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Slight crack of cottonseed is a critical factor influencing the germination

rate of cotton due to foamed acid or water entering cottonseed through

testa. However, it is very di�cult to detect cottonseed with slight crack

using common non-destructive detection methods, such as machine vision,

optical spectroscopy, and thermal imaging, because slight crack has little

e�ect on morphology, chemical substances or temperature. By contrast, the

acousticmethod shows a sensitivity to fine structure defects and demonstrates

potential application in seed detection. This paper presents a novel method

to detect slightly cracked cottonseed using air-coupled ultrasound with a

light-weight vision transformer (ViT) and a sound-to-image encodingmethod.

The echo signal of air-coupled ultrasound from cottonseed is obtained by

non-contact and non-destructive methods. The intrinsic mode functions

(IMFs) of ultrasound signal are obtained as the sound features using variational

mode decomposition (VMD) approach. Then the sound features are converted

into colorful images by a color encoding method. This method uses di�erent

colored lines to represent the changes of di�erent values of IMFs according

to the specified encoding period. A light-weight MobileViT method is utilized

to identify the slightly cracked cottonseeds using encoding colorful images

corresponding to cottonseeds. The experimental results show an average

overall recognition accuracy of 90.7% for slightly cracked cottonseed from

normal cottonseed, which indicates that the proposed method is reliable to

applications in detection task of cottonseed with slight crack.

KEYWORDS

crack cottonseed identification, variational mode decomposition, sound to image

encoding, vision transformer, deep learning, air-coupled ultrasound

Introduction

Cotton is an important economic crop throughout the world. The quality of

cottonseed is an important factor in determining the yield and quality of cotton. Cotton

seed will go through a series of processes such as ginning and stripping, which will cause

a lot of damage to cotton seed. However, in the process of removing excess linters of
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cottonseed, the foamed acid will enter the cottonseed through

the cracks and diminish the germination of the cotton seed. After

sowing, water will also enter cottonseed through cracks, further

reducing the germination of cottonseed. Therefore, cracked

cottonseeds will decrease cotton yield.

To reduce the amount of cottonseed wasted, the automation

system of cotton precision seeding is often applied in practical

production. After precision seeding, there is no need for

thinning seedlings or avoiding inconsistency of individual

growth and development in cotton field. Therefore, cotton

precision seeding can significantly decrease the production

cost of cotton, improve the efficiency of field management,

and consequently, realize standardized planting. However, this

technology puts forward higher requirements for the quality of

cottonseeds, which makes the quality detection of cottonseeds

crucial. The traditional seed detection method is destructive,

inefficient, time-consuming, and non-automated. Developing

fast and high-throughput non-destructive detection methods

for seed quality is urgently needed for agricultural production.

In recent years, non-destructive detection technologies, such

as machine vision, optical spectroscopy, thermal imaging,

and acoustics, have gradually become new ways to detect

seed quality.

Machine vision is a rapid and non-destructive technology

and has been applied to detect the quality and safety of seed.

Based on morphological and color features extracted from

images acquired by camera with high resolution, morphology

(Rodríguez-Pulido et al., 2012), color (Tu et al., 2018), shape

(Li et al., 2016), size, texture, and exterior defects (Huang

et al., 2019) of seed can be evaluated. Severely damaged

and broken cottonseeds can also be identified effectively by

extracting morphological characteristics from image (Bai et al.,

2018). However, injuries recognition and location are still major

difficulties in using machine vision for seed surface defect

detection (Huang et al., 2015). Slight injuries such as small cracks

in cottonseed are hardly distinguished by vision. Moreover, it is

particularly difficult for imaging the injuries on the edge and the

back side of seed that are hidden from the camera’s field of view.

Optical spectroscopy is also a powerful tool to inspect

seed, especially in characterizing internal quality. Based on the

interactions between light and material molecular groups, the

information of corresponding chemical compositions can be

extracted from the changes of optical spectra. According to

the form of interaction, spectroscopic techniques are mainly

based on light absorption (e.g., near-infrared spectroscopy),

light scattering (e.g., Raman spectroscopy) and light emission

(e.g., fluorescence spectroscopy). Most of them have been

used to determine seed quality and safety, including internal

compositions (Sunoj et al., 2016), moisture (Zhang and Guo,

2020), germination (Fan Y. et al., 2020) and infection (Tao

et al., 2019). Hyperspectral imaging technique incorporates

optical spectroscopy and imaging technology to obtain spatial

and spectroscopic information simultaneously. Combined

with machine learning methods, such as linear discriminant

analysis (LDA), partial least-squares discriminant analysis (PLS-

DA), support vector machine (SVM), and artificial neural

networks (ANN), a hyperspectral imaging data cube can

provide the information of chemical compositions and their

distributions, which makes this a potential technology in the

seed industry, especially in variety identification (Zhou et al.,

2020), classification (Barboza da Silva et al., 2021) and chemical

composition determination (Yang et al., 2018; Hu et al., 2021).

