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Intrinsically disordered protein,
DNA binding with one finger
transcription factor (OsDOF27)
implicates thermotolerance in
yeast and rice

Nishu Gandass, Kajal and Prafull Salvi *

Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar,

India

Intrinsically disorder regions or proteins (IDRs or IDPs) constitute a large subset

of the eukaryotic proteome, which challenges the protein structure–function

paradigm. These IDPs lack a stable tertiary structure, yet they play a crucial

role in the diverse biological process of plants. This study represents the

intrinsically disordered nature of a plant-specific DNA binding with one finger

transcription factor (DOF-TF). Here, we have investigated the role ofOsDOF27

and characterized it as an intrinsically disordered protein. Furthermore, the

molecular role of OsDOF27 in thermal stress tolerance has been elucidated.

The qRT-PCR analysis revealed that OsDOF27 was significantly upregulated

under di�erent abiotic stress treatments in rice, particularly under heat stress.

The stress-responsive transcript induction of OsDOF27 was further correlated

with enriched abiotic stress-related cis-regulatory elements present in its

promoter region. The in vivo functional analysis of the potential role of

OsDOF27 in thermotolerance was further studied in yeast and in planta.

Ectopic expression ofOsDOF27 in yeast implicates thermotolerance response.

Furthermore, the rice transgenic lines with overexpressing OsDOF27 revealed

a positive role in mitigating heat stress tolerance. Collectively, our results

evidently show the intrinsically disorderedness in OsDOF27 and its role in

thermal stress response in rice.

KEYWORDS

intrinsically disorder proteins, heat stress response, DOF-transcription factor, crop

improvement, transcriptional regulation

Introduction

Rice is one of the most important cereal crops as it is consumed by one-third of the

global population (Fornasiero et al., 2022). Despite an enormous rise in rice cultivation,

its productivity is severely compromised by different environmental stresses, including

extreme temperature, water scarcity, salinity stress, heavy metal stress, etc. Besides, the

dwindling agrarian land and continuously growing population further escalated the

gap between its demand and supply (Rasheed et al., 2020). To combat the stressful

conditions, diverse molecular responses are instigated at the cellular level, which include
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signaling cascade, phytohormonal regulation, altered gene

expression, transcriptional regulation, and post-transcriptional

and post-translational modifications (Singh and Jwa, 2013;

Cohen and Leach, 2019; Kaur et al., 2021; Manna et al.,

2021; Salvi et al., 2021b, 2022). Transcriptional control involves

the regulation mediated via transcription factors (TFs) and

transcriptional regulators (TRs). TF bind to cis-elements present

in the promoter region of the target gene while TR indirectly

regulates the gene expression by modulating the DNA—protein

interaction through chromatin remodeling (Zheng et al., 2016;

Chandran et al., 2019; Manna et al., 2021). In rice, about

2,048 gene are predicted to encode for TFs, whereas 328 as

transcriptional regulators (Kikuchi et al., 2003; Pérez-Rodríguez

et al., 2010). Similarly, about 6% of the total Arabidopsis genome

is assigned to encode for TF (Riechmann et al., 2000). Overall,

the TFs are ascribed to perform diverse cellular functions.

Amongst them, several TF families are known to play general

functions, while some of the TF families belong to a plant-

specific clade. Generally, the plant-specific TFs orchestrate the

regulation of gene networks associated with processes that are

specific to plants, such as seed germination and maturation,

vasculature formation, photosynthesis, stomatal regulation, etc.

(Hrmova and Hussain, 2021; Wani et al., 2021; Strader et al.,

2022). Amongst a large number of TFs families, TCP, AP2, and

DOF-TF are documented as plant-specific TFs (Manna et al.,

2021).

