al. (2004); Tripathi 
et al. (2016); Xie et al. (1992)

orbiculare C. orbiculare Zhou et al. (2012) Ishida and Akai (1969); Zhou 
et al. (2012)

Bathurst burr: Auld et al. 
(1989); Watermelon: Monroe 
et al. (1997)

Liu et al. (2015)

C. lindemuthianum Bardas et al. (2009); Li et al. (1995); Sardhara 
et al. (2016)

Bardas et al. (2009); Li et al. 
(1995)

White bean: Sindhan (1983); 
Tu (1982); Snap bean: Briosi 
and Cavara (1889)

Bardas et al. (2009); Sardhara 
et al. (2016)

C. trifolii Monteith (1928); Vasić et al. (2007) Miehle and Lukezic (1972) Afalfa: Miehle and Lukezic 
(1972)

Bain and Essary (1906); Vasić 
et al. (2007)
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FIGURE 5

Number of citations that evaluated the influence of temperature on mycelial growth, conidial germination, conidial infection, or sporulation per 
species. Clades are indicated by different colors: red is acutatum, orange is graminicola, pink is destructivum, brown is coccodes, blue is 
dematium, purple is gloeosporioides, gray is truncatum, and green is orbiculare.

FIGURE 6

Percentages of the papers that evaluated the influence of temperature on conidial infection on different host crops grouped by crop type. Hosts 
are listed under each crop type, with the number of papers in which they were tested for conidial infection.
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FIGURE 7

Number of papers published per year that evaluated the effect of temperature on mycelial growth, conidial germination, conidial infection, or 
sporulation. Data were obtained from a systematic literature review of a final database of 116 papers.
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FIGURE 8

Temperature requirements of Colletotrichum spp. for (A) mycelial growth, (B) conidial germination, (C) sporulation, and (D) conidial infection. A 
temperature scale from 0°C to 45°C is indicated at the top of each panel. Thin lines indicate the temperature at which the different processes 
occur for each species. Thick lines indicate optimal temperatures. Dotted lines indicate temperatures that are known not to support the process 
based on experimental evidence. Clades are indicated by different colors: red is acutatum, orange is graminicola, pink is destructivum, brown is 
coccodes, blue is dematium, purple is gloeosporioides, gray is truncatum, and green is orbiculare.
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(Moral et al., 2011). Like other species in the gloeosporioides clade, 
conidia of C. fragarie did not germinate at 5°C and 40°C, and the 
optimum was about 32°C (Veloso et al., 2020).

Infection by conidia

The effect of temperature on infection by conidia was studied 
for all of the species except C. nymphaea and C. destructivum 
(Table 3; Figure 8C). The range of temperature supporting infection 
by conidia was generally narrower than that for conidial 
germination, with the optimum slightly higher for infection than 
germination (Supplementary Material). In the acutatum clade, 
infection did not occur at temperatures <10°C for all species tested 
at these temperatures. Information on maximal temperature was 
reported only for C. acutatum (35°C; Moral et al., 2012; Soares-
Colletti and Lourenço, 2014) and C. simmondsii (30°C; Moral et al., 
2012); temperatures greater than 26°C and 30°C were not tested 
for C. lupini and C. godetiae, respectively. C. acutatum and 
C. godetiae had optimal temperatures ranging from 21°C to 25°C, 
while lower optima were observed for C. lupini and C. simmondsii 
(15°C–20°C). In the gloeosporioides clade, only C. gloeosporioides 
was extensively studied for the effect of temperature on infection 
by conidia; infection occurred from 10°C to 35°C, and 
temperatures <9°C or >35°C prevented infection (Kenny et al., 
2012). C. fragariae, C. gossypii, and C. musae were studied only 
between 10°C and 30°C, 15°C and 35°C, and 25°C and 35°C, 
respectively; all of these temperatures supported infection. Pessoa 
et  al. (2007) provided additional information on C. musae, 
reporting that conidia were not able to cause infection at 10°C. All 
species in the gloeosporioides clade had an optimum temperature 
for infection close to 30°C. Temperature requirements similar to 
those of gloeosporioides clade were observed for C. capsici and 
C. coccodes. Narrow ranges for infection were found in graminicola, 
destructivum, and orbiculare clades. Infection by conidia of 
C. graminicola was observed for temperatures between 20°C and 
32°C, with the optimum at about 30°C. Infection on lentil plants 
by conidia of C. lentis was observed when temperatures ranged 
between 16°C and 28°C, but no infection occurred at 15°C 
(Gibson, 1994). For all of the species in the orbiculare clade, the 
optimum for infection ranged from 21°C to 24°C; no infection 
occurred at temperatures >29°C–30°C. Differences were observed 
for minimal temperatures, which were 5°C, 7°C, and 12°C for 
C. orbiculare, C. lindemuthianum, and C. trifolii, respectively. The 
dematium clade was poorly studied; infection by conidia of 
C. dematium and C. spinaciae was assessed between 20°C and 
25°C, and 15°C and 33°C, respectively, and their optima were 
between 22°C and 25°C.

