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Platycodin D (PD) is a deglycosylated triterpene saponin with much higher pharmacological 
activity than glycosylated platycoside E (PE). Extensive studies in vitro showed that the 
transformation of platycoside E to platycodin D can be achieved using β-glucosidase 
extracted from several bacteria. However, whether similar enzymes in Platycodon 
grandiflorus could convert platycoside E to platycodin D, as well as the molecular 
mechanism underlying the deglycosylation process of platycodon E, remain unclear. Here, 
we identified a β-glucosidase in P. grandiflorus from our previous RNA-seq analysis, with 
a full-length cDNA of 1,488 bp encoding 495 amino acids. Bioinformatics and phylogenetic 
analyses showed that β-glucosidases in P. grandiflorus have high homology with other 
plant β-glucosidases. Subcellular localization showed that there is no subcellular preference 
for its encoding gene. β-glucosidase was successfully expressed as 6 × His-tagged fusion 
protein in Escherichia coli BL21 (DE3). Western blot analysis yielded a recombinant protein 
of approximately 68 kDa. In vitro enzymatic reactions determined that β-glucosidase was 
functional and could convert PE to PD. RT-qPCR analysis showed that the expression 
level of β-glucosidase was higher at night than during the day, with the highest expression 
level between 9:00 and 12:00 at night. Analysis of the promoter sequence showed many 
light-responsive cis-acting elements, suggesting that the light might regulate the gene. 
The results will contribute to the further study of the biosynthesis and metabolism regulation 
of triterpenoid saponins in P. grandiflorus.
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INTRODUCTION

Platycodon grandiflorus (Jacq.) A. DC. is a perennial herb of 
the family Campanulaceae, the roots (Platycodi radix) of which 
are used as medicinal herbs in Northeast Asia for their curative 
effect on respiratory diseases, including bronchitis, tonsillitis, 
sore throat, asthma, and tuberculosis (Lee et  al., 2012; Zhang 
et  al., 2015). Oleanane-type triterpenoid saponins, especially 
platycodin D [formal name: 3β-(β-D-glucopyranosyloxy)-2β,  
16α, 23, 24-tetrahydroxy-O-D-apio-β-D-furanosyl-(1 → 3)-O-β-D-
xylopyranosyl-(1 → 4)-O-6-deoxy-olean-12-en-28-oic acid, PD], 
are the major active components in P. grandiflorus. PD exhibits 
a wide range of pharmacological effects, including anti-
atherosclerosis (Wu et  al., 2012), anti-obesity (Lee et  al., 2012), 
anti-inflammation (Guo et  al., 2021), anti-oxidant (Wang et  al., 
2018), anti-aging (Shi et al., 2020), and anti-cancer (Huang et al., 
2019) effects, as well as possesses excellent application and 
development potential.

PD consists of a main oleanane-type backbone with C3-Glc 
and C28-O-Api-Xyl-Rha-Ara. In addition, platycoside E (PE) 
is a major platycoside, accounting for more than 20% content 
of the platycodi radix platycosides (Yoo et  al., 2011). The 
chemical structure of PE includes only two more glucosyl 
groups (at the C3 position) than PD (Supplementary Figure 1). 
Leaves of P. grandiflorus are rich in PE, which were discarded 
when collecting medicinal plants. (Shin et  al., 2019; Su et  al., 
2021; Yu et  al., 2021). Reducing the PE content-a lot of which 
is wasted a lot in actual production-may increase the PD 
content of P. grandiflorus plants. The pharmacological activities 
of deglycosylated ginsenosides are considerably higher than 
those of glycosylated ginsenosides (Shin and Oh, 2016), owing 
to theirs’ lower molecular weight, better hydrophobicity, and 
easier absorption in the human gastrointestinal tract. Therefore, 
several studies have investigated the deglycosylation of 
platycosides using various methods. Biotransformation, especially, 
displays the highest selectivity and productivity. PD is a 
deglycosylated triterpene saponin, whereas PE is a glycosylated 
triterpene saponin.