The DNA binding with one finger transcription factor family

belongs to a plant-specific clade of TF which is structured

as a Cys2/Cys2 zinc finger-TF (Yanagisawa, 2002). As DOF-

TFs are exclusively present in plants, they are widely known

to regulate diverse biological events that are specific to the

plant system, such as abiotic stress, vasculature formation,

photoperiodic flowering, seed germination, seed development,

circadian cycle, phytochrome signaling, nitrogen use efficiency,

etc. (Shigyo et al., 2007; Zou et al., 2013; Gupta et al., 2015;

Corrales et al., 2017; Manna et al., 2021). The number of DOF-

TF varies greatly across the species, for instance, there are 37

DOF-TF encoding genes in Arabidopsis (Lijavetzky et al., 2003),

34 in tomato (Cai et al., 2013), 31 in wheat (Shaw et al., 2009),

60 in apple (Zhang et al., 2018), 74 in banana (Dong et al.,

2016), 41 in poplar (Yang et al., 2006), and 78 in soybean

(Guo and Qiu, 2013) to name a few. In general, the DOF-TF

is a 200–400 aa long protein with a highly conserved DNA

binding motif that usually resides in the N-terminal and greatly

divergent C-terminal region. The N-terminal DNA binding

domain of all DOF-TF specifically binds to the 5’-[T/A]AAAG-

3’ (except AGTA in pumpkin) cis-regulatory element present

in the promoter region of its target gene, while its C-terminal

interacts with the RNA polymerase to modulate the gene

(Kisu et al., 1995, 1998; Noguero et al., 2013). Previous

reports have also shown that apart from the DNA-binding

potential of the DOF-domain, it also participates in the protein–

protein interaction and thus indicates its functional versatility

(Yanagisawa, 2004; Waqas et al., 2020; Manna et al., 2021).

DOF-TF interacts with different proteins, especially other TFs

such as TCP, MYB, and bZIP, which hold a crucial role

in many biological pathways. The first DOF-TF encoding

gene was identified in maize in 1995 which binds to the

CaMV35S promoter sequence (Yanagisawa, 1995). Several

reports indicated the contribution of DOF-TFs in biotic and

abiotic stress responses. In tomatoes, SlDOF22 negatively

regulates the ascorbic acid content. Besides, in RNAi lines of

SlDOF22, the SlSOS1 gene was down-regulated, which results

in decreased salinity stress tolerance (Cai et al., 2016). The

overexpression of GhDOF1 enhances the salt and cold stress

response in cotton (Su et al., 2017). Corrales et al. (2017)

showed that the expression level of cycling DOF factor 3

(CDF3) is triggered by abiotic stress conditions including salt,

heat, drought, and ABA treatment, and its overexpression lines

exhibited improved stress tolerance while RNAi lines displayed

reduced stress tolerance. Several reports highlighted that the

transcription factors are profuse with the intrinsically disordered

region (IDR), which offers functional plasticity and versatility

to the TFs (Liu et al., 2006; Brodsky et al., 2020; Salladini

et al., 2020). Intrinsically disordered proteins are characterized

as proteins with an enriched disordered region and devoid of

an ordered three-dimension structure, yet they are capable to

execute diverse cellular functions (Jung et al., 2011; Sun et al.,

2013). As compared to prokaryotes, eukaryotic proteomes are

known to possess higher disordered proteins. This aspect of

abundant IDR in eukaryotes also indicated the correlation of

IDR with complexity at the functional and organism levels

(DeForte and Uversky, 2017). These IDRs emerged as a new

field in structural biology which are largely studied in the animal

system. However, due to their central role in the regulation

of metabolic and cell signaling processes, they are attaining

much attention in plant science as well (Zamora-Briseño et al.,

2021). Here, we aimed to explore the role of an OsDOF27

using diverse in-silico molecular and functional analyses. In our

analysis, we found the OsDOF27 protein to be highly disordered

in nature and appeared to play an important role in thermal

stress response in rice.

Materials and methods

Plant materials, treatment, and bacterial
strain

Rice (Oryza sativa) seeds (var. Taipei-309) grown at the

National Agri-Food Biotechnology Institute, Mohali (Punjab)

were used in this study for genetic transformation and

stress experiments. For the genetic transformation of rice,

embryogenic calli were used (Thakur et al., 2022). For stress

imposition on rice seedlings, 7-day-old rice seedlings were

challenged to different abiotic stressors such as heat (42◦C), salt
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(200mM), cold (4◦C), methyl viologen (20µM), polyethylene

glycol (PEG; 20%) for 12 h. After 12 h of stress, the seedling

was immediately used for expression profiling or snap frozen

and stored at −80◦C for later use (Yokotani et al., 2009).

