
fpls-13-954757 October 11, 2022 Time: 15:15 # 1

TYPE Original Research
PUBLISHED 17 October 2022
DOI 10.3389/fpls.2022.954757

OPEN ACCESS

EDITED BY

Yongliang Qiao,
The University of Sydney, Australia

REVIEWED BY

Meili Wang,
Northwest A&F University, China
Ya Xiong,
Norwegian University of Life Sciences,
Norway

*CORRESPONDENCE

Xiangjun Zou
xjzou@scau.edu.cn
Weixing Wang
weixing@scau.edu.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent
Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 27 May 2022
ACCEPTED 29 August 2022
PUBLISHED 17 October 2022

CITATION

Zheng S, Gao P, Zou X and Wang W
(2022) Forest fire monitoring via
uncrewed aerial vehicle image
processing based on a modified
machine learning algorithm.
Front. Plant Sci. 13:954757.
doi: 10.3389/fpls.2022.954757

COPYRIGHT

© 2022 Zheng, Gao, Zou and Wang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Forest fire monitoring via
uncrewed aerial vehicle image
processing based on a modified
machine learning algorithm
Shaoxiong Zheng1, Peng Gao1, Xiangjun Zou3,4* and
Weixing Wang1,2*
1College of Electronic Engineering, South China Agricultural University, Guangzhou, China,
2Guangdong Engineering Research Center for Monitoring Agricultural Information, Guangzhou,
China, 3Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South
China Agricultural University, Guangzhou, China, 4Foshan-Zhongke Innovation Research Institute
of Intelligent Agriculture and Robotics, Foshan, China

Forests are indispensable links in the ecological chain and important

ecosystems in nature. The destruction of forests seriously influences the

ecological environment of the Earth. Forest protection plays an important role

in human sustainable development, and the most important aspect of forest

protection is preventing forest fires. Fire affects the structure and dynamics of

forests and also climate and geochemical cycles. Using various technologies

to monitor the occurrence of forest fires, quickly finding the source of

forest fires, and conducting early intervention are of great significance to

reducing the damage caused by forest fires. An improved forest fire risk

identification algorithm is established based on a deep learning algorithm

to accurately identify forest fire risk in a complex natural environment. First,

image enhancement and morphological preprocessing are performed on a

forest fire risk image. Second, the suspected forest fire area is segmented.

The color segmentation results are compared using the HAF and MCC

methods, and the suspected forest fire area features are extracted. Finally,

the forest fire risk image recognition processing is conducted. A forest fire

risk dataset is constructed to compare different classification methods to

predict the occurrence of forest fire risk to improve the backpropagation

(BP) neural network forest fire identification algorithm. An improved machine

learning algorithm is used to evaluate the classification accuracy. The results

reveal that the algorithm changes the learning rate between 0.1 and 0.8,

consistent with the cross-index verification of the 10x sampling algorithm.

In the combined improved BP neural network and support vector machine

(SVM) classifier, forest fire risk is recognized based on feature extraction and

the BP network. In total, 1,450 images are used as the training set. The

experimental results reveal that in image preprocessing, image enhancement

technology using the frequency and spatial domain methods can enhance

the useful information of the image and improve its clarity. In the image

segmentation stage, MCC is used to evaluate the segmentationresults. The
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accuracy of this algorithm is high compared with other algorithms, up to

92.73%. Therefore, the improved forest fire risk identification algorithm can

accurately identify forest fire risk in the natural environment and contribute to

forest protection.

KEYWORDS

forest fire insurance, BP neural network, image recognition, image segmentation,
flame pixel

Introduction

Forests are vital links in the ecological chain and essential
ecosystems in nature. Damaged forests seriously affect the
ecological environment of the Earth (Han et al., 2018).
Protecting the forest environment plants plays a critical role
in sustainable human development, and the most important
aspect of protecting forest plants is preventing forest fires. If
a forest fire is not monitored and warned of in time, it burns
down trees, reduces forest accumulation, and causes soil erosion
and vegetation damage (Ryan et al., 2021). Forest fires can also
destroy understory plant resources and cause irreparable losses
to rich wild plant resources. Developing diversified forest fire
risk monitoring methods is necessary to reduce the adverse
effects of forest fires (Cai et al., 2018).