β-glucosidases (β-D-glucoside glucohydrolase, EC 3.2.1.21) 
are involved in diverse cellular functions (e.g., they hydrolyze 
the glycosidic bonds of alkyl-, amino-, or aryl-β-D glucosides, 
cyanogenic glucosides, disaccharides, and short oligosaccharides), 
and are ubiquitous enzymes found in archaea, eubacteria, and 
eukaryotes (Bhatia et al., 2002; Ketudat Cairns and Esen, 2010). 
These enzymes are involved in glycolipids breakdown and 
glucose release in plants to meet their metabolic needs (e.g., 
for cell growth and wall remodeling; Chuenchor et  al., 2008; 
Horikoshi et  al., 2022). β-glucosidases also display a range of 
aglycone specificities, a few of which show almost absolute 
specificity for one sugar and one aglycone, while others accept 
a range of either glycones or aglycones, or both (Baglioni 
et  al., 2021; Dziadas et  al., 2021; Prieto et  al., 2021). They 
have been extensively studied in the biotransformation of PE 
to PD. The enzymatic biotransformation of PE to PD in vitro 
has been demonstrated in various studies using β-galactosidase 
from Aspergillus oryzae (Ha et  al., 2010), snailase (Li et  al., 
2012b), laminarinase (Jeong et  al., 2014), β-glucosidase from 

Aspergillus usamii (Ahn et al., 2018), recombinant β-glucosidases 
from Caldicellulosiruptor bescii (Kil et  al., 2019), and cytolase 
(Shin et  al., 2020). We  further speculated that there might 
be  a deglycosylase in P. grandiflorus, which could also catalyze 
the conversion of PE into PD (Su et  al., 2021). Although great 
progress has been made in the study of how enzymes catalyzed 
the conversion of PE to PD, little is known about the β-glucosidase 
gene with this function in P. grandiflorus. Therefore, the present 
study aimed to investigate the β-glucosidase gene from 
P. grandiflorus using complementary DNA (cDNA) cloning and 
in vitro enzymatic characterization. Our findings may provide 
new insights into the analysis and regulation of the PD 
biosynthetic pathway in P. grandiflorus.

MATERIALS AND METHODS

Plant Materials
Platycodon grandiflorus plants used in this study were the same 
materials described by Su et  al. (2021). The specimen of 
P. grandiflorus was deposited in the Herbarium of Anhui 
University of Chinese Medicine (depository number 20200705). 
Samples were collected at 6:00 am, 9:00 am, 12:00 am, 3:00 pm, 
6:00 pm, 9:00 pm, and 12:00 pm, 3 days in a row and immediately 
stored in liquid nitrogen for subsequent total RNA isolation. 
Three biological replicates were performed for each sample.

Total RNA Preparation, cDNA Synthesis 
and RT-qPCR
Total RNA was extracted using TRNzol Universal Reagent 
(Tiangen Biotech Co., Ltd., Beijing, China) according to the 
manufacturer’s instructions. Each total RNA sample was qualified 
and quantified using the ultramicro spectrophotometer DS-11 
(DeNovix, Wilmington, Delaware, USA). cDNA was synthesized 
using the FastKing RT Kit (Tiangen Biotech Co., Ltd., Beijing, 
China). SuperReal PreMix Plus (Tiangen Biotech Co., Ltd., 
Beijing, China) was used for RT-qPCR on the LightCycle480 
platform (Roche, Switzerland) to determine the mRNA 
transcriptional levels of the genes encoding β-glucosidase and 
β-amyrin synthase (β-AS, GenBank: KY412556.1) in 
P. grandiflorus. The mRNA of 18sRNA was used as an internal 
reference. Three biological replicates were used, and the relative 
expression of the mRNA level was calculated using the 2−ΔΔCt 
method (Livak and Schmittgen, 2001). The sequence of the 
gene encoding β-glucosidase, its promoter sequence, and all 
the primer pairs used are listed in Supplementary Tables 1 and 2.

Bioinformatics Analysis
Previously, the cDNA sequence of the candidate gene encoding 
β-glucosidase was obtained via transcriptomic sequencing (Su 
et  al., 2021). ExPASy1 was used to deduct the amino acid (aa) 
sequences and predict physicochemical properties. The conserved 
domains of β-glucosidase were detected using Multiple Em 

1 http://www.expasy.ch/tools/
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for Motif Elicitation2 and the NCBI Conserved Domain Database 
(CDD)3 search tools. The possible transmembrane regions of 
the protein were analyzed using the TMHMM online program.4 
PSORT5 was used to predict the subcellular localization of the 
protein encoded by the candidate gene. The secondary structure 
and three-dimensional homologous modeling of the protein 
were predicted using softwares of GOR IV,6 PDBsum,7 and 
SWISS-MODEL,8 respectively. Online PlantCARE9 was used 
to analyze the cis-acting elements of promoters. The amino 
acid sequence was used to perform homology searched on 
NCBI, and the sequences with high similarity were selected 
for multiple alignment. Phylogenetic analysis was performed 
using the MEGA X software (maximum likelihood), and using 
bootstrap analysis with 1,000 iterations.