For cloning experiments, the Escherichia coli DH5α strain was

used, while Agrobacterium tumefaciens LBA-4404 was used for

rice transformation. Yeast strain (INVSc1) was used as a host

strain for the yeast expression system to study thermotolerance

response in yeast.

Molecular cloning

For molecular cloning of OsDOF27 (LOC_Os10g35300),

we used gateway-based cloning as per the manufacturer’s

instructions. Initially, theOsDOF27 was cloned in pENTRTM/D-

TOPOTM vector and the positive constructs were confirmed

by Sanger sequencing. The sequenced confirmed entry clone

was then used for its subcloning to the destination vectors

like pANIC6B (CD3-1708), pSITEYFP3CA (CD3-1638), and

pDEST52 (pYES2-DEST52 GatewayTM destination vector) using

LR Clonase-II. The primers used for this study are enlisted in

Supplementary Table 1.

Agroinfiltration of N. benthamiana for
subcellular localization study

The subcellular localization study was conducted by

agroinfiltration according to our method described previously

(Thakur et al., 2021). Briefly, Agrobacterium cells harboring

positive transformant of pSITEYFP3CA were grown in LB

medium with selection markers at 28◦C for 24 h. The

plasmid with 35S-YFP was used as the positive control. The

Agrobacterium cells were then pelleted down by centrifugation,

mixed with resuspension buffer, and incubated for 6 h prior to

infiltration. The mix was then infiltrated into the abaxial surface

of 6-week-old N. benthamiana leaves with a needleless syringe

(1ml). The plants were covered and kept in dark for 12 h and

then transferred to the growth chamber at 24◦C ± 1 with a

16/8 h photoperiod. The leaf sample was collected after 48 h

for microscopy.

DAPI staining and confocal microscopy

The nuclear localization ofOsDOF27 protein was confirmed

by colocalizing it with 4, 6-diamidino-2-phenylindole (DAPI)

that specifically stains the nucleus. Briefly, the leaf sample was

cut and washed by dipping (for 5 s) with 1X phosphate-buffered

saline (PBS, pH-7.5) containing 0.5% Triton-X (which aids the

DAPI staining). After a gentle wash (for 5–10 s) in 1X phosphate-

buffered saline (PBS, pH-7.5; without Triton-X), the leaf sample

was incubated in DAPI solution (15 µg mL−1 DAPI prepared in

1× PBS) for 20min. The fluorescent signals were detected using

a Carl Zeiss confocal laser scanning microscope (LSM880; Karl

Zeiss, Jena, Germany) with an oil immersion objective (Thakur

et al., 2021).

QPCR analysis

Total RNA was isolated using the TRIzol reagent (Sigma)

and reverse transcribed into cDNA using iScriptTM cDNA

Synthesis Kit (BioRad) according to the manufacturer’s

instruction. A no template control was incorporated as

a negative control in each assay. For normalization, two

endogenous reference genes (Ubiquitin-5 and EF1α) were used

in each assay. The gene-specific primers and reference genes

used for the qRT-PCR were previously described and validated.

Yeast thermo-tolerance assay

To assess the thermotolerance assay in the yeast system,

we cloned OsDOF27 in the yeast expression vector (pDEST52

vector) using gateway-based cloning (Invitrogen). The construct

pDEST52:OsDOF27 was thenmobilized to yeast strain (INVSc1)