Spectroscopic technology also does a good job in damage

detection of seed, such as insect damage (Chelladurai et al.,

2014), fungi damage (Baek et al., 2019), frost damage, and

sprout damage, because all these types of damage can lead

to the change of chemical compositions of seed, which could

change the spectral features. Nevertheless, it is still challenging

to distinguish pure physical damage with little chemical change,

such as slight crack in cottonseed.

Thermal imaging is a non-destructive technique for

converting the invisible infrared radiation pattern of an object

into visible images for feature extraction and analysis (Rahman

and Cho, 2016). Based on the changes of surface temperature,

the infrared radiation profile of seed can be mapped and

analyzed. Unlike above-mentioned methods, no illumination

sources are required in this system, and a thermal imaging

camera along with its data acquisition system is enough to

provide information of object. Thermal imaging technology

has found its way in estimating seed quality, including

determination of morphological features, detection of diseases

and insect infestation, evaluation of viability (Belin et al., 2018)

and germination performance (Fang et al., 2016), distinguishing

aged or dead seeds from healthy ones (Kim et al., 2014), and

monitoring seed quality during storage (Xia et al., 2019). In

addition, thermal imaging has the capability of sensing all

possible physical damage of seed, since there is a significant

relationship between seed temperature and degree of damage

(ElMasry et al., 2020). But the difficulties of detecting slight

physical injuries, which are hard to recognize by machine

vision and even human vision, still exist for the thermal

imaging method.

An acoustic method is also developed for non-destructive

detection of agricultural products. Among acoustic technology,

ultrasonic testing is an important method. With the advantages

of short wavelength, high frequency, and good directional

property, ultrasound possesses better penetrability than audible

sound and subsonic wave, and consequently becomes a powerful

tool in non-destructive testing of seed. Ultrasound signal

produced by impacting seed can be used to evaluate seed quality.

When crack appears on seed testa, the structural strength and

damping coefficient of the seed will change, which leads to

the variations of frequency and intensity of the impacting

ultrasound signal. Depending on the differences in echo signals

between healthy seed and defective seed, the acoustic method

shows more superiority in recognizing fine surface crack than
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common non-destructive detection methods. The approach was

first proposed to distinguish pistachio nuts with open shells

from those with closed shells (Pearson, 2001), and the results

showed that the detection accuracy of pistachio nuts was∼97%.

Combined with signal processing and identifying algorithm, the

acoustic method is applied to detect insect damage (Pearson

et al., 2007; Yanyun et al., 2016) and mildew damage (Sun

et al., 2018) of seed. The potential to identify fine defects

with this method is expected and verified. However, detecting

light crack of cottonseed with smaller size than most seeds is

rarely reported.

In this paper, a non-destructive detection method based

on an air-coupled ultrasonic inspection system is developed

to distinguish cottonseed with slight crack from intact kernel.

VMD is utilized to decompose an ultrasonic signal into band-

limited multiple IMFs. These IMFs are used to construct the

feature matrix of ultrasonic signal. Then the feature matrix

is converted into the colorful image using a color encoding

method. A deep learning-basedmethod combining Transformer

model with CNN model is used to classify the color images

generated from air-coupled ultrasonic cottonseeds. Finally, the

performance of the proposed method is compared with other

detection methods.

Materials and methods

Samples

A total of 600 cottonseeds named Xinluzhong52 are

used in this study. The total cottonseeds consisted of 296

intact kernels and 304 kernels with slight crack. Cracked

cottonseed is damaged cottonseed showing the obvious

white endosperm inside. For slightly cracked cottonseed, it

is difficult to detect the endosperm inside, but there is

crack on testa of cottonseed. Physical images of cottonseed

are shown in Figure 1. The cottonseed with severe crack

that shows the white endosperm can be identified by

machine vision method. This research focuses on the method

of distinguishing cottonseed with slight crack from intact

cottonseed. Therefore, the samples only include the two classes

of cottonseeds.