Subcellular Localization
The full-length cDNA sequence of the candidate gene encoding 
β-glucosidase without the terminator codons was inserted into 
the pBI121-EGFP vector to generate the pBI121-β-glucosidase-
EGFP fusion protein, which, after sequencing, was subsequently 
transformed into Agrobacterium tumefaciens GV3101 using the 
freeze–thaw method. Two batches of A. tumefaciens containing 
pBI121-β-glucosidase-EGFP and pBI121-EGFP, respectively, was 
cultured overnight until the OD600 was approximately 1.0. 
Next, these batches of A. tumefaciens were resuspended in 
infiltration buffer (10 mM MgCl2, 10 mM MES (pH 5.6), and 
100 μM acetosyringone) to an OD600 of 0.6 and incubated at 
room temperature for 2 h before being syringe-infiltrated into 
5-week-old Nicotiana benthamiana leaves. Signals were observed 
under a ZEISS710 confocal laser scanning microscope (ZEISS, 
Germany) 48 h after infiltration.

Preparation of Recombinant 
β-Glucosidase
β-glucosidase-3-F and β-glucosidase-3-R primers were designed 
to introduce new restriction sites by changing nucleotides 
(Supplementary Table 3). The target fragments were amplified 
using Ex Taq DNA polymerase (Takara, Biomedical Technology 
Co., Ltd., Beijing, China) via PCR, double-restricted using Bgl 
II/Xho I  (NEB, Beijing, China), and ligated to the Bgl II/Xho 
I  double-restricted pET-32ɑ(+) vector using T4 DNA Ligase 
(NEB, Beijing, China). The recombinant vector was transformed 
into E. coli DH5α cells using the freeze–thaw method, and 
positive transformants were selected on Lysogeny Broth (LB) 
agar plates containing ampicillin (final concentration: 50 μg/
ml) for expansion and sequencing. E. coli BL21 (DE3) was 
then transformed with the recombinant plasmid for protein  
expression.

2 https://meme-suite.org/meme/tools/meme
3 http://www.ncbi.nlm.nih.gov/cdd/
4 http://www.cbs.dtu.dk/services/TMHMM-2.0
5 https://www.genscript.com/psort.html
6 https://npsa-prabi.ibcp.fr/
7 https://www.ebi.ac.uk/pdbsum/
8 https://swissmodel.expasy.org/
9 http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

The transformed BL21 (DE3) cells were incubated in LB 
medium with 100 μg/ml ampicillin at 37°C until OD600 reached 
0.6–0.8. After adding IPTG (isopropyl-β-D-thiogalactoside) at 
a final concentration of 0.3 mM to the medium, the cells were 
further cultured on a rotary shaker at 18°C for 18 h, then 
harvested and re-suspended in phosphate buffer (0.01 M, pH 
7.2). Phenylmethyl sulfonyl fluoride (final concentration: 0.5 mM) 
and lysozyme (final concentration: 0.3 mg/ml) were added to 
the resuspension, followed by sonication at 4°C. The supernatant 
was collected via centrifugation, and the protein concentration 
was determined using the Modified BCA Protein Assay Kit 
(Shanghai Sangon Biotech, Shanghai, China). Proteins (20 μg) 
were separated using 12% SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) and visualized by staining with Coomassie Brilliant 
Blue R-250.

Western Blot Analysis
Each protein sample was resolved separated using SDS-PAGE, 
transferred onto polyvinylidene fluoride (PVDF) membranes 
(Beijing Labgic technology Co., Ltd., Beijing, China), and 
blocked with 5% bovine serum albumin in TBST [20 mM 
Tris–HCl (pH 7.4), 150 mM NaCl, and 0.1% Tween 20] for 
2 h at room temperature. The membrane was washed with 
TBST and incubated overnight at 4°C in a 1/3,000 dilution 
of anti-6 × His tag mouse monoclonal antibody (BBI life sciences, 
China). After three washes with TBST at 10 min intervals, the 
membrane was incubated in a 1/5,000 dilution of AP-conjugated 
rabbit anti-mouse IgG (BBI Life Sciences, China) at room 
temperature. After three washes with TBST, two washes with 
TBS [20 mM Tris–HCl (pH 7.4) and 150 mM NaCl], and one 
wash with AP buffer [100 mM NaCl, 50 mM Tris–HCl (pH 
8.0), and 2 mM MgCl2], recombinant protein was visualized 
via BCIP/NBT alkaline phosphatase staining.