through PEG-lithium acetate-based transformation. Yeast

spot assay and growth curve analysis were performed to

determine the thermotolerance of the yeast cell harboring

pDEST52:OsDOF27. The yeast cells were allowed to grow in

a YEB medium till the mid-exponential phase with A600 0.5

(about 1 × 107 cells ml−1). The cell density was then adjusted

to 0.2 (A600) for spot assay. Spot assay was conducted by

spotting a serial dilution yeast culture with equal cell density

(A600 0.2), and a 5 µl spot was placed on the plate. An empty-

vector-transformed INVsc1 strain was used in each case as a

control for the stress experiment. For unstressed conditions,

the plate was incubated at 30◦C, while to determine the

thermotolerance potential, the plate was incubated at 42◦C for

8 h and then moved to 30◦C. The yeast cell growth on the

plate was monitored closely and photographed. For growth

curve analysis, the initial cell density of the yeast cell harboring

pDEST52:OsDOF27 and the empty vector was kept similar (OD

= 0.2 A), and the growth was observed and plotted against time.

Each assay was repeated three times, with at least four biological

replicates (Salvi et al., 2021a).

In silico analysis of OsDOF27 for IDR
analysis and stability curve

The OsDOF27 sequence was obtained from the Rice

Genome Annotation Project database (http://rice.uga.edu/).

The disorder propensity was determined with different software
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such as http://www.pondr.com/, https://iupred.elte.hu/, and

http://sparks-lab.org/server/SPOT-disorder/index.php. The

compositional profiler was used to assess the enrichment or

depletion of the amino acid composition of OsDOF27 against

SwissProt52. The amino acid composition was color-coded

for disorders and sorted by the differences observed (http://

www.cprofiler.org/cgi-bin/profiler.cgi; Vacic et al., 2007). For

generating the sequence, annotated Das-Pappu phase diagram

Classification of Intrinsically Disordered Ensemble Regions,

CIDER, http://pappulab.wustl.edu/CIDER/analysis/) was used

to evaluate the parameters associated with disordered protein

sequences (Kyte and Doolittle, 1982; Das and Pappu, 2013;

Holehouse et al., 2015). The prediction of secondary structures

such as alpha helix, beta turns, extended strand, and the random

coil was conducted by the online tool Self-Optimized Prediction

Method with Alignment (SOPMA, https://npsa-prabi.ibcp.

fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html;

Geourjon and Deléage, 1995). To assess parameters like the

standard heat capacity of folding (1Cp), the standard enthalpy

of folding (1Hm) at melting temperature, Tm (melting

temperature), the protein sequence of OsDOF27 was subjected

to an online tool SCooP tool (http://babylone.3bio.ulb.ac.be/

SCooP/index.php). The curve for the change in standard free

energy of folding with respect to the temperature was assessed

by protein stability curve prediction (Pucci and Rooman, 2014;

Pucci et al., 2017).

Agrobacterium-mediated rice
transformation

Agrobacterium-mediated rice transformationwas performed

as per our previous report (Thakur et al., 2022). Briefly,

Agrobacterium tumefaciens strain LBA4404 harboring

pANIC6COsDOF27 (LOC_Os10g35300) was used for the

genetic transformation of rice. For rice transformation,

embryogenic calli were co-cultivated with Agrobacterium

culture for 36 h and further washed and selected for

hygromycin resistance. After three rounds of selection, the

callus was transferred to regeneration media. Plants with

developed roots and shoots were transferred to a hydroponics

medium and subsequently hardened and were grown to

maturity. The offspring of the primary transformants were

propagated by selfing and T2 generation seeds were used for

further experiments.

Stress treatment

For stress experiments, the seeds of three independent

transgenic lines (Ubi:OsDOF27-OE1, OE-2, and OE-5), wild

type (WT), and vector control (VC) were exposed to high

temperature. Seed germination was assessed on two layers

of filter paper (Whatman No. 1) moistened with autoclaved

double-distilled water (ddH2O). For non-stressed conditions,

seed germination was evaluated at 28± 1◦Cwhile for heat stress,

the seeds were pre-exposed to high temperature (45◦C) for

12 h. The germination rate was determined by monitoring the

germination score after 72 h. Gemination assay was conducted

in triplicate with n=30 seeds per treatment in each experimental

replicate. Seeds that exhibited radicle protrusion were scored

as germinated. For stress imposition at the seedling stage, rice

transgenic and control plants were germinated under non-

stressed/control conditions at 28± 1◦Cwith a photoperiod of 16

h-light/8 h-dark cycle (300–400 µmol photons m−2s−1). Two-

week-old plants were challenged to heat stress by transferring

them to 45◦C for 24 h and then transferred to 28 ◦C, while for

non-stressed (NS) conditions, plants were continuously grown

at 28◦C.