Sporulation

Temperature requirements for sporulation were extensively 
studied for only 13 of the 19 species (Figure 8D; Table 3). None of 

the species produced conidia at temperatures >35°C; sporulation 
stopped at 30°C in C. lupini and C. graminicola. The highest 
sporulation occurred from 25°C to 30°C for all species, except 
those in acutatum and orbiculare clades, which produced the most 
conidia at 18°C–24°C.

Partial information was retrieved for sporulation by C. lentis 
and C. gossypii. Sporulation of C. lentis was tested between 16°C 
and 28°C (Chongo and Bernier, 2000b), with no data available on 
minimal and maximal temperatures. de Carvalho and e Carvalho 
(1973) reported that C. gossypii did not produce conidia at 12°C 
and 33°C, and that sporulation highest was at 27°C.

Inter-clade variability in temperature 
response

Cardinal temperatures, estimates of equation parameters with 
their standard error, and goodness-of-fit of Equation (1) for each 
biological process and clade are summarized in Table 2. Further 
details on the temperature-response curves are provided in the 
Supplementary Material.

For mycelial growth, Equation (1) provided a good fit of 
data (CCC values ranged from 0.898 to 0.996 depending on the 
clade) and with little average distance between the real data 
and the fitted line (RMSE ranged from 0.033 to 0.172 
depending on the clade; Table 2). A slight tendency toward 
underestimation (CRM from 0.004 to 0.071) was exhibited for 
the majority of clades (Table  2). Values of Tmin and Tmax 
ranged from 4°C to 6°C, and from 35°C to 40°C, respectively. 
The optimum temperature calculated for mycelial growth was 
between 23.4°C and 27.9°C; these boundaries values were 
obtained for the acutatum clade and the coccodes clade, 
respectively. Estimates for the equation parameters ranged 
from 4.837 to 9.364 for a, from 1.307 to 2.973 for b, and from 
0.462 to 2.74 for c. When the temperature responses of different 
clades were plotted in three-dimensional space (in a-b-c space), 
similar patterns were observed for all clades, except for 
coccodes and graminicola, which had lower values of c and 
higher values of a and b (Figure 3A), resulting in wider, left-
skewed temperature-response curves, indicating that vigorous 
mycelial growth occurs at higher temperatures for those 
two clades.