In vitro Enzymatic Reactions
Four experimental groups were established to verify the function 
of putative β-glucosidase, namely, the crude enzymes from 
E. coli BL21 (DE3), the crude enzymes from E. coli BL21 
(DE3) containing the pET-32ɑ(+) vector, the crude enzymes 
from E. coli BL21 (DE3) including the pET-32ɑ(+)-β-glucosidase 
recombinant vector, and boiled crude enzymes from E. coli 
BL21 (DE3) with the pET-32ɑ(+)-β-glucosidase recombinant 
vector. PE (final concentration: 0.4 mg/ml) and each crude 
enzyme extract (final concentration: 0.05 mg/ml) were mixed 
in a phosphate buffer (0.01 M, pH 7.2) and incubated at 37°C 
for 2 h. The reaction products were analyzed using the LC-16 
high-performance liquid chromatography (HPLC) system 
(Shimadzu, Japan). A Topsil C18 column (4.6 mm × 250 mm; 
Agilent, USA) was used with the isocratic elution of water 
and acetonitrile (71:29). The flow rate was 1 ml/min with a 
detection wavelength of 210 nm, and the column compartment 
was maintained at 30°C (Su et  al., 2021).

Statistical Analysis
All experiments were performed independently at least three 
times, and the data are expressed as the mean ± standard error. 
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GraphPad (version 8.0) suite was used for statistical analysis, 
and p ≤ 0.05 was deemed a statistically significant difference.

RESULTS

Cloning and Analysis of the β-Glucosidase 
Encoding Gene
We previously obtained three candidate genes (CL4020.Contig1_
All, Unigene 1627_All, and Unigene7900_All; Su et  al., 2021). 
In the present study, we  selected CL4020.Contig1_All with the 
highest similarity as the candidate gene of Pgβ-glucosidase for 
our investigation. The full length of the candidate β-glucosidase 
gene was amplified using the β-glucosidase-F/β-glucosidase-R 
primers (Supplementary Table  1), and the gene sequence was 
submitted to GenBank (OM867671) in NCBI. The resulting 
PCR products were subjected to 1% agarose gel electrophoresis, 
and the results are shown in Supplementary Figure  2. The 
full-length cDNA putatively encoding β-glucosidase is 1,488-
base pair (bp)-long and encodes a polypeptide with 495 amino 
acids (aa). In addition, the molecular mass of β-glucosidase 
was found to be  56,479.22 Da, the theoretical isoelectric points 
were 5.16, and the half-life was estimated to be 30 h (mammalian 
reticulocytes, in vitro). The instability index (II) was computed 
to be  30.97 and was classified as stable. Conserved domain 
analysis revealed that the protein belongs to the glycosyl 
hydrolase family 1 (GH1), and the actual alignment was detected 
with superfamily member pfam00232 (Supplementary Figure 3). 
The predicted protein secondary domain shows that the protein 
amino acids mainly exist as alpha helices, extended strands, 
and random coils. Furthermore, according to the template 
3gno.1.A model, the global model quality estimation (GMQE) 
value is 0.82 (Supplementary Figure  4). From the predicted 
results, the protein has no transmembrane regions.

Phylogenetic Tree and Conserved Domain 
Analysis
The phylogenetic tree of 12 different plants and two bacterial 
species was constructed, including P. grandiflorus (OM867671), 
Nicotiana attenuata (XP_019261514.1), Nicotiana sylvestris 
(XP_009767051.1), Solanum tuberosum (XP_006353254.1), 
Handroanthus impetiginosus (PIN23194.1), Actinidia chinensis 
var. chinensis (PSR98148.1), Camellia sinensis (XP_028088410.1), 
Helianthus annuus (XP_022015860.1), Erigeron canadensis 
(XP_043617153.1), Cynara cardunculus var. scolymus 
(XP_024969531.1), Lactuca sativa (XP_023733473.1), Pyrus x 
bretschneideri (XP_018501441.1), C. bescii DSM 6725 
(ACM59590), and Caldicellulosiruptor owensensis OL 
(ADQ03897). Notably, β-glycosidases from C. bescii and 
C. owensensis have converted PE to PD (Kil et  al., 2019; Shin 
et  al., 2019). Compared with P. grandiflorus, the relationship 
between the β-glucosidase of Pyrus x bretschneideri and that 
of the two bacterial species was close. Four β-glucosidases 
(XP_022015860.1, XP_043617153.1, XP_022015860.1, and 
XP_023733473.1) from Asteraceae family members were 
phylogenetically closest to that of P. grandiflorus (Figure  1A). 