Results

Gene expression analysis of rice
OsDOF27 during abiotic stress conditions

To understand the biological function of DOF-TF in

rice plant growth and development, we have investigated the

expression of DOF27 under abiotic stress treatments. For this,

rice seedlings were challenged with abiotic stressors including

heat, salt, cold, PEG, and methyl viologen, and the transcript

level of OsDOF27 was assessed using qRT-PCR. OsDOF27

showed maximum induction in heat stress followed by oxidative

and osmotic stress imposed by methyl viologen (paraquat)

and PEG treatment, respectively (Figure 1). To get a molecular

insight into the gene regulation of OsDOF27, we inspected

the cis-regulatory elements present in the promoter region

of OsDOF27. For this, the 1.5 KB promoter sequences of

OsDOF27 were analyzed using web-based tools i.e., PLACE

database. The results revealed that the promoter regions were

enriched with various stress and phytohormonal-related cis-

regulatory elements indicating the stress-responsive expression

of OsDOF27. Supplementary Table 2 showed the detailed cis-

element present in the promoter region of OsDOF27.

DOF27 is an intrinsically disorder protein

Furthermore, while designing the primers for OsDOF27,

we observed multiple repeats in its sequence. It prompted us

to inspect the protein sequence of OsDOF27, which showed

a biased composition for amino acids as around 40% of

the total sequence comprises three amino acids i.e., proline

(15.4%), glycine (14.7%), and alanine (11%). The amino

acid composition of OsDOF27 suggested the presence of the

intrinsically disordered region. Therefore, to understand the
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FIGURE 1

qRT-PCR for expression analysis of OsDOF27 under di�erent abiotic stress conditions including salt, heat, PEG, methyl viologen, and cold.

Seven-day-old rice seedlings were treated with abiotic stressors (20% PEG, 200mM NaCl, heat (42◦C), cold (4◦C), and methyl viologen (20µM).

Total RNA was extracted, and cDNA was synthesized, followed by qPCR. Two endogenous controls (Ubiquitin-5 and EF1α) were used to

normalize the relative expression value of OsDOF27 followed by a calculation using the 11CT method. The error bars represent the standard

deviation of triplicate analysis. The significant di�erence in the mean of the values is indicated by di�erent letters (α = 0.01).

sequence–structure relationship of OsDOF27, we inspected

the protein sequence of OsDOF27 for the presence of an

intrinsically disordered region (IDR). The OsDOF27 appears

to be a highly disordered protein that was enriched in the

IDR region, especially in N- and C- terminals. However,

the DNA binding DOF-domain was found to be deficient

in IDR sequences (Figure 2A). The compositional bias of

OsDOF27 was assessed and compared against the Swissport 52

database, which revealed that OsDOF27 possessed an abundant

subset of disordered promoting amino acids such as proline,

glycine, alanine, serine, and arginine, while the order promoting

residues, such as isoleucine, phenylalanine, valine, etc., were

dramatically low in OsDOF27 (Figure 2B). Additionally, we also

conducted an evaluation of the OsDOF27 protein sequence

for parameters like FCR (fraction of charged residue), NCPR

(net charge per residue), Hydropathy plot (based on Kyte-

Doolittle hydrophobicity scale), and diagram of states which

represent the position of protein in graph drawn between the

fraction of positive and negative charge. As shown in Figure 2,

the different characterized IDPs were observed as κ (kappa)

(0.310), FCR (0.139), NCPR (0.015), and Hydropathy (4.184)

as per Das et al. (2015; Supplementary Table 3). Furthermore,

the secondary structure prediction of OsDOF27 also showed

that it comprises 24.91% of alpha-helix, 12.09% extended-strand,

7.69% beta-turn, andmore than 50%, i.e., 55.31%, is random-coil

(Supplementary Figure 1).
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FIGURE 2

(A) Graph represents a prediction of disorder regions present in the protein sequence of OsDOF27 based on the amino acid composition.