Detection system based on air-coupled
ultrasound

To maintain sufficient energy transmission, liquid couplant,

such as water, oil etc. is used to immerse samples in a

traditional ultrasonic technique. The mode of contact coupling

may cause damage or pollution on the surface of sample. The

air-coupled ultrasonic technique emerges as a novel approach

for non-destructive, non-contact, and rapid inspection (Fang

et al., 2017). The surrounding air is used as the couplant between

transmitting transducer and materials or between receiving

transducer and materials in air-coupled ultrasonic techniques.

The significant advantage of an air-coupled ultrasonic technique

is avoiding the use of traditional couplant. Therefore, it

becomes a reliable and effective non-destructive detection

method. The air-coupled ultrasonic technique is suitable

for industrial detection applications, such as the natural

defects in wood (Tiitta et al., 2020), corn seed with hole

(Yanyun et al., 2016) and food engineering (Fariñas et al.,

2021a,b).

The air-coupled ultrasonic detection system is used to

obtain the ultrasonic echo signal. The inspection system is

shown in Figure 2. The signal acquisition system consists of

a pair of transducers (400K-20N-R50-T and 400K-20N-R50-

R, PR, China), a preamplifier (400K, PR, China), an air-

coupled ultrasonic inspection instrument (PRACUT-111, PR,

China), and an industrial computer. The center frequency of

the transducer is 400 kHz. The diameter of the piezoelectric

ceramic disc is 20mm. The focal length of the transducer is

50mm. The normal through-transmission mode is applied to

two transducers. In order to obtain accurate ultrasonic signals,

the two transducers need to be strictly aligned. The cottonseed

is placed as the focus between transmitting transducer and

receiving transducer. To meet the requirement of cottonseed

placement, an aluminum plate with a thickness of 0.2mm as

a holder is fixed in the middle of two transducers. The thin

aluminum plate can guarantee that the air-coupled ultrasonic

signal transmitted by the transmitting transducer can be

received by the receiving transducer as much as possible. The

preamplifier with the amplification factor of 60 dB is used

to amplify and filter the ultrasonic signal received by the air-

coupling receiver transducer (400K-20N-R50-R), and then input

the processed ultrasonic signal to the air-coupled ultrasonic

inspection instrument. The ultrasonic inspection instrument

outputs 400V excitation signal to drive the transmitting

transducer and converts the received ultrasonic signal into

digital signal. The industrial computer mainly consists of

Intel i7-6700 CPU @3.4 GHz, 512G SSD hard drive, 16 GB

RAM and a GPU (Geforce RTX 2080 WindForce OC 8G,

GIGABYTE). The computer sends the control command to the

ultrasonic inspection instrument through the USB interface, and

receives the ultrasonic data sent by the ultrasonic inspection

instrument through a LAN interface. The ultrasonic data are

stored in the computer using PRACUT software (Suzhou

Phaserise Technology Co., Ltd., China). Although Python

language and Pytorch deep learning framework are used to

realize the signal processing and the identification of cottonseed

with slight crack, real-time detection can be realized by C++

language with the standard dynamic link library provided by

PRACUT software.
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FIGURE 1

Cottonseed kernels. (A) Intact cottonseeds. (B) Cottonseeds with severe cracks. (C) Cottonseeds with slight cracks.

Ultrasonic signal acquisition

A-scan mode of the air-coupled ultrasonic inspection

instrument is used to identify cottonseed with slight crack.

In A-scan mode, damaged cottonseeds are detected through

changes in air-coupled ultrasonic signal passing through them.

In order to generate the ultrasonic signal data set, first, the

cottonseed sample is placed on the aluminum plate so that it
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FIGURE 2

Scheme of air-coupled ultrasonic inspection system set-up.

coincides with the focus position of the transducers. Then the

ultrasonic signal is obtained after the ultrasonic signal passes

through the cottonseed. The ultrasonic signal data is exported

and saved as a CSV format file. Finally, the category label (1

or 0) corresponding to each sample is appended to the end

of CSV file, where “1” represents the normal cottonseed and

“0” represents the cottonseed with slight crack. Each cottonseed

sample corresponds to a CSV file, and all CSV files constitute the

data set used in this study. The typical ultrasonic signals from

intact cottonseed and cottonseed with slight crack are shown

in Figure 3 respectively. The amplitude fluctuations of the two

types of ultrasonic signals are very similar, so it is very important

to extract effective features for classification from these signals.