Furthermore, from the perspective of the evolutionary relationship 
of the genome, H. annuus is very close to P. grandiflorus and, 
they both belong to Asterids II (Kim et  al., 2020).

Multiple sequence alignment revealed that Pgβ-glucosidase 
contained two conserved carboxylic acid residues (E192 and 
E393), serving as the catalytic acid–base and nucleophile 
(Henrissat et  al., 1995; Jenkins et  al., 1995; Chuenchor et  al., 
2008; Figure  2). These enzymes present a catalytic cycle that 
occurs in two distinct steps (glycosylation and deglycosylation), 
and where the two active sites involved are critical for their 
double displacement (Zechel and Withers, 2000; Marana, 2006; 
Chuenchor et  al., 2011). Moreover, conserved domain analysis 
revealed that the β-glucosidases in other plants all possess 
motif 1, motif 2, motif 3, motif 4, and motif 5, except for 
those of C. bescii and C. owensensis, which only have motif 
1, motif 2, and motif 3 (Figure  1B). However, β-glucosidase 
from C. bescii and C. owensensis have been shown to be function 
in catalyzing the conversion of PE to PD, thus, the common 
motif 1, motif 2, and motif 3 may have critical roles. In 
addition, E238, L298, and A425 in Pgβ-glucosidase were highly 
consistent with the β-glucosidases derived from C. bescii and 
C. owensensis and were different from other species (Figure 2).

Subcellular Localization
Prediction of subcellular localization suggested that 
Pgβ-glucosidase was localized in the cytoplasm, mitochondria, 
and nucleus. GFP was fused to the C-terminal domain of the 
β-glucosidase protein and transiently transformed in 
N. benthamiana to determine the subcellular localization of 
β-glucosidase in P. grandifloras. Subsequently, confocal laser 
scanning microscopy was used to observe the Agrobacterium-
infected the leaves of N. benthamiana containing the gene of 
interest, and the results are shown in Figure 3. Strong fluorescence 
signals were distributed in the cytoplasm and nucleus, consistent 
with the prediction. The results indicated that β-glucosidase 
was localized in the cytoplasm and nucleus of P. grandiflorus.

Expression and Functional Assay of 
β-Glucosidase
Inducible expression of β-glucosidase recombinant protein 
was performed in pET-32ɑ(+) using Trx, a 6 × His and an 
S fusion tag at the N-terminal. With the size increase of 
16.3 kDa by the fusion tags, the expected β-glucosidase protein 
was approximately 72.7 kDa (Figure  4). In addition to the 
expression of the recombinant plasmid (lane 3), E. coli BL21 
(DE3) without the plasmid (lane 1) and E. coli BL21 (DE3) 
with the pET-32ɑ(+) vector (lane 2) were used as controls 
(Figure  4). In addition E. coli BL21 without the plasmid 
(lane 1) and E. coli BL21 with the pET-32ɑ(+) vector (lane 
2) were performed as controls. Following crude protein 
quantification, 20 μg of proteins from each group was loaded 
separately and subjected to SDS-PAGE analysis. A thick band 
of recombinant β-glucosidase protein in lane 3 was in 
approximately 73.0 kDa (Figure  4A). Subsequently, western 
blotting using an anti-6 × His tag mouse monoclonal antibody 
showed a band of approximately 73.0 kDa on the PVDF 
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membrane in lane 3, whereas lanes 1 and 2 (controls) showed 
no band. This finding confirmed the successful expression 
of β-glucosidase after transformation (Figure  4B).