Developed countries have conducted substantial research
on monitoring forest fire disasters to reduce the losses
caused by forest fires. For example, Canada has a vast
territory with an average of thousands of forest fires daily,
but no major fire has occurred in recent decades. Japan
has also made some achievements in forest fire disaster
monitoring, and there have been no major fires. These
are inseparable from the rapid development of forest
fire monitoring technology (Van Hoang et al., 2020).
Currently, there are two main monitoring methods for
forest fire risk at home and abroad. The first is through
ground monitoring, including infrared, video, and radar
monitoring, and the other is air monitoring, primarily through
satellite, microwave, and infrared monitoring (Hu et al.,
2022).

The recognition and monitoring of forest fire risk images
using a machine learning algorithm have been successfully
performed in recent years to realize the timely monitoring of
forest fires. First, to extract the features of the forest fire risk
image, we segment the image and then classify it according
to the features.

Thach et al. (2018) analyzed the spatial pattern of tropical
forest fire risk using random forest and the multilayer
perceptron neural network and used the Pearson correlation
method to evaluate the correlation between the variables and
forest fire. In total, three forest fire risk models, the support

vector machine (SVM) classifier, random forest, and multilayer
perceptron neural network, were trained and verified (Thach
et al., 2018).

Lim et al. (2019) constructed two forest fire risk prediction
models based on satellite fire data and medium-resolution
imaging spectrometry data monitored by the Korean Forestry
Administration. They analyzed the spatial autocorrelation
between the fire frequency and intensity of the two data types
using a semivariogram. The accuracy and performance of the
model are good (Lim et al., 2019).

Balling improved the processing and analyzability of the
forest image returned by the uncrewed aerial vehicle (UAV)
by designing the UAV forest fire prevention system, forest
fire image monitoring algorithm, and intelligent landing gear
system. This method realized the real-time monitoring of forest
fire and improved the digitization and automation of forest fire
early warning and prevention (Balling et al., 2021).

Devotta et al. (2021) proposed an improved recognition and
positioning algorithm based on the color index. Combined with
the forest fire monitoring recognition algorithm of the UAV, it
can process the video image data returned during the flight of
the aircraft in real time, which can monitor and recognize forest
fire risk and accurately judge its location (Devotta et al., 2021).

However, image processing technology based on machine
learning can extract and analyze the image features of forest
fire risk and effectively identify the risk of a forest fire. Zhang
et al. (2019) built a forest fire prediction model based on the
convolutional neural network structure suitable for forest fire
sensitivity prediction.

Moayedi et al. (2020) adopted a hybrid evolutionary
algorithm to realize the approximate and reasonable task of
this forest fire environmental threat. A total of three fuzzy
meta-heuristic algorithms, the genetic algorithm, particle swarm
optimization algorithm, and differential evolution algorithm,
were used to construct a sensitive area model of the forest fire.
The results reveal that the optimized structure can replace the
traditional forest fire prediction model (Moayedi et al., 2020).

Ghali et al. (2021) used deep learning technology to
establish a deep learning convolutional transfer learning feature
extraction network. Ghali also explored the correlation of the
popular allocation standard of subspace learning and designed
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the deep convolution and domain adaptive sample classification
algorithm. The experimental effect was good (Ghali et al., 2021).

The aforementioned methods obtain forest canopy image
information using UAVs or video surveillance; analyze the
complex characteristics of smoke, flame, and other images by
processing forest fire risk images; and build a forest fire risk
monitoring and early warning model. The model can predict
the time of fire risk, direction of fire spread, and fire intensity.
However, few researchers have studied high-precision and
lightweight backpropagation neural network (BPNN) models.
The BPNN and SVM algorithm are combined to build the
forest fire risk identification algorithm MD-BPNN based on
an improved BPNN to improve the efficiency of forest fire
risk identification.

The organizational structure of this article is as follows: In
section “Improvement of forest fire identification algorithm,”
we recognize forest fire risk images. In section “Forest fire
risk image recognition,” we propose a color segmentation
model of forest fire insurance. Section “Color segmentation
model of forest fire insurance” introduces the improvement of
a BP neural network forest fire identification algorithm and
makes an experimental analysis. Finally, section “Conclusion”
summarizes the conclusions.

Improvement of forest fire
identification algorithm

Steps of the algorithm

Michael et al. (2021) proposed that the BPNN primarily
comprises forward signal propagation and reverse error signal
propagation. During the forward propagation of the signal, the
difference between the output signal and expected output value
is calculated. The error signal is transmitted in reverse through
the output when a large error occurs, and the value of each
layer is modified to make the actual output close to the expected
output.