Identification of slight crack cottonseed

Variational mode decomposition method

Variational mode decomposition (VMD) (Dragomiretskiy

and Zosso, 2013) is one of novel non-stationary signal

decomposition techniques and has been recently applied in

wind speed forecasting and many other fields (Dibaj et al.,

2021; Yildiz et al., 2021). The original non-stationary signal

can be decomposed into different band-limited intrinsic mode

functions (IMFs) using VMD, similar to empirical mode

decomposition (EMD). A non-recursive method is used to

decompose original signal X(t) into M modes or subsequences

um(m = 1, 2, ..., M). These IMFs have different central

frequencies with finite bandwidths. The purpose of the

transformation is to minimize the sum of the estimated

frequency bandwidth of each IMF, and the constraint condition

is that the sum of each IMF is equal to the input signal X(t).

The objective function and constraint condition corresponding

to the variational constraint model can be represented by the

following Equation 1:






min
{um},{ωm}

∑M
m=1

∥

∥

∥
á

[(

δ (t) +
j

πt

)

∗um(t)e
−jωkt

]
∥

∥

∥

2

2
s.t. X (t) =

∑M
m=1 um

(1)

where δ(t) is Dirac function; ∗ denotes the convolution

operation in signal processing; j is an imaginary number; || · ||

denotes the L2- norm; {um} = {u1, u2, ..., uM} is the set of all

IMFs; {ωm} = {ω1, ω2, ..., ωM} is the set of central frequencies

corresponding to all IMFs.

In order to resolve the constrained variational optimization

problem, quadratic penalty factor term α and Lagrange

multipliers λ(t) are defined, so the optimization problem can

be transformed into an unconstrained variational problem. The

constructed unconstrained form can be presented in Equation 2.

L({um} , {ωm} , {λ (t)}

= α

M
∑

m=1

∥

∥

∥

∥

á

[(

δ (t) +
j

πt

)

∗um (t) e−jωkt
]
∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

∥

X (t) −

M
∑

m=1

um

∥

∥

∥

∥

∥

∥

2

2

+

〈

{λ (t)} ,X (t) −

M
∑

m=1

um

〉

(2)
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FIGURE 3

Examples of the original ultrasonic signals of cottonseed. (A) Intact cottonseed. (B) Cottonseed with slight crack.

where α is used to ensure high reconstruction fidelity even in the

presence of additive Gaussian white noise; λ(t) is used to strictly

ensure the constraints.

To solve the unconstrained optimization problem in

Equation 2, the alternating direction multiplier method

(ADMM) (Hong and Luo, 2017) is used to find the

saddle point of the optimization problem. The minimax

point of the augmented Lagrangian function L can be

obtained by updating um, ωm and λ alternately. The

iteration process of um, ωm and λ are as following

Equation 3, 4, 5:

ûn+1
m (ω) =

f̂ (ω) −
∑

i 6=m ûi (ω) +
λ̂(ω)
2

1+ 2α(ω− ωm)
2

(3)

ωn+1
m =

∫ ∞
0 ω

∣

∣ûm(ω)
∣

∣

2
dω

∫ ∞
0

∣

∣ûm(ω)
∣

∣

2
dω

(4)

λ̂n+1 (ω) = λ̂n (ω) + τ (X̂ (ω) −
∑

m

ûn+1
m (ω )) (5)
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where n is the number of iterations; X̂ (ω), ûn+1
m (ω), ûi (ω)

and λ̂ (ω) can be obtained from X(t), un+1
m (t), ui(t) and λ(t)

by the Fourier transforms. If the convergence condition shown

in Equation 6 is satisfied, the iteration will be terminated.

Finally, through the inverse Fourier transform of ûn+1
m (t),

the real part of the result is taken as the mode functions

un+1
m (t ).

M
∑

m=1

∥

∥

∥
ûn+1
m − ûnm

∥

∥

∥

2

2
∥

∥ûnm
∥

∥

2
2

< ǫ (6)

The optimization process for VMD is as follows:

Step 1: Initialize u1m, ω
1
m, λ

1 and n, where n= 1.

Step 2: Set n to n+ 1 and update ûn+1
m (ω), ωn+1

m and λ̂n+1

according to Equation 3, 4, 5.

Step 3: Repeat step 2 until the iteration convergence

condition in Equation 6 is satisfied. M narrowband

IMF un+1
m (t) can be obtained by using inverse

Fourier transform.

The air-coupled ultrasonic signal of a cottonseed with

slight crack is used as the examples for VMD decomposition.

The results of VMD decomposition are shown in Figure 4.

Because of the similarity between air-coupled ultrasonic signal

of intact cottonseed and that of cottonseed with slight crack, it

is important to extract the air-coupled ultrasonic signal features

from these intrinsic mode functions.