The products of a putative conversion of PE to PD were 
analyzed using HPLC to verify the function of the candidate 
β-glucosidase. The reaction mixture, consisting of E. coli crude 
protein extracts (final concentration: 0.05 mg/ml) and PE (final 
concentration: 0.4 mg/ml) was incubated in a water bath at 
37°C, and analyzed via HPLC after a 2 h reaction in 0.01 M 
phosphate buffer (pH 7.2). To test whether the β-glucosidase 
recombinant protein could catalyze the conversion of PE to 
PD in vitro, we  incubated E. coli BL21 (DE3) protein extracts 
(BL21) and E. coli BL21 (DE3) with the pET-32ɑ(+) vector 
(BL21 + pET-32ɑ) under the same conditions. In addition, the 
experimental group (BL21-pET-32ɑ-β-glucosidase) protein was 
boiled to form a new control (BL21-pET-32ɑ-β-glucosidase 
boiled). Standard compounds of PD (> 98% purity) and PE 
(> 98% purity) were purchased from Chengdu Push 
Bio-Technology Co., Ltd., and the retention time and peak 
profile of 0.4 mg/ml of standard PD and 0.4 mg/ml of standard 
PE are shown in Figure  5A. Our results revealed that only 
the experimental group (BL21-pET-32ɑ-β-glucosidase) consumed 
PE and generated a new substance (PD; Figure  5). After 
excluding various effects of the control groups, we  believe that 
recombinant target candidate β-glucosidase from P. grandiflorus 
can convert PE to PD in vitro.

Analysis of β-Glucosidase Diurnal 
Expression
Studies have shown that the content of PE is higher in the 
leaves of P. grandiflorus than in other parts (Su et  al., 2021; 
Yu et  al., 2021). Therefore, we  collected P. grandiflorus leaves 

at seven time points of the day and night from 6:00 am to 
12:00 pm (at 3-h intervals) as samples for analysis. In addition, 
we simultaneously analyzed the expression of β-amyrin (β-AS), 
which is considered a key branching enzyme for generating 
oleanane-type triterpene backbones (Kim et  al., 2020; 
Supplementary Figure  5). In other words, β-amyrin is a key 
enzyme in the biosynthetic pathway for synthesizing PE and 
PD in P. grandiflorus. The results of RT-qPCR analysis showed 
that the expression of β-amyrin remained unchanged from 
6:00 am to 12:00  pm and then showed an upward trend. 
Furthermore, the expression was the highest at 6:00 pm and 
decreased after 6:00 pm; however, it was still higher than that 
during most times of the day (Figure  6). Similarly, the 
expression level of β-glucosidase is higher at night than during 
the daytime, with the highest values recorded from 9:00 to 
12:00 at night. Furthermore, we obtained approximately 2000 bp 
of the promoter sequence (Supplementary Table  1) of the 
β-glucosidase gene from the P. grandiflorus genome (GenBank: 
GCA_016624345.1). Analysis of the promoter sequence of 
the β-glucosidase gene revealed the present of many light-
responsive cis-acting elements such as AE-box, Box 4, 
GT1-motif, MRE, TCCC-motif, TCT-motif, and other cis-acting 
elements (Supplementary Figure  6). These results suggest 
that β-glucosidase gene expression may be  regulated by light.

DISCUSSION

Platycodon grandiflorus is a common natural medicinal plant 
with a history of thousands of years that contains a wide 
variety of more than 80 chemical components, including saponins, 
alkynes, lipids, and flavonoids (Wang et al., 2017; Huang et al., 
2021; Zhang et  al., 2022). Modern pharmacological studies 

A B

FIGURE 1 | Phylogenetic and conserved domain analysis of Pgβ-glucosidase with those of other species. (A) Neighbor-joining phylogenetic tree, constructed 
using MEGA X. (B) Conserved domains, detected using Multiple Em for Motif Elicitation.
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indicated that PD is one of the main active saponins of 
P. grandiflorus with broad bioactivities (Kwon et  al., 2017; 
Zhang et al., 2017; Cho et al., 2018). The Chinese Pharmacopoeia 
also used PD content as the standard to measure the qualification 
of medicinal materials. In the present study, we  identified a 
glycosyltransferase β-glucosidase from P. grandiflorus that can 
remove two glucose groups from PE to generate PD with 
stronger activity. Furthermore, the results of the phylogenetic 
analysis showed that Pgβ-glucosidase is the closest to H. annuus 
in the Compositae family, which is consistent with previous 
findings by Kim et  al. (2020) on the evolutionary relationship 
of the P. grandiflorus genome. The subcellular localization results 
revealed that Pgβ-glucosidase is located in the nucleus and 
cytoplasm of P. grandiflorus. The results of the 1-day expression 
pattern and promoter sequence analysis indicated that the 
transition of related secondary metabolites might mainly occur 
at night; therefore, it is speculated that the gene encoding 
Pgβ-glucosidase may be  regulated by light.