In this study, the image processing steps through the
layers are illustrated in Figure 1, and the output of the image
recognition result is provided. When the input layer has a
reverse propagation method, it may affect the input and output
of other layers (Al-Zebda et al., 2021). The image enters the
input, hidden, and output layers and is processed by the BPNN.
Finally, the processed image is generated in the output layer. The
MapReduce fusion deep learning neural network based on BP
comprises the input, hidden, and output layers, as depicted in
Figure 1. It is trained in two ways: the forward propagation deep
learning method and BP deep learning process. The input of the
former method affects the other layers. The possible errors in the
input data of the output layer are corrected through BP.

According to the weight vector space, gradient descent
technology enhances the search technology and reduces the

error rate. In the hidden layer, N is the number of neurons.
The hidden layer can be regarded as the input of the output
layer, and whether the result is correct can be observed in
its evaluation. The series N = [1, 2, 3, · · · · · · , 10] indicates the
largest prediction result found. The series [x1, x2, · · · · · · , xn]

represents input variables. The series [w1,w2, · · · · · ·wn]

denotes the weight between the hidden and input layers. Finally,
the series [v1, v2, · · · · · · , vn] is the weight assigned to hidden
and output layers. In addition, Y(t) is a predictable output, and
the transfer function is used to describe the nonlinear problem,
expressed as follows:

y = f (x) =
1

1+ e−x (1)

The hidden layer z is the output expressed as follows:

z = f1
(∑

wixi

)
, (2)

wherew1,w2,w3......wn represent the weights of the hidden and
input layers:

u = f2
(∑

ukzk

)
. (3)

After the forward propagation process is completed, the
error signal e is formed by the tasks of u and y(t) for the
purpose of

u = 1/2
(∑

yi (t)u − zi

)2
(4)

Modified machine learning algorithm
based on backpropagation neural
network

In this study, the improvement steps of the deep learning BP
neural network forest fire identification algorithm are as follows
(Kukuk and Kilimci, 2021).

Step 1: Set algorithm parameters, including the initial weight
diversity feature (W), that is, the weight between [−w,w]
ranges. The lowest initial range here is [− 1, 1].

Number of hidden layers: The number is set to
1 in this study.

Number of nodes in the hidden layer: The number of nodes
in the hidden layer is less than the number of training samples.

Number of training cycles: One training cycle can improve
the accuracy of description by scanning the records of the
training set. At the cost of time, the accuracy may be reduced,
but the use time will be reduced.

Error tolerance: It specifies that the error tolerance in the
restatement is low. In terms of characteristics, error tolerance is
a small-cost event with a diversity from 0 to 1.

Hidden layer sigmoid: It generates each hidden node
through a sigmoid function. It can transform the continuous real
value of the input into the output between 0 and 1.

Serious error: It avoid serious errors in network training
(Mohammed, 2022).
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Step 2: The output of the active function marked in the
render parameters for each layer is calculated.

Activation function: It is responsible for mapping the input
of neurons to the output.

Learning rate: The logarithm is kept in the range of
[0.5 ∼ 0.8] at the beginning of discovery.

Number of training cycles: This is the only scan of all images
in the training set.

Step 3: Once an error is found in the output layer,
the error between all the obtained outputs and the selected
outputs is calculated.

Step 4: The weight extension error gradient is
adjusted on each epoch.

Step 5: The deep training mode is used to obtain the output.
The depth training mode is expanded from the depth training
set, allowing the functions marked in the aforementioned
parameter list to be activated.

Step 6: Depth fusion is performed in the estimation function.
Step 7: The incorrect information of deep fusion is ignored,

and the model is trained.
Experimental results: In the cluster (about five nodes), an

8.00 GB i3 CPU and 2.8 GHz of RAM are used. A forest fire risk

dataset was constructed to compare different methods to predict
forest fire risk. The forest fire risk monitoring dataset includes
forest fire risk images collected by UAVs on the ground and
forest fire risk images searched on the internet. Figure 2 presents
the calculation results of the non-sampling fusion-level depth
learning using several algorithms, and Figure 3 depicts the
calculation results of the fusion-level depth learning perceptron
with resampling.