Calculations were performed using the database of Protein Disorder (DisProt) software. A score over 0.5 indicates a high probability of disorder.

(B) Depiction of compositional bias of OsDOF27 to show enriched or depleted aa of OsDOF27 against the SwissProt52 database. The amino

acid composition was color-coded for disorder and sorted by the di�erence observed. The red and blue color bars indicate the disordered and

ordered promoting amino acid, respectively, while the gray color-coded bar represents the neutral amino acid. (C) Analysis for diagram of states

which represent the position of protein in graph drawn between the fraction of positive and negative charge, (D) Hydropathy plot (based on

Kyte-Doolittle hydrophobicity scale), (E) NCPR (net charge per residue), (F) FCR (fraction of charged residue) of OsDOF27 protein sequence.
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FIGURE 3

Subcellular localization of OsDOF27 protein. Six-week-old Nicotiana leaves were syringe-infiltrated at the abaxial surface with Agrobacterium

strain harboring pSITEYFP3CA:OsDOF27 constructs. YFP fluorescence and di�erential interference contrast images and visible/GFP merged

images are visualized by confocal microscopy. Scale bars = 20µm. Confocal images of nicotiana leaves showing OsDOF27 targeted to the

nucleus, with (A) bright field; (B) DAPI; (C) YFP; (D) merged or overlay.

Subcellular localization of OsDOF27

An in silico assessment of subcellular localization

suggested the nuclear localization of OsDOF27

(Supplementary Figure 2A). To examine the subcellular

localization of OsDOF27 in planta, the CDS was cloned in the

pSITE-YFP, and after sequence confirmation, the construct

was transformed to Agrobacterium. The Agrobacterium

strain harboring OsDOF27 was used for agroinfiltration

of transient transfection in Nicotiana leaves. After 2 days

of agroinfiltration, the YFP signal was visualized using a

confocal laser scanning microscope to track the subcellular

localization of OsDOF27. The microscopic analysis revealed

that OsDOF27 was localized to the nucleus. The nuclear

localization was further confirmed using DAPI staining, which

specifically stains the nucleus. The YFP signal colocalized with

DAPI, which confirms the nuclear localization of OsDOF27

(Figure 3). However, in the control, fluorescence was detected

in the entire cell, including the cytoplasm and nucleus

(Supplementary Figure 2B).
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FIGURE 4

Thermotolerance potential of yeast is shown by (A) Spot assay which represents the comparative growth of yeast cells harboring

pDEST52:OsDOF27 and empty vector. Five microliters of each yeast sample (two colonies) were used for spot assay with 10-fold serial dilutions.

(B) the curve depicts the growth of yeast cells harboring pDEST52:OsDOF27 and empty vector under thermal stress. (C) The thermal stability

curve represents the standard free energy of protein folding against the temperature.
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FIGURE 5

(A) Schematic representation of the Agrobacterium-mediated rice transformation of OsDOF27. (B) qPCR analysis of positive transformants. Total

RNA was extracted from independent transgenic lines, and cDNA was synthesized followed by qPCR. Two endogenous controls (Ubiquitin-5

and EF1α) were used to normalize the relative expression value of OsDOF27 followed by calculation using the 11CT method. The error bars

represent the standard deviation of triplicate analysis. The significant di�erence in the mean of the values is indicated by di�erent letters (α =

0.01).