Analyzing known functionally related sequences for 
common sequence domains or motifs can reveal their 
association with a common function (Stormo, 2006). For 
example, the amino acid sequence of chalcone synthase from 
Coelogyne ovalis Lindl. shares four motifs with chalcone 
synthase from the Oncidium hybrid cultivar., Cymbidium 
hybrid cultivar., Bromheadia finlaysoniana, and Dendrobium 
nobile, which contains the active site “RLMLYQQGCFA 
GGTVLR” and the signature sequence of “GVLFGFGPGL” 
of the chalcone synthase protein (Singh and Kumaria, 2020). 
In addition, a study of β-glucosidase found that most of 
its homologous sequences contained the conserved TENG 
and NEPW motifs, which contained two conserved glutamic 
acid residues as acid/base catalyst and an active catalytic 
nucleophile, respectively (Zada et  al., 2021a,b). We  found 
five conserved motifs that also included the conserved TENG 
and NEPX motifs of β-glucosidases. The results of multiple 
sequence alignment revealed that E192 and E393 are highly 

FIGURE 2 | Amino acid sequences alignment of seven β-glucosidases. Black triangles indicate acid/base and nucleophilic catalytic residues. Two motifs (TENG 
and NEPX) are marked out with “*.” Pgβ-glucosidase, β-glucosidase of Platycodon grandiflorus; Haβ-glucosidase, β-glucosidase of Helianthus annuus 
(XP_022015860.1); RiceBGlu1, β-glucosidase of rice (PDB: 2RGL_A); Linamarase (GenBank: X56733.1); ZmGlu1, β-glucosidase of Zea mays (PDB: 1E1E_A); Cbβ-
glucosidase, β-glucosidase of Caldicellulosiruptor bescii DSM 6725 (GenBank: ACM59590); Coβ-glucosidase, β-glucosidase of Caldicellulosiruptor owensensis OL 
(GenBank: ADQ03897).
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conserved in the β-glucosidase sequences of seven creatures, 
including two bacterial species (C. bescii and C. owensensis). 
This finding suggests that Pgβ-glucosidase may also 
deglycosylate PE into PD through a double displacement  
reaction.

β-glucosidases primarily catalyze the removal of terminal 
non-reducing β-D-glucosyl residues from various 
glucoconjugates, including glucosides, oligosaccharides, and 
1-O-glucosyl esters, as well as perform transglycosylation and 
reverse hydrolysis. Due to the extensive distribution of their 

FIGURE 3 | The subcellular localization of genes encoding Pgβ-glucosidase. The subcellular localization of 35S:: GFP, and 35S:: Pgβ-glucosidase-GFP in leaf 
epidermal cells of N. benthamiana leaf epidermal cells after 48 h infiltration; the epidermal cells of N. benthamiana were used for taking images of green 
fluorescence, chloroplast autofluorescence, visible light, and merged visible light.

A B

FIGURE 4 | SDS-PAGE and western blot analysis of the recombinant protein pET-32ɑ(+)-Pgβ-glucosidase in Escherichia coli BL21 (DE3). (A) SDS-PAGE analysis. 
(B) Western blot analysis. M: protein molecular weight standards; Lane 1: cell lysate of E. coli BL21 (DE3; 0.3 M IPTG-inducing); Lane 2: cell lysate of E. coli BL21 
(DE3)/pET-32ɑ(+; 0.3 M IPTG-inducing); Lane 3: cell lysate of E. coli BL21 (DE3)/pET-32ɑ(+)-Pgβ-glucosidase (0.3 M IPTG-inducing); Lane 4: cell lysate of E. coli 
BL21 (DE3)/pET-32ɑ(+)-Pgβ-glucosidase (1.0 M IPTG-inducing). Bacterial culture conditions were kept consistent.
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substrates, these enzymes exist widely in nature and exhibit 
a range of functions (Godse et  al., 2021). Studies have shown 
that β-glucosidase promotes the formation of free terpenes, 
phenylpropenes, and specific aliphatic esters during wine 
fermentation and promotes the production of wine aroma 
compounds that affect the aroma and flavor of the product 
(Liu et al., 2021). β-glucosidase was identified from mangrove 
soil showed high hydrolyzing ability for soybean isoflavone 
glycosides via heterologous expression in E. coli, which could 
completely convert daidzin and genistin to daidzein and 
genistein, respectively (Li et  al., 2012a). Studies have also 
shown that β-glucosidase from the thermophilic fungus 
Talaromyces leycettanus JM12802 could hydrolyze isoflavone 
glycosides to aglycones (Li et  al., 2018). Furthermore, 
recombinantly expressed β-glucosidase from Sulfolobus 
solfataricus and Microbacterium esteraromaticum transformed 
ginsenoside Rb1 to the more stable and readily absorbed, as 
well as more pharmacologically active, ginsenoside compound 
K and ginsenoside 20(S)-Rg3, respectively (Noh et  al., 2009; 
Li et  al., 2012a). β-glucosidase may also be  an economically 
viable option for industrial use, with the production of 