Figure 2 compares the algorithm performance using the
network model without resampling. The recognition accuracy
of the MD-BPNN algorithm is 0.947, which is the highest
compared with the accuracy of other algorithms. The recall
rate of the MD-BPNN algorithm is 0.884, and the F-measure is
0.984. The root mean square error (RMSE) is 0.0759. According
to Figure 3, the algorithm performance is compared using the
network model with resampling. The recognition accuracy of
the MD-BPNN algorithm is 0.932, and the recall rate is 0.887.
Furthermore, the F-measure is 0.985, and the RMSE is 0.0434.

The data in the table reveal the consistency measurement of
the proposed algorithm. The algorithm changes the learning rate
between 0.1 and 0.8, consistent with the cross-index verification
of the 10x sampling algorithm.

FIGURE 1

Modified machine learning algorithm network model structure.

FIGURE 2

Performance comparison of all network models without sampling.
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FIGURE 3

Performance comparison of all network models with resampling.

Improved machine learning algorithm
and support vector machine classifier

This article presents an improved machine learning
algorithm and SVM classifier to recognize forest fire risk
images. This method takes the color and shape of the fire
image as the criterion and combines a variety of features.
This method first extracts the color features of the flame
according to the composition of the flame color to reduce
some significant interference (Tang et al., 2022). Second, by
constructing the multi-dimensional vector of color and shape,
the shape characteristic parameters of the target area are
calculated. The image recognition steps based on the BPNN are
shown in Figure 4.

The input layer of the forest fire risk recognition neural
network based on the BPNN is composed of extracted features,
including color moments, roundness ρ of the suspicious area,
and the angle N of flame.

FIGURE 4

Image recognition steps based on backpropagation neural
network.

According to the different backgrounds of forest fire risk
images, the distribution of y is y = [1, 0]. y = [0, 1, 0], and
y = [0, 1]. According to Equation (5), the node in the hidden
layer is 8.

y =
1
2 c× r2

+
3
2 c× r − 1

c+ r
(5)

After the number of nodes in the network hidden layer is
determined, the forest fire risk image recognition steps are as
follows:

Initialization: The input vector is X = [x1, · · · , xn], the
output vector is Y =

[
y1, · · · , yk

]
, and the hidden neuron vector

is M =
[
m1, · · · ,m j

]
.

Forward propagation: According to Sj =
∑i

1 XiWij, the
fitness of hidden layer is f (x) = tanh (x) = ex

−e−x

ex+e−x , so the
output function of the hidden layer is Mj = f (S i ).

According to Qk =
∑j

1 MjVjk, the fitness of the output layer
is f (x) = 1

1+e−x and Y
(
k
)
= f (Q k).

Backpropagation: The actual output is Y
(
k
)
, the

expected output is Ok, the mean square error is
En =

1
2
∑

1
[
O
(
k
)
− Y

(
k
)]2, and the sum of the mean

square error is E =
∑

n=1 En. The learning error dk
of the input layer and the learning error dj of the
hidden layer are calculated, and the value of the weight
is adjusted until the error disappears and is less than
the expected error.

A total of 3,845 forest fire risk images which are taken in
Longshan Forest Farm of Shaoguan, Guangdong (23 ◦ 12′N,
113 ◦ 22′E), and Lingyun Mountain of Foshan city (22 ◦ 57′N,
112 ◦ 46′E), are used as datasets. According to the ratio
of 7:3, the datasets are divided into training sets and test
sets. The datasets contain the image information of trees,
lakes, roads, etc. in the forest environment taken by UAVs
from above. The image information is collected under the
conditions of sufficient light and low illumination. Longshan
Forest Farm is located in Lechang city, Shaoguan, Guangdong
Province. The forest farm mainly grows ecological public
welfare forests and experimental forests such as Chinese fir,
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high-fat masson pine, bald cedar, eucalyptus, and rosemary.
Lingyun Mountain is located in Gaoming district, Foshan
city. Its vegetation consists of mainly masson pine, which
is flammable and difficult to extinguish in case of fire. The
environment of coniferous forest creates favorable conditions
for the generation of crown fire.

Overall, 1,440 images are selected as the training samples,
and 288 images are selected as the test samples, and the image
samples are collected under the same background. Table 1
shows the parameters of some training samples.

Table 2 lists the processing results. The results demonstrate
that the image is considered a fire image if the output value
exceeds 0.8.

TABLE 1 Parameters of some training samples.