Equation (1) provided a good fit of the conidial germination 
data, with CCC values as high as 0.979, and RMSE ranging from 
0.004 to 0.184 (Table 2). A slight tendency toward underestimation 
(CRM from 0.002 to 0.062) or overestimation (CRM from −0.083 
to −0.007) was observed, depending on the clade (Table 2). The 
minimum temperature used in Equation (1) was 5°C for all clades, 
except for coccodes, gloeosporioides, and graminicola, whose 
Tmin was 7°C, 9°C, and 10°C, respectively. The maximum 
temperature for germination was 40°C for all clades, except for 
acutatum and gloeosporioides, whose Tmax was 36°C and 38°C, 
respectively. The calculated optimum temperature ranged from 
21.2°C to 27.4°C; Topt values were lower for dematium (21.2°C) 
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and acutatum (22.2°C) clades, and were higher for dematium 
(27.4°C) and gloeosporioides (26.7°C) clades. Estimates of 
equation parameters ranged between 3.624 and 6.109 for a, 0.863 
and 1.770 for b, and 0.614 and 3.675 for c. The effect of temperature 
on the dynamics of conidial germination was similar for the 
different clades (Figure 3B), except that the destructivum clade had 
higher values of a, b, and c, resulting in a narrower temperature-
response curve, with poor conidial germination predicted at lower 
(5°C–15°C) and higher (35°C–40°C) temperatures.

When infection data were fit with Equation (1), high values of 
CCC (from 0.871 to 0.993) and low values of RMSE (from 0.047 
to 0.199) were obtained (Table 2). CRM values ranged between 
−0.042 and 0.048, indicating no substantial tendency of the 
equation toward over- or underestimation (Table 2). Cardinal 
temperatures were highly variable, with Tmin and Tmax ranging 
between 5°C and 15°C, and 31°C and 40°C, respectively (Table 2). 
Dematium, orbiculare, and truncatum clades had lower values of 
both Tmin (5°C) and Tmax (31°C–36°C) than the other clades. 
Tmin was highest for destructivum and graminicola clades, whose 
conidia did not cause infection at temperatures below 15°C. Tmax 
was as high as 40°C only for coccodes and destructivum clades. 
The optimum temperature calculated for infection by conidia 
ranged between 20.4°C and 30.4°C, with lower values for 
acutatum (20.4°C), dematium (22.6°C), destructivum (21.5°C), 
and orbiculare (21.4°C) clades. Only the graminicola clade had an 
optimum temperature of about 30°C. Estimates of equation 
parameters ranged between 2.150 and 10.043 for a, 0.351 and 
3.380 for b, and 0.522 and 5.523 for c.

When the temperature responses of the clades were plotted in 
three-dimensional (a-b-c) space, four patterns were observed 
(Figure  3D). Coccodes, gloeosporioides, orbiculare, and 
truncatum clades were grouped together, with similar values for a 
(from 5.447 to 5.991), b (from 1.522 to 1.736), and c (from 0.963 
to 2.057), resulting in wide and slightly left-skewed temperature-
infection curves. These parameters for coccodes, gloeosporioides, 
and truncatum clades resulted in relative infection >0.5 when 
temperatures ranged from 15°C to 30°C. Although the shape of 
the temperature-infection curve for the orbiculare clade was 
similar to those for the coccodes, gloeosporioides, orbiculare, and 
truncatum clades, the curve for the orbiculare clade differed from 
those of the other clades in that it indicated the occurrence of 
infections at temperatures ranging from 5°C to 31°C, resulting in 
a relative infection value >0.5 when temperatures were 12°C–
27°C. Compared to the other clades, acutatum and destructivum 
clades had lower values of a (3.236 and 2.15, respectively) and b 
(0.735 and 0.351, respectively), resulting in slightly right-skewed 
curves; both clades had a relative infection value >0.5 when 
temperatures ranged between 16°C and 28°C. The graminicola 
clade had the highest a (10.043) and b (3.380), and the lowest c 
(0.522), resulting in a narrow and markedly left-skewed 
temperature-infection curve; infection was predicted to occur at 
temperatures ranging from 15°C to 35°C, with a relative infection 
value >0.5 for temperatures from 24°C to 33°C. The value of c was 
highest (5.523) for the dematium clade, resulting in a narrow 

temperature-infection curve; although conidia were able to infect 
when temperatures ranged between 5°C and 33°C, relative 
infection values >0.5 were estimated only between 19°C and 26°C.