Encoding from ultrasound to image

The ultrasonic signal X(n) acquired from air-coupled

ultrasonic detection system are decomposed toM intrinsicmode

functions um, m ǫ {1, 2, ..., M} using VMD transformation. M

IMFs are stacked to generate the intrinsic mode functionsmatrix

S of air-coupled ultrasonic signal X(n) according to Equation 7:

S =













u1

u2
...

uM













= [s1, s2, · · · , sL ] (7)

where S ∈ R
M×L and L is the length of the air-coupled

ultrasonic signal X(n). um is composed of L discrete values

with the same length as the ultrasonic signal, which can be

represented as um ∈ R
1×L. Vector sl is composed ofM discrete

values in the column direction of the matrix S which can be

represented as sl ∈ R
M×1. In order to convert the ultrasonic

signalX(n) into a color-coded image IC , the color setC is defined

for color coding, C = {c1, c2, · · · , cB}, where ci represents

different colors and B is the number of different colors in the

color set C. First, vector s1 at the first column of the intrinsic

mode functions matrix S is selected and converted into a part

of colorful image IC . Here, s1 = {u11, u12, · · · , u1M}. Color c1
in set C is chosen and used to draw a polyline in the image IC
according to the value of s1. Then vector s2 at the second column

of matrix S and color c2 are selected to draw the second polyline

in the image IC to represent s2. According to this method, color

c1 is used to draw the next polyline again after completing the

drawing of B colorful polylines. Finally, B is considered as the

cycle to complete the drawing of L colorful polylines. Image IC
is generated from the air-coupled ultrasonic signal X(n) using

the above color encoding method.

In order to accurately convert the ultrasonic signal into a

colorful image, first, the drawing rangesWS,HS in image IC and

the coordinates
(

xOS , yOS

)

of the image origin OS are defined.

Then the coordinates required to draw polylines are calculated

according to Equation 8:
{

xslm = xOS +
(m−1)WS
M−1 m ∈ {1, 2, · · · ,M}

yslm = yOS +
(HS−yOS )(Smax−Slm)

(Smax−Smin)
l ∈ {1, 2, · · · , L}

(8)

where Smax and Smin are respectively the maximum and

minimum values in the matrix S composed ofM intrinsic mode

functions after VMD decomposition of each ultrasonic signal.

The position of each column vector of matrix S in the image

IC is determined by Equation 8, and then the corresponding

position is connected with the same color to complete the

drawing of polylines. For each vector sl, M – 1 colorful lines

need to be drawn. In this study, let M = 3, L = 450, B = 10,

the size of the generated image IC is 1,800 × 1,200 and the

origin coordinate of the encoding image part on image IC is

(288,1010). The process of generating images from the ultrasonic

signals of intact cottonseed and slight cracked cottonseed is

shown in Figure 5. As seen in Figure 5, the coding representation

of ultrasonic signals from one-dimensional ultrasonic signal

to two-dimensional images can be realized by polylines with

different colors according to the results of VMD decomposition

of ultrasonic signals.

In practical application, in order to obtain the optimal

detection effect, the air-coupled ultrasonic data of 30 intact

cottonseeds and 30 cottonseeds with slight crack are randomly

selected from the air-coupled ultrasonic data set, the background

image is generated according to the above method, and then the

air-coupled ultrasonic data of the remaining 540 cottonseeds are

used to generate colorful encoding images on the background

image. So, the conversion from sound to image is completed.

Finally, the image data set including 266 images generated

from intact kernels and 274 images generated from slight crack

kernels is obtained. In this study, 80% of the data set is used

to train the model and 20% is used to test the effect of the

training model.

MobileVIT vision transformer model

The ransformer-based model achieves great success in the

natural language processing (NLP) field (Vaswani et al., 2017).
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FIGURE 4

The VMD decomposition from the air-coupled ultrasonic signal of a cottonseed with slight crack. (A) Original signal. (B) IMF1. (C) IMF2. (D) IMF3.