I1 I2 I3 ρ N Y/N

0.0239 0.7301 0.4718 0.4572 0.2351 Y

0.1338 0.7471 0.5461 0.3473 0.1445 Y

0.2534 0.3548 0.0459 0.3151 0.6882 Y

0.4283 0.1352 0.3269 0.5277 0.9427 Y

0.0461 0.2451 0.1897 0.4281 0.8324 N

TABLE 2 Training sample.

I1 I2 I3 ρ N Y/N Result

0.1361 0.7472 0.5471 0.3463 0.1464 Y 0.9429

0.4282 0.1353 0.3269 0.5279 0.9429 Y 0.9141

0.5261 0.1746 0.0452 0.3142 0.7483 Y 0.6758

0.6419 0.0250 0.1887 0.4282 0.8323 Y 0.9943

0.0247 0.4301 0.6718 0.4527 0.2373 N 0.7703

FIGURE 5

Effect picture after using various filtering processes: (A) Original
drawing, (B) gabor filtering, (C) mean filtering, and (D) gaussian
filtering.

Forest fire risk image recognition

In UAV image forest fire monitoring, image preprocessing
technology is an essential link. Due to the influence of
environmental factors such as illumination and image
background, the image acquisition process will reduce the
quality and clarity of the collected image, resulting in the
inability to truly reflect the details of the image (Sayad et al.,
2019; Cawson et al., 2020; Hossain et al., 2020). The purpose
of applying image preprocessing technology is to weaken or
eliminate useless image information so as to retain and enhance
useful information.

In order to better meet the training requirements of the BP
neural network model, the original fire image data are converted
into small images of the same size (Gaur et al., 2021; Lin et al.,
2021; Wang et al., 2021). Preprocessing of image data is divided
into the following five steps:

The original forest image data are randomly cropped to
256× 256 and the image is randomly rotate at−15

◦

∼ 15
◦

.
The cropped forest fire risk image with size 224× 224 is

transformed into a tensor of 0∼1.
After converting from –1 to 1, the tensor is

normalized from 0 to 1.

FIGURE 6

Image morphological processing results: (A) Original image, (B)
binarization treatment, (C) expansion treatment, (D) corrosion
treatment, (E) open operation processing, and (F) closed
operation processing.
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FIGURE 7

Flame color distribution.

Image enhancement

In the process of forest fire risk image recognition, the
image needs to be enhanced (Abedi Gheshlaghi et al., 2021). The
processing algorithm steps are as follows: First, the images are

classified and divided into non-overlapping parts.[
Gx′

Gy′

]
=

[
Gx2
− Gy2

2GxGy

]
(6)

The average gradient vector
[

Gx′,Gy′
]T

is calculated by
using the following equation:[

Gx′

Gy′

]
=

[
1

w×w
∑w

i=1
∑w

i=1

(
G2

x
(
i, j
)
− G2

y
(
i, j
))

1
w×w

∑w
i=1
∑w

i=1
(
2Gx

(
i, y
)

Gy
(
i, j
)) ]

(7)

In Equation (7), the size of the image area is w× w:

ϕ =

 1
2 tan−1 G′y

G′x +
π
2 tan−1 G′y

G′x < 0
1
2 tan−1 G′y

G′x −
π
2 tan−1 G′y

G′x ≥ 0

 (8)

The frequency of the flame determines the filtering effect
(Babu et al., 2019; Sayad et al., 2019). If the frequency is
not appropriate, the filtered image will be greatly deformed,
resulting in the suppression of some flame structures, so the
filtered image has a blank position. The direction window

FIGURE 8

Flame brightness value: (A) Original image 1, (B) image 1 brightness value, (C) original image 2, and (D) image 2 brightness value.
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FIGURE 9

YCbCr color space separation image: (A) Original image, (B) Y channel separation, (C) Cb channel separation, and (D) Cr channel separation.

FIGURE 10

Pixel values of flames in different channels: (A) Flame pixel value
of Y channel, (B) flame pixel value of Cb channel, and (C) flame
pixel value of Cr channel.

is determined according to the flame direction, and each
pixel in the window is projected to the baseline. In order
to calculate the flame frequency of the image, it is necessary

to calculate the distance between the projected crest and
trough. The algorithm steps are as follows (Mao et al.,
2018):

We divided the image into non-overlapping subblocks of
w× w. Next, we calculated the average value of each point along
the w direction, denoted as M [ K ].