Frontiers in Plant Science 09 frontiersin.org

https://doi.org/10.3389/fpls.2022.956299
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gandass et al. 10.3389/fpls.2022.956299

FIGURE 6

Comparative stress tolerance potential of transgenic lines overexpressing OsDOF27 and its control counterpart (WT, wildtype plants, and VC,

vector control plants) at (A) germination stage and (B) seedling stages. (C) quantitative analysis of percent germination and (D) percent survival

of transgenic lines overexpressing OsDOF27 in comparison to WT and VC under heat stress treatment. The error bars represent the standard

deviation of triplicate analysis. The significant di�erence in the mean of the values is indicated by di�erent letters (α = 0.01).
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OsDOF27 imparts thermotolerance in
yeast

As OsDOF27 was highly induced under heat stress,

we examined the thermotolerance potential of yeast cells

harboring OsDOF27. For this, the OsDOF27 was cloned in

pDEST-52 in which the OsDOF27 was regulated by gal4

promoter. After verifying the sequence of construct by Sanger

sequencing, the construct (pDEST-52-DOF27 or pDEST-52-

VC) was mobilized to the yeast strain (INVSc1). We then

examined the thermotolerance potential of yeast transformants

using growth kinetics and the spot assay. The growth analysis

indicated that OsDOF27 ameliorates the thermal stress response

of yeast cells expressing OsDOF27 (Figures 4A,B). Additionally,

in an in silico analysis based on the Gibbs-Helmholtz equation

1G(T)= 1Hm[1–(T/Tm)]–1Cp[Tm–T+T Log(T/Tm)], the

OsDOF27 exhibited high Tm (melting temperature) of 69.5◦C,

which indicates its thermostability (Figure 4C). A Tm value

indicates the temperature for a protein at which it gets denatured

resulting in its functional impairment. For a protein to be

thermally stable, it needs a more negative value for 1H, which

makes the 1G value negative and thus more thermally stable.

Overexpression of OsDOF27 improves
seed germination and stress response in
rice transgenics

For functional analysis of OsDOF27, we generated rice

transgenic lines overexpressing OsDOF27 using Agrobacterium-

mediated rice transformation (Figure 5A). The enhanced

transcript level of OsDOF27 in transgenic lines was assessed

through qRT-PCR analysis (Figure 5B). Three independent

transgenic lines (T2 lines) with enhanced expression of

OsDOF27 were then assessed for heat stress tolerance as

qRT results of OsDOF27, and yeast thermotolerance assay

indicated its role in heat stress. For this, the transgenic lines

were challenged with heat stress at the germination stage and

the seedling stage. First, the germination potential of three

independent lines of T2 transgenic seed of OsDOF27-OE with

enhanced OsDOF27 expression along with the WT counterpart

was examined. The transgenic seeds of the overexpression line

showed better germination potential as compared to wild-

type during heat stress (Figure 6A). While in the non-stressed

condition, the transgenic and WT seeds did not show any

significant difference in the germination assay. At the vegetative

stage, when the seedlings were exposed to 45◦C for 24 h and then

transferred to 28◦C, all three transgenic lines of OsDOF27-OE

recovered better in comparison to their control counterpart (WT

andVC; Figures 6B,C). The survival rate of transgenic plants was

almost double than that of wild-type counterparts (Figure 6D).

Besides, under non-stressed conditions, OsDOF27-OE lines

behaved similar to WT and VC and did not exhibit any

significant differences.

Discussion

In general, plants possess incredible molecular plasticity,

which supports their growth and development during their

inevitable exposure to abiotic stresses. Some plants have an

intrinsic ability for higher stress tolerance than others, such

tolerance is dependent on different genetic and environmental

factors of the plant. The ability of plants to tolerate the stressful

milieu is largely controlled by their highly complex yet regulated

transcriptional process (Manna et al., 2021; Strader et al., 2022).

The transcription factors play a crucial role by regulating the

expression of their target gene and controlling almost all the

biological processes, including seed maturation, growth and

development, stress tolerance, and senescence to name a few

(Yanagisawa, 2002; Dubos et al., 2010; Manna et al., 2021).