Frontiers in Plant Science 08 frontiersin.org

https://doi.org/10.3389/fpls.2022.956636
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.956636

FIGURE 5

Colorful images generated from the ultrasonic signals. (A) The process of generating image from the ultrasonic signal of intact cottonseed. (B)

The process of generating image from the ultrasonic signal of slightly cracked cottonseed.
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Transformer has a layer stacking architecture, which only uses

the multi-Head self-attention mechanism without convolution

and recursion. Inspired by the successful application of

transformer in NLP field, Dosovitskiy et al. (2020) propose

Vision Transformer (ViT) model which employed a standard

Transformer directly to visual tasks. In this method, the image

is divided into a sequence of patches, and the linear embedding

sequence of these image patches are taken as the input of the

Transformer. The processing method of image patches is the

same as that of tokens in NLP application, and excellent results

are achieved on massive data sets. Liu et al. (2021), proposed the

Swin Transformer (Shifted Window Transformer) model that

could replace the classic convolutional neural network (CNN)

architecture and become a general backbone in the field of

computer vision. This model is based on the idea of ViT model

and shows the effectiveness on different vision problems using

patch merging and the shifted window with self-attention.

Although Vision Transformer-based model can be an

alternative to CNNs in computer vision field, the large model

size, high requirement for training data, and latency of

Vision Transformer limits its practice application, especially

for resource constrained equipment. In order to obtain a

lightweight and efficient architecture of Vision Transformer

model, MobileViT (Mehta and Rastegari, 2021) is proposed

for mobile vision applications. MobileViT combines the

advantages of transformers and convolutions, so it can

encode the local information obtained from convolutions

and global information obtained from transformers in

tensors without lacking in inductive bias. The model

structure of MobileViT is shown in Figure 6, where MV2

block represents MobileNetV2 block with inverted residual

structure. ↓2 refers to down-sampling operation. A standard

3 × 3 convolution operation is represented by Conv-3 ×

3 block in MobileViT model. MobileViT block combines

convolutions with transformers to learn the global and

local information from input tensor respectively. Tensor

XT ∈ R
H×W×Dpasses through a series of convolution

operations and tensor XLT ∈ R
H×W×d is obtained.

Then tensor XLT is divided into N patches with width

w and height h and XUT ∈ R
P×N×d can be obtained

by unfolding XLT . For example, the XLT in Figure 6

is equally divided into 4 × 4 small patches, then a d-

dimensional vector is extracted at the same position of

each patch. The corresponding vectors from the same

position p ∈ {1, · · · , P}are combined and used to generate

tokens. The inter-path relationships XGT ∈ R
P×N×d can

be obtained by encoding operation with Transformers as

Equation 9:

XGT = Transformer
(

XUT

(

p
))

, 1 ≤ p ≤ P (9)

where local information can be encoded by

XUT (p) and global information passing through

p-th position in P patches can be encoded

by XUG (p). The output YT of MobileViT

block can be obtained after convolution and

concatenation operations.

The computation of self-attention in above Transformer

is realized using scale dot-product attention according to

Equation 10:

Attention (Q,K,V) = SoftMax(
QKT

√

dk
)V (10)

where Q, K and V represent the query, key, and value matrices

respectively. dk refers to the dimension ofQ and K. The SoftMax

function is used to obtain the weights ofV. Spatial order of pixels

will be ignored in standard ViTs. But both the spatial order of

pixels and the path order will be obtained in MobileViT model.

Results and discussion

Cottonseed germination test

It is important to guarantee the safety of air-coupled

ultrasonic detection for cottonseed. In order to verify

the safety of ultrasonic detection, the germination test

of cottonseeds is used as the verification method. First,

two batches of intact cottonseeds are randomly selected,

then the cottonseeds are divided into two groups. One

group is not used to ultrasonic testing, and the other

group is passed through air-coupled ultrasonic at the

same frequency and intensity in detection experiment. For

each germination test, 1,000 cottonseeds after ultrasonic

testing and 1,000 cottonseeds without ultrasonic testing are

selected respectively. Then the two groups of cottonseeds

are used in cottonseed germination tests at the same time. It

is determined whether air-coupled ultrasonic detection will

cause damage to the cottonseeds by the comparison of the

germination rates.

Table 1 shows the comparative results of the cottonseed

germination rate. By comparing the results in Table 1, it

can be seen that air-coupled ultrasonic detection does not

affect the germination rate of cottonseeds. At the same

time, the germination rate of seeds tends to decrease with

the increase of time. This trend may be due to the

storage environment of cottonseeds not in accordance with

the storage standards, which affects the germination rate

of cottonseeds. Therefore, in this study, the air-coupled

ultrasound with frequency of 400 kHz and voltage of 200V

is used to detect the slight crack of cottonseed, which

will not damage the cottonseeds or reduce the germination

rate of cottonseeds. This is a safe non-destructive detection

method.
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FIGURE 6

The architecture of Mobile ViT network.

TABLE 1 The results of cottonseeds germination test.