Combined with the characteristics of forest fire risk images,
this study has used the method of enhancement filtering
to enhance the image quality, and the most commonly
used enhancement image algorithm is Gabor filtering (Wang
et al., 2019). This algorithm regards the image in the local
area as a group of parallel, frequency, linear, and fixed
direction images. The Gabor window function is used to
locate and filter the flame in the image so as to enhance
the flame information. It can be expressed as follows:

G
(
x, y

)
=

1
2ππxσy

exp

[
−

1
2

(
x2

σ2
x
+

y2

σ2
y

)]
exp

(
−2ππfix

)
(9)

As can be seen from Equation (9), combined with the
directional characteristics of the image rotation filter, image
information can be enhanced during filtering (Sun et al., 2021).

R
(
x, y

)
=

1
2ππxσy

exp

[
−

1
2

(
x2

σ2
x
+

y2

σ2
y

)]
cos
(
2ππ fx

)
(10)

V
(
x, y

)
=

1
2ππxσy

exp

[
−

1
2

(
x2

σ2
x
+

y2

σ2
y

)]
sin
(
2ππ fx

)
(11)

R
(
x, y, f ,ϕ

)
=

1
2ππxσy

exp

[
−

1
2

(
x2
ϕ

σ2
x
+

y2
ϕ

σ2
y

)]
cos
(

2π fxϕ

)
(12)

In Equation (12),

[
xϕ

yϕ

]
=

[
cosϕ sinϕ

−sin cosϕ

][
x
y

]
, ϕ is the

direction of the Gabor filter, [xϕ, yϕ] represents the angle of
rotation along the axes x and y, and f is the frequency of
the sine wave and plane wave (Hong et al., 2018). There
are two methods to enhance image information: one is the
frequency domain method, and the other is the spatial domain
method, such as image gray transformation operation, image
histogram correction operation, and image filtering operation
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(Sousa et al., 2020; Joardar et al., 2021). Figure 5 is the
effect picture after Gabor filtering, mean filtering, and Gaussian
filtering.

Image morphological processing

Morphological processing of forest fire risk image data
captured by UAVs can extract image components that are
meaningful to the rendered area, realize further discrimination
operation, and extract the edge features of the target object and
the essential features of the connected area (Devotta et al., 2021).

The basic operations of morphological image processing
include expansion, corrosion, open operation, and close
operation. In Figure 6A is the original (Figures 6B–F) are
the comparison of the effects of several image morphological
processing methods, such as binarization processing, expansion
processing, corrosion processing, open operation, and closed
operation (Wang et al., 2022).

Through the morphological processing of forest fire
risk images, the image noise can be removed, the image
shape can be simplified, the flame feature structure can be
enhanced, and the flame information can be separated from the
complex background.

Color segmentation model of
forest fire insurance

In order to obtain a more detailed flame image, the flame
pixels can be segmented in YCbCr color space and RGB color
space, and the decision conditions can be obtained according to
the two color spaces (Stankevich, 2020). In case of forest fire risk,
the color of forest fire is quite different from the background
color of the forest environment, and the characteristics are
obvious. The main performance is that the color distribution of

FIGURE 11

Value of pixels in the R and G channels.

flame from outside to inside is red, yellow, and white. The color
distribution of flame is shown in Figure 7.

Pixel distribution characteristics of
forest fire

In the actual forest fire risk monitoring process, when the
shooting time is cloudy, the collected image information is
dark. For general algorithms, it is usually difficult to achieve
good results after direct processing. In order to improve the
contrast effect of the image, the image needs to be preprocessed
in advance. As shown in Figures 8A,B, the overall brightness
value of the flame image is low. The color parameters of the HSV
model include brightness, hue, and saturation (Van Le et al.,
2021). The pixel value of the flame image is calculated. As shown
in Figures 8C,D, the processed image has an obvious contrast
effect and can meet the requirements of later image processing.

Distribution of flame pixels

In Figures 9A–D are the flame image and the image
separated by YCbCr channels.

This section compares the flame pixels of YCbCr channels
with the average pixel value of the channel to describe the
characteristics of flame pixels. In Figures 10A–C compare the
flame pixel values in YCbCr channels with the average value of
the corresponding channels (Mohammed, 2022).