For sporulation, Equation (1) provided a good fit of the data 
as indicated by CCC values as high as 0.993 and RMSE values 
generally lower than 0.17 (Table  2). A slight tendency toward 
underestimation (CRM from 0.054 to 0.148) or overestimation 
(CRM from −0.072 to −0.015) was observed, depending on the 
clade (Table 2). The minimum temperatures used in Equation (1) 
ranged from 4°C to 12°C. Tmin was set at 4°C for acutatum and 
destructivum clades, and at 5°C for dematium, gloeosporioides, 
and orbiculare clades. Tmin was set at higher temperature for 
coccodes and graminicola clades (10°C) and for the truncatum 
clade (12°C) clade. The maximum temperatures for sporulation 
ranged from 35°C to 40°C, with the graminicola clade having the 
lower value. Like Tmin, a wide range of temperatures was obtained 
for Topt, from 21.2°C to 28.2°C depending on the clade. The 
lowest and highest Topt were calculated for acutatum and 
truncatum clades, respectively; similar Topt values (from 24.2 to 
26.4) were obtained for the other clades. Estimates of equation 
parameters ranged between 3.905 and 6.661 for a, 0.976 and 1.968 
for b, and 0.664 and 9.409 for c. Sporulation dynamics were 
similar for acutatum, coccodes, destructivum, gloeosporioides, 
and orbiculare clades (a ranging from 3.905 to 6.661; b ranging 
from 0.976 to 1.968; and c ranging from 1.496 to 3.864; Figure 3C). 
Temperature-response curves described by these parameters were 
wide and symmetric around the Topt values; relative sporulation 
values >0.5 generally occurred between 20°C and 30°C. Dematium 
and truncatum clades had high values of c (9.409 and 7.163, 
respectively), which led to narrow temperature-response curves; 
a relative sporulation value >0.5 was estimated at temperatures 
ranging from 21°C to 30°C for the dematium clade, and from 
24°C to 30°C for the truncatum clade. The curve for the 
graminicola clade had the lowest value of c (0.664), such that high 
sporulation for that clade occurred for temperatures between 
17°C and 33°C.

Within-clade variability in temperature 
responses

The distributions of residuals calculated as observed—
estimated values are shown in Figure 4. Overall, most residuals 
were within an interval of ±0.5. Wider intervals were observed for 
infection and sporulation than for conidial germination and 
mycelial growth, and mycelial growth had the lowest variability. 
In all distributions, means of residuals were close to 0 with 
some asymmetry.

Residuals of mycelial growth were within an interval of ±0.25, 
with some outliers for four of the clades (Figure 4A). Greater 
variability, with higher numbers of outliers, was observed for 
acutatum, gloeosporioides, and orbiculare clades; within-clade 
variability seemed to increase with the number of species in a 
clade. Although the dematium clade included two species, data on 
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mycelial growth were retrieved only for one of those species 
(C. dematium), leading to a distribution of residuals close to 0 
(±0.07). The results suggest some differences in the dynamics of 
mycelial growth for species within the same clade.

For conidial germination, residual distributions were similar 
for all clades (±0.25), independent of the number of species in the 
clade, i.e., patterns of conidial germination were similar for all 
species in the same clade (Figure 4B). The only exception was in 
the orbiculare clade, which had greater variability (an interval of 
±0.3) and a higher number of outliers than the other clades; much 
of the variability in the orbiculare clade was caused by C. trifolii, 
which had more restricted temperature requirements and a lower 
Topt than the other two species in the clade.