pharmaceutically important compounds. Our current study 
identified a β-glucosidases from the P. grandiflorus plant that 
can convert PE into the more stable, smaller molecular weight, 
and more pharmacologically active PD, providing new insights 
for the analyzing the biosynthetic pathway of triterpenoid 
saponins in P. grandiflorus. Our findings will also lay a 
foundation to increase PD accumulation through molecular 
biological approaches, improve the quality of medicines, and 
expand the resources of PD.

Light is an important environmental factor for plant growth 
and development. It provides essential light energy for plant 
growth and acts as an environmental signal to regulate plant 
development. The downstream regulatory factors in the light 
signal transduction pathway mainly interact with specific 
cis-acting elements in the promoters of light-controlled genes, 
thereby up-regulating or down-regulating the expression of 
specific genes. The cis-acting elements present in the promoters 
of light-controlled genes are called light-responsive cis-elements 
(LREs; Hiratsuka and Chua, 1997). A previously study has 
shown that SmCP, the gene encoding Solanum melongena 
cysteine proteinase, showed maximum expression in the dark; 

A

B

C

D

E

FIGURE 5 | HPLC detection of the enzyme activities of putative Pgβ-glucosidase in producing PD. (A) Liquid chromatograms of standard PE and PD. (B) Liquid 
chromatogram of E. coli BL21 (DE3) cell lysate reacting with PE. (C) Liquid chromatogram of E. coli BL21 (DE3)/pET-32ɑ(+)cell lysate reacting with PE. (D) Liquid 
chromatogram of E. coli BL21 (DE3)/pET-32ɑ(+)-Pgβ-glucosidase cell lysate reacting with PE. (E) Liquid chromatogram of boiled E. coli BL21 (DE3)/pET-32ɑ(+)-Pgβ-
glucosidase cell lysate reacting with PE.
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the correlation between binding activity and expression suggests 
that the regulation of SmCP is accomplished by binding to 
the G-box in its promoter region (Xu et  al., 2003). Different 
flanking sequences around the light-responsive G-box core 
can mediate induction or inhibition (Hudson and Quail, 2003). 
The study of a GT element showed that it can activate the 
expression of the rice phyA gene in the dark (Dehesh et  al., 
1990) and that it has two functions of positive and negative 
regulation (Mehrotra and Panwar, 2009). The AT-rich sequence 
of oat as a negative regulatory element can reduce the expression 
of light-regulated PHYA genes under light conditions (Nieto-
Sotelo et al., 1994). Our study found that the Pgβ-glucosidase 
gene showed an upward trend after 6:00 pm and peaked at 
12:00 pm Combined with promoter sequence analysis, the 
finding revealed certain light-responsive elements such as 
AE-box, Box 4, GT1-motif, MRE, TCCC-motif, and TCT-motif 
(Supplementary Figure  6). Our results suggest that the gene 
might be  regulated by light and its expression enhanced in 
dark environments.

In conclusion, we have successfully cloned and characterized 
the β-glucosidase from P. grandiflorus. We  verified its function 
and provided a new perspective for analyzing the biosynthetic 
pathway of oleanane-type triterpenoid saponins in P. grandiflorus. 
Moreover, we  found that the expression of this gene might 
be  regulated by light, which contributes to the further study 
of its molecular biology. Our findings provide direction for 
the molecular breeding of P. grandiflorus and the improving 
of the quality of medicinal materials. Future work should 
investigate the function of β-glucosidase in the plant body 
and attempt to regulate the conversion of PE to PD in 
P. grandiflorus.
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