Cottonseed Storage for Storage

category 2 months 1 year

Cottonseeds after ultrasonic testing 83.5% 72.2%

Cottonseeds without ultrasonic testing 86.1% 70.6%

Determination of decomposition number
M using sample entropy

The ultrasonic signal X(n) is decomposed to M intrinsic

mode functions using VMD decomposition. The number M

of intrinsic mode functions needs to be determined artificially.

Sample entropy is proposed to measure the complexity of time

series by Richman and Moorman (2000). Complex time series

signals have large sample entropy, while time series signals with

strong selfsimilarity have small sample entropy. Zhang et al.

(2020) proposed a method to select the number M of intrinsic

mode functions by computing the sample entropy of time series.

For an appropriateM value of VMDdecomposition operation, it

will correspond to smaller sample entropy of the time sequence

signal. Therefore, on the condition of effectively limiting the

computational complexity, the M value is determined by

calculating the sample entropy of the intrinsic mode functions.

For one-dimensional time series signal {XSE(i), i = 1, 2, . . . ,

L}, z-dimensional vector is reconstructed and represented by

{YSE(i), i= 1, 2, . . . , Z, Z = L – z+ 1} according to Equation 11:

YSE (i) = {XSE (i) ,XSE (i+ 1) ,XSE (i+ 2) , · · · ,

XSE (i+m− 1)} (11)

Then the maximum value of Euclidean distance between any

component of vectors YSE(i) and YSE(j) is calculated according

to Equation 12 and represented as DSE(YSE(i), YSE(j)).

DSE
(

YSE (i) ,YSE
(

j
))

= max
[
∣

∣YSE
(

i+ k
)

− YSE
(

j+ k
)
∣

∣

]

(12)

where i, j ǫ {1, 2, . . . , Z – z+ 1} and k ǫ {0, 1, . . . , z – 1}. Then

Az
i (r) is calculated according to Equation 13, where r is tolerance

threshold andAz
i is the number that the distance between YSE (i)

and YSE(i) is not greater than r.

A
z
i (r) =

1

L− z + 1
Az
i (13)

Then Az
i (r) is used to calculate A

z
i (r) · A

z
i (r) =

1
L−z

∑L−z
i=1 Az

i (r). Finally, the sample entropy of time series

signal is calculated according to the following to Equation 14:

SampleEn (m, r) = − ln
Az+1
i (r)

Az
i (r )

(14)

The original air-coupled ultrasonic signal is decomposed

using VMD with different parameter M. Then the sample

entropy corresponding to each M is calculated accordance to

Equation 14. In order to obtain an appropriate detection speed,

M is set to 2, 3, 4, 5, 6 in the experiment respectively. It can be

seen from Figure 7 that the sample entropy has the smallest value

when M is equal to 3. Therefore, M = 3 is determined as the

number of intrinsic mode functions of VMD decomposition in

this study.

Influence of the number of encoding
colors

The conversion from air-coupled ultrasonic data to image

data is realized through a specific number of color encoding

sets. In order to determine the optimal number of encoding
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FIGURE 7

The value of the sample entropy with di�erent numbers M of

IMFs.

colors for ultrasound to image conversion, a color set for

encoding including 12 colors is constructed. The air-coupled

ultrasonic signal decomposed by VMD method is encoded

by two to 12 colors respectively. Eleven image data sets are

constructed using the original air-coupled ultrasonic data. The

MobileViT model is trained by using each image data set.

The training data sets and test data sets from 11 image

data sets are divided in the same proportion respectively.

The initialization parameters of MobileViT in this study are

shown in Table 2. These initialization parameters are mainly

determined according to GPU performance and characteristics

of encoding image. The comparison results of the MobileViT

model obtained on the test sets of colorful images generated by

different numbers of encoding colors are shown in Figure 8. The

colorful image sets for tests come from the same air-coupled

ultrasonic data test set, but different test sets are generated

according to the corresponding color encoding method. It

can be seen from Figure 8 that with the increase of encoding

colors, the classification accuracy increases gradually. When the

number of encoding colors is equal to 10, the classification

accuracy reaches the maximum. Then the classification accuracy

decreases with the increase of the encoding color number. This

is mainly because, with the increase of the encoding colors

number and the types of colors, the image generated from the

air-coupled ultrasound becomes more complex. It is difficult for

the classification algorithm to extract effective features from the

complex image. Therefore, to realize the conversion from sound

to image, 10 colors are selected to encode the intrinsic mode

functions of the original air-coupled ultrasonic signal.