Variability was higher for infection than for the other 
biological processes (Figure 2), with residuals distributed in an 
interval of ±0.4; that was true for all clades and particularly for 
acutatum and gloeosporioides. In the acutatum clade, C. godetiae 
caused few infections when temperatures were <20°C or >25°C, 
resulting in high residuals between observed data and fit data for 
the clade. In the gloeosporioides clade, C. musae infected its host 
(banana) when temperatures were between 25°C and 32°C; 
however, other species in this clade also showed high infection at 
lower temperatures (15°C–24°C). Additional sources of variability 
for infection (other than the identity of the Colletotrichum species) 
were the identity of the host plant and the organs that were 
infected. There were 11 and 8 hosts for acutatum and 
gloeosporioides clades, respectively. In the acutatum clade, higher 
residuals were obtained for infections of leaves of coffee, celery, 
and azalea than for infections of both leaves and fruits of fruit 
trees like apples and olives. In the gloeosporioides clade, higher 
residuals were obtained for infections of fruits of banana and 
guava, and jointvetch plants than for fruits of apple and strawberry 
or for leaves of coffee. The effect of temperature on infection was 
similar for all the species in the orbiculare clade, with a residual 
interval of ±0.25 (Figure 4C). Variability was low in graminicola 
(±0.09) and destructivum (−0.06 to 0.08) clades.

Most of the residuals of sporulation were within an interval of 
±0.4 (Figure  4D). Variability was highest for acutatum, 
destructivum, and gloeosporioides clades. Data on sporulation in 
the acutatum clade were available only for C. acutatum and 
C. lupini, which differed in their patterns of sporulation, especially 
at temperatures from 5°C to 15°C. Sporulation of C. lentis in the 
destructivum clade was higher than sporulation of C. destructivum 
when temperatures ranged between 15°C and 25°C. Variability in 
the gloeosporioides clade was mainly caused by C. gossypii, which 
did not sporulate at 12°C or 33°C, and by C. fragarie, which had 
high sporulation at about 30°C but low sporulation at 20°C 
and 35°C.

Clusters for clades

The hierarchical cluster analysis grouped the clusters at 
different rescaled distances (Figure  9); at the intermediate 

distance, four clusters were identified. The first cluster, which 
included coccodes, gloeosporioides, and truncatum clades, had 
optimum temperatures ranging between 25°C and 28°C for all 
biological processes; high minimum temperatures (5°C–12°C) for 
conidial germination, infection, and sporulation; and similar 
parameter values (Table  2). Compared to the first cluster, the 
fourth cluster (which included acutatum, dematium, and 
orbiculare clades) had lower optimum temperatures (21°C–25°C) 
and lower minimum temperatures (about 5°C). The fourth cluster 
also had similar within cluster values of a, b, and c for mycelial 
growth and conidial germination but dissimilar within cluster c 
values for conidial infection and sporulation in the case of the 
dematium clade. The second and third clusters contained one 
clade each, i.e., the destructivum clade and the graminicola clade, 
respectively. The destructivum clade had generally high values of 
a (except for infection by conidia), cardinal temperatures similar 
to those of the first cluster for conidia germination and 
sporulation, and lower cardinal temperatures than those of the 
other clusters for mycelial growth and infection. The graminicola 
clade had the highest minimum and optimum temperatures for 
conidial infection, which were 15°C and 30°C, respectively, and 
values for a that were similar to those in the destructivum clade, 
resulting in narrow, bell-shaped temperature-response curves 
(e.g., infection in Figure 2B).