Being a DNA binding protein, the role of TFs is largely known

for regulating the transcription by binding to the promoter

region of their target gene. However, in light of recent research

developments in protein biology, intrinsically disorder proteins

are attaining much focus. The IDPs challenge the sequence–

structure–function paradigm, as IDPs do not possess a stable

three-dimension structure. The IDP with molecular flexibility

possesses the ability to interact with different interacting

partners due to the altered conformation under different

physiological conditions (Sun et al., 2013; Zamora-Briseño et al.,

2021). IDP or the presence of IDRs in the protein facilitates

functional versatility. Apparently, the presence of abundant IDP

or IDR in plants explains the molecular plasticity that the plant

might have acquired during the course of evolution to support

their adequate growth and development (Pazos et al., 2013).

Here, in this study, we have the intrinsically disorder

nature of DOF-TF. We characterize the molecular role of

OsDOF27 under heat stress using two important systems,

that is yeast and rice. The in silico analysis showed that the

OsDOF27 is involved in different biological processes, which

indicated its functional versatility (Supplementary Figure 3).

The promoter region ofOsDOF27 was enriched in abiotic stress-

responsive cis-regulatory elements, and the expression profile

tested also showed that OsDOF27 induces under abiotic stress.

Besides, stress response, its promoter region is also enriched

in cis-elements related to the response of phytohormones

such as ABA, ethylene, and JA. The promoter region also

showed a high propensity for the DOF-TF binding site,

indicating its self-regulation or regulation by other members

of the DOF-TF family (Supplementary Table 2). The ponder

fit analysis indicated that OsDOF27 is an IDP; however,

the region encompassing the DOF domain (109–158 aa;

Supplementary Figure 4) has a very low disorder region. Since

the DOF domain is a characteristic domain of the DOF

family with a highly conserved region, which is known as the
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DNA binding region, this domain needs to have an ordered

promoting amino acid. The abundance of arginine (R), serine

(S), alanine (A), glycine (G), and proline (P) amino acids in the

OsDOF27 indicated its discorded nature and thus its structural

flexibility. Also, the predicted secondary structure of OsDOF27

encompasses more than 50% protein as a random coil (55%)

supporting the disorder region of the protein (Smith et al.,

1996). The abundance of glycine and proline in the OsDOF27

drives it entropically unpropitious to form ordered secondary

structures and makes the polypeptide more disordered and

flexible. As glycine (lack side chain) caters to flexibility, proline

(constrained phi angle) is too rigid to facilitate the adequate

secondary structure (Eyles and Gierasch, 2000; Rauscher et al.,

2006; Muiznieks and Keeley, 2010) Being a transcription factor,

OsDOF27 localizes to the nucleus, also the similar subcellular

localization for DOF proteins are reported previously (Corrales

et al., 2017; Su et al., 2017). The OsDOF27 imparts yeast

thermotolerance, which was revealed by spot assay as well as

growth curve analysis. The thermal stability curve also showed

that OsDOF27 possesses negative 1G between temperatures

of 20◦ and 40◦C, indicating its stability index within the

temperature range (Pucci et al., 2017; Yadav et al., 2021).

Besides, the high negative value of Tm and less negative 1H

with negative 1G signifies the thermal stability of OsDOF27.

In planta analysis for thermotolerance also depicted that rice

transgenic lines with enhanced expression of OsDOF27 were

more tolerant to heat stress exposure as compared to their wild-

type counterpart. Transgenic lines displayed improved tolerance

potential at germination and the seedling stage, which indicated

the important role of OsDOF27 under heat stress challenges.

Similarly, JrDOF3 was found to have a positive role in heat

stress tolerance by binding to the DOFCOREZM motif of

JrGRAS2 to regulate its expression. JrGRAS2 in turn regulates

the expression of heat shock proteins and thereby improves

high temperature stress tolerance (Yang et al., 2018). In a

recent transcriptomics study in cucumber, DOF transcription

factor was found to be upregulated (Yu et al., 2022). A

transcriptomic and proteomic analysis would be conducted to

understand the candidate molecular targets of OsDOF27, which

will allow us to get deeper insight and delineate the detailed

molecular mechanisms of heat stress tolerance imparted by

DOF27 in rice. Besides, the protein–protein interaction analysis

of OsDOF27 is also underway to comprehend the integrated

network of this intrinsically disorder protein and other

biological functions.
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