Comparison of di�erent methods

In order to compare the detection effects of the method

proposed in this study with those of other methods, eight

TABLE 2 Parameters of MobileViT for cottonseed with slight crack.

Parameters Value

Input size 256× 256

Classes 2

Batch size 16

Learning rate 1.0×10−3

Iterations 10

FIGURE 8

Accuracy of slight crack detection of cottonseed with di�erent

numbers of encoding colors.

detectionmethods are proposed for the comparison experiment.

The long short-term memory (LSTM) network is a special

kind of recurrent neural network that can store and retrieve

information from sequence data by memory cells (Hochreiter

and Schmidhuber, 1997). LSTM network is an effective classifier

for dealing with one-dimensional time-series and sequential

data. The original air-coupled ultrasonic signal, wavelet features,

and the results of VMD decomposition are used as input data

respectively, and then combined with LSTM classifier to obtain

four methods for the comparison. The wavelet transformer can

be used to obtain the time-frequency domain features of original

air-coupled ultrasonic signal.

The color images used to train deep learning classifiers

are shown in Figure 9. For the data set obtained by the color

encoding (CE) method from sound to image, different classifiers

are used to compare the detection of cottonseed with slight

crack. The traditional convolutional neural network (CNN) (Fan

S. et al., 2020), residual network (ResNet18) (He et al., 2016) and

Swin Transformer (Liu et al., 2021) are chosen as the classifier

for the comparison respectively. The shortcut connections in

ResNet18 make deeper neural networks to realize complex

classification tasks. Thesemodels use a cross-entropy function as

a loss function. Meanwhile, the training iterations of all models

is set to 10.

Frontiers in Plant Science 12 frontiersin.org

https://doi.org/10.3389/fpls.2022.956636
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.956636

FIGURE 9

Color images generated from air-coupled ultrasound of cottonseeds. (A) Intact cottonseeds. (B) Cottonseeds with slight cracks.

TABLE 3 The comparison of di�erent methods for the detection of

cottonseed with slight crack.

Method Precision Recall F1 score Accuracy

1D raw data - LSTM 80% 65.5% 72% 74%

Wavelet - LSTM 64.1% 92.6% 78.5% 70.4%

VMD- LSTM 75.5% 68.5% 71.8% 73.1%

VMD- CE - CNN 94.4% 61.8% 74.7% 78.7%

VMD- CE -

ResNet18

82.8% 96.4% 89.1% 88%

VMD- CE – Swin

Transformer

73.1% 89.1% 80.3% 77.8%

VMD- CE –

MobileViT

(proposed method)

86.9% 96.4% 91.4% 90.7%

The experimental results are shown in Table 3. From the

experimental results, it can be seen that the two-dimensional

image can better reflect the features of air-coupled ultrasonic

signal than the features of one-dimensional signal. Because the

MobileVIT model can combine the local analysis ability of

convolutional neural network with the global analysis ability

of Transformer, the classification performance of MobileViT

is better than that of convolutional neural network and Swin

Transformer model. Due to the vast amount of parameters in

the Swin Transformer model and the requirement for a large

number of training data, the training and learning of non-large

data sets can’t show the advantages of the Swin Transformer

model. Therefore, VMD-CE–MobileViT approach proposed in

this study can distinguish normal cottonseed from cottonseed

with slight crack effectively.

Conclusion

In this paper, a detection method based on air-coupled

ultrasound and sound to image encoding is proposed for slight

crack identification of cottonseed. The traditional ultrasound

detection method is not suitable for the requirements of non-

destructive detection of cottonseed quality, and it is very difficult

to detect cottonseed with slight crack using machine vision and

other non-destructive detection technologies. To distinguish

kernels with slight crack from intact kernels, a non-destructive,

non-contact detection method based on air-coupled ultrasound

is developed. VMD decomposition is used to obtain the IMFs of

air-coupled ultrasonic signal. Then the feature matrix from the

IMFs is applied to generate colorful image by a color encoding

method. This method of converting sound into image can help
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theMobileViT classifier to obtain higher detection accuracy. The

experimental results show that slightly cracked cottonseed can

be distinguished from normal cottonseed precisely. The average

accuracy of slightly cracked cottonseed identification test is

90.7%. The presented method can be extended to other signal

recognition domain, such as distinguishing premature heartbeat

signal from normal heartbeat signal in electrocardiogram (ECG)

domain. In the future, we will combine the method proposed

in this study with hyperspectral image processing technology to

improve the detection accuracy further.
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