Discussion

Since the last century, several studies have investigated the 
temperature requirements of many Colletotrichum species causing 
anthracnose on cultivated plants. Here, we conducted systematic 
literature review was carried out to collect and analyze available 
information on the effect of temperature on the mycelial growth, 
conidial germination, infection by conidia, and sporulation of 
Colletotrichum species. The use of a systematic review enables 

FIGURE 9

Dendrogram resulting from a hierarchical cluster analysis of the 
cardinal temperatures (minimum, optimum, and maximum) and 
values of parameter a, b, and c of Equation (1) for mycelial 
growth, conidial germination, conidial infection, and sporulation 
summarized in Table 2.
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researchers to locate and assemble what is known from the 
literature, and to synthesize the research findings into an accessible 
format (Mulrow, 1994). A systematic approach also reduces errors, 
limits research bias, and improves the communication of the 
information (Madden and Paul, 2011; Candel, 2014; Scherm et al., 
2014). In the current study, we considered a total of 118 papers 
(from an initial number of 1,641) containing information on the 
effect of temperature on the four biological processes of 19 
Colletotrichum species belonging to eight clades and on 27 host 
plants. Anthracnose pathogens have often been referred to as 
C. gloeosporioides or C. acutatum because the identification 
procedures often failed to include the use of multiple markers, and 
frequently, only the ITS region was analyzed (Zakaria, 2021). With 
the use of molecular phylogenetic analysis for identification and 
characterization of Colletotrichum species, diverse species have 
been reported to be associated with anthracnose diseases, and 
have been described and grouped into phylogenetic clades 
(Damm et al., 2009, 2012, 2013, 2014; Weir et al., 2012; Vieira 
et al., 2020; Talhinhas and Baroncelli, 2021). To our knowledge, 
the current report is the first to summarize the available published 
information with the aim of drawing robust conclusions regarding 
the similarities and differences in effects of temperature on 
Colletotrichum species grouped into phylogenetic clades.

Although Colletotrichum is one of the most studied genera of 
plant pathogens, important gaps about the effects of temperature 
on some biological processes for some species and clades still 
remain. Researchers have paid much more attention to the effects 
of temperature on mycelial growth than on conidial germination, 
infection, or sporulation. The studied temperature ranges were 
frequently restricted around the supposed optimum temperature. 
For example, conidial infection by C. godetiae and C. fragariae was 
tested between 10°C and 30°C (Smith and Black, 1987; López-
Moral et al., 2019; Zhao et al., 2020), resulting in missing data on 
the minimum and maximum temperatures able to support 
infection. The most studied clades were the gloeosporioides and 
acutatum clades, which were also the clades with the largest 
number of species. In the acutatum clade, however, complete 
information was collected only for C. acutatum and C. lupini. 
Information was missing for infections caused by C. nymphaea, 
which is associated with olive and strawberry anthracnose 
(Antelmi et al., 2019; Wang et al., 2019). Specific experiments on 
the effects of temperature on sporulation have never been 
performed for C. godetiae, C. nymphaea, or C. simmondsii. We also 
could not find complete information for species in destructivum 
and dematium clades. This was unexpected, because species of 
these clades cause anthracnose in several legumes and ornamental 
plants (Smith et al., 1999; Tomioka et al., 2011, 2012), and because 
the gaps involve key aspects of the pathogen life cycle such as 
germination of conidia, infection, and sporulation. Overall, the 
insufficient database obtained through our literature review 
highlighted knowledge gaps on the temperature requirements for 
Colletotrichum spp. growth, infection, and sporulation that should 
be  the foundation for the development of efficient disease 
control strategies.

Diverse species of Colletotrichum causing anthracnose are also 
of quarantine concern. For instance, C. acutatum is a quarantine 
pest in Israel and Tunisia, and is a regulated non-quarantine pest 
in several other countries (EPPO, 2022). In Europe, C. gossypii is 
well established in most of the cotton-growing areas; however, the 
pathogen is not known to occur in Greece where it is a potential 
quarantine pest (EPPO, 2022). These Colletotrichum species could 
spread to other areas where they would likely reduce crop yield 
and quality. It is therefore important to know the temperature 
requirements and other environmental conditions favorable for 
the development of Colletotrichum species in order to support pest 
risk assessment (Jeger et al., 2018; Bragard et al., 2021) and climate 
matching analysis regarding the introduction of anthracnose 
pathogens in new areas (Sutherst et al., 2011).