As can be seen from Figure 10, in the three channels, the
distribution rule of flame pixels can be expressed as follows
(Sevinc et al., 2020; Kumar et al., 2021; Dharmawan et al., 2022):

Y
(
i, j
)
> Ymean,Y

(
i, j
)
> Ymean and Cb

(
i, j
)
< Cbmean (13)

where YmeanCbmeanCrmean represent the average pixel value.
As shown in Figure 11. The comparison results are as

follows:

R
(
i, y
)
> G

(
i, y
)

(14)

Color segmentation results and
comparison

This study uses the HAF (Equation 17) and MCC (Equation
18) methods to analyze the flame image information under
low-light conditions and segment the flame color in the image.
Figure 12 presents the results.

Figure 12 illustrates the segmentation results of the flame
image. The left column is the original image, and the central
column is the segmented flame image based on the general
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BPNN algorithm. The right column displays the results from the
proposed MD-BPNN algorithm.

The segmentation quality of the region algorithm can be
quantified through this index. We define the matching index
calculation as follows:

M =
∑

j,maxiCard
(

Rref
i

⋂
Rseg

j

) Card
(

Rref
i
⋂

Rseg
j

)
Card

(
Rref

i
⋂

Rseg
j

) × ρj,

(15)
where Card represents the number of pixels, ρj denotes the
weight, Rref

i represents the ith manually segmented region, and
Rseg

j denotes the jth region.
For the overlapping part, combined with the over-

segmentation problem, the segmentation result region

corresponds to the manual segmentation result region,
and the following indexes are determined:

η =


NRref
NRseg

, if NRseg ≥ NRref

log
(

1+ NRseg
NRref

)
, otherwise

(16)

The calculation equation of the final evaluation index HAF
is as follows:

HAF =
M +m× η

1+m
(17)

In Equation (17), the weighting factor M plays an important
role in judging the segmentation of the process, and its value is
0.5. In Figure 10, the HAF segmentation index comparison is
shown in Figure 13.

FIGURE 12

Segmentation flame image results.

FIGURE 13

HAF evaluation index results.
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FIGURE 14

MCC evaluation index results.

From the test data, it can be seen that in the case
of excessive segmentation and insufficient segmentation, the
average accuracy rate of the MD-BPNN algorithm evaluated by
using the HAF index is 80.37%, and the segmentation result
still has good anti-interference performance. Compared with
other algorithms, the performance is better, which enhances the
applicability of the algorithm in multiple scenarios.

The Matthews coefficient is used to evaluate results,
calculated as follows (27):

MCC =
(TP × TN)− (FP × FN)

√
(TN + FN) (TN + FP) (TP + FN) (TP + FP) .

(18)
In Equation (18), TP indicates a true positive, TN denotes a

true negative, FP represents a false positive, and FN indicates a
false negative. The MCC evaluation index results are presented
in Figure 14.

By calculating the accuracy of the algorithm, the average
accuracy of the MD-BPNN is 92.73%, which is better than other
authors’ algorithms.

Conclusion

According to the actual forest image recognition situation,
this study improves the combination algorithm of the BP neural
network algorithm and SVM classifier, models the recognition
network, enhances the image and morphological processing
through the training and learning of the recognition network,
segments and extracts the features of the suspected forest fire
area, improves the efficiency of forest fire recognition, and
improves the stability of the network. The main contents are as
follows:

(1) A forest fire risk dataset was constructed to compare
different classification methods to predict forest fire risk.

The results reveal that the algorithm changes the learning
rate between 0.1 and 0.8, consistent with the cross-index
verification of the 10x sampling algorithm.

(2) In the combination of an improved BP neural network
and SVM classifier, forest fire risk is recognized based
on feature extraction and a backpropagation network.
A total of 1,450 images are used as training samples. The
experimental results show that the recognition effect of fire
risk images is good.

(3) By analyzing the forest fire image, the flame pixel values of
the images on R and G channels are analyzed. The value of
the former is higher than that of the latter.

(4) For the flame image under low lighting conditions, HAF
and MCC indexes are used to evaluate the segmentation
accuracy of the forest fire image. In the case of excessive
segmentation and insufficient segmentation, the average
accuracy of the MD-BPNN algorithm evaluated by
using the HAF index is 80.37% and the segmentation
result still has good anti-interference performance, thus
enhancing the applicability of the algorithm in a variety
of scenarios. The average accuracy of the MD-BPNN
algorithm is 92.73%, which indicates that the algorithm
has high accuracy.

The improved deep learning algorithm improves the
efficiency of forest fire risk identification. However, there is still
room to improve model performance. In future research, we will
further optimize the performance of the algorithm and improve
the ability of forest fire risk identification and prevention.
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