Equations developed in this work may help to identify 
similarities and differences in the effects of temperature on 
Colletotrichum species grouped into phylogenetic clades. High 
concordance (CCC ranging from 0.79 to 0.994) between observed 
and predicted data and low levels of residual errors (RMSE ≤0.2) 
indicated that our equations reliably represent the effect of 
temperature on the four biological processes. Distribution of 
residuals between observed and predicted values also indicated 
that the general response to temperature was similar among 
species in the same clade. These findings add to the results of 
previous publications, which stated that species in the same clade 
share similar behavior in terms of host infection and colonization 
(Damm et al., 2012; Weir et al., 2012; Zakaria, 2021). The plotting 
of equation parameter values in three-dimensional (a-b-c) space 
showed that the clades were located near each other for mycelial 
growth and conidial germination. Based on these results, 
we conclude that, regardless of the specific ability of species to 
grow and germinate, the shape of the mycelial growth and conidial 
germination response curves to temperature was similar among 
the clades. On the contrary, more dispersed distributions were 
observed for infection by conidia and sporulation. A higher inter- 
and intra-clade variability for these biological processes may 
reflect the importance of pathogen-host interactions in the 
successful establishment of the fungi in their hosts (Gan et al., 
2016; Liang et al., 2018; Yan et al., 2018) and in the production of 
secondary inoculum (Jackson and Schisler, 1992; Mello et  al., 
2004; Kumara and Rawal, 2008).

Using a cluster analysis based on similarities in equation 
parameter values and cardinal temperatures, we identified four 
groups. These groups generally reflect the distribution of clades 
in clades in three-dimensional plots (Figure  3); some 
differences, however, should be recognized. The first group, 
consisting of coccodes, gloeosporioides, and truncatum clades 
was consistent in the three-dimensional plots, with the three 
clades closely distributed for all biological processes. The 
second and third groups, consisting only of destructivum and 
graminicola clades, respectively, were often self-grouped in the 
three-dimensional plots, indicating the dynamics of their 
biological processes differed greatly from the dynamics of the 
other clades. Although acutatum, dematium, and orbiculare 
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clades were grouped together by cluster analysis, they were 
quite dispersed in the three-dimensional plots. In particular, 
higher values of parameter c (which determines the size of the 
bell-shaped curve described by the temperature-dependent 
equation) were obtained for both conidial infection and 
sporulation for the dematium clade. Nevertheless, the cardinal 
temperatures of these three clades were consistent and were 
generally lower than those of other groups.

For some of the species considered in this research, 
epidemiological models have been created to predict disease 
development (e.g., Dodd et al., 1991; Moral et al., 2012; Singh, 
2020). Most of the models are simple and consider only one 
component of the pathogen life cycle, mainly conidial 
infection. Furthermore, many of these models have never 
been validated against independent data, i.e., model 
predictions have not been compared with real-world 
observations different from those used for model development 
(Rossi et al., 2010). Before these models are used in practical 
disease control, validation with real data obtained from 
different areas and years with different epidemiological 
conditions should be performed to assess model accuracy and 
robustness (Rossi et al., 2010). A mechanistic, weather-driven 
model was recently developed and validated for ripe rot of 
grapes caused by the Colletotrichum species (Ji et al., 2021). 
Several advantages have been previously reported for 
mechanistic models over empirical models, including a high 
explanatory ability and the possibility of easily incorporating 
information from previous and new experiments regarding 
pathogen biology and epidemiology (De Wolf and Isard, 
2007; Rossi et  al., 2015). The current report should help 
researchers to conduct further research on the biology and 
epidemiology of Colletotrichum species as well as to develop 
mechanistic models for those anthracnose diseases that 
currently lack such models. The current report may also 
provide a foundation for the development of a model that can 
be applied to multiple Colletotrichum spp. and to multiple 
anthracnose diseases based on clade similarities.
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