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Genotype-by-environment interaction (G × E) is a common phenomenon

influencing genetic improvement in plants, and a good understanding of this

phenomenon is important for breeding and cultivar deployment strategies.

However, there is little information on G × E in horticultural tree crops,

mostly due to evaluation costs, leading to a focus on the development

and deployment of locally adapted germplasm. Using sweetness (measured

as soluble solids content, SSC) in peach/nectarine assessed at four trials

from three US peach-breeding programs as a case study, we evaluated

the hypotheses that (i) complex data from multiple breeding programs can

be connected using GBLUP models to improve the knowledge of G × E

for breeding and deployment and (ii) accounting for a known large-effect

quantitative trait locus (QTL) improves the prediction accuracy. Following

a structured strategy using univariate and multivariate models containing

additive and dominance genomic effects on SSC, a model that included a

previously detected QTL and background genomic effects was a significantly

better fit than a genome-wide model with completely anonymous markers.

Estimates of an individual’s narrow-sense and broad-sense heritability for

SSC were high (0.57–0.73 and 0.66–0.80, respectively), with 19–32% of total

genomic variance explained by the QTL. Genome-wide dominance effects

and QTL effects were stable across environments. Significant G × E was

detected for background genome effects, mostly due to the low correlation of

these effects across seasons within a particular trial. The expected prediction

accuracy, estimated from the linear model, was higher than the realised

prediction accuracy estimated by cross-validation, suggesting that these

two parameters measure different qualities of the prediction models. While

prediction accuracy was improved in some cases by combining data across

trials, particularly when phenotypic data for untested individuals were available

from other trials, this improvement was not consistent. This study confirms

that complex data can be combined into a single analysis using GBLUP
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methods to improve understanding of G × E and also incorporate known

QTL effects. In addition, the study generated baseline information to account

for population structure in genomic prediction models in horticultural

crop improvement.

KEYWORDS

global genomic prediction, multivariate, G × E, mixed models, parsimony, factor-
analytic

Introduction

Genotype-by-environment interaction (G× E) is s common
phenomenon in plant breeding (Allard and Bradshaw, 1964).
Statistically, G × E may arise due to heterogeneity in variance
and/or genetic correlation of less than one across environments
(Baker, 1988; Burgueno et al., 2008). The consequence of
significant G × E is that elite-performing germplasm in some
environments is not necessarily elite in other environments.

Knowledge of G × E is important for designing breeding
programs and deploying cultivars (Comstock and Moll, 1963;
Cooper and Delacy, 1994; Harshman et al., 2016). If G × E is
small, selection strategies will aim to identify germplasm with
elite average performance (Hardner et al., 2019b; Kumar et al.,
2019). This strategy may also be used where significant G× E is
detected but no repeatable factor can be defined to classify and,
hence, manage germplasm deployment. In contrast, germplasm
may be targeted to specific environments if a repeatable factor
explains some, or all, of G × E (Allard and Bradshaw, 1964;
Cooper et al., 1996; Basford and Cooper, 1998).

Evaluation of G × E has commonly been undertaken using
multi-environment trials (METs) of the connected germplasm
(Malosetti et al., 2013). Advanced linear mixed model methods
have been applied to combine data from multiple trials
with different designs, repeated measures, and unbalanced
replication within and across trials (Smith et al., 2005; Hardner
et al., 2016, 2019a; Hardner, 2017). Accuracy of prediction
in specific environments is commonly improved where data
from multiple trials are combined (Hardner, 2017). Historically,
the simple univariate genotype’s main effect plus genotype-by-
environment interaction model is used to quantify G × E,
although this approach is limited as uniform genetic variance
and common pairwise correlation among all environments are
essentially assumed (Smith et al., 2005). Multivariate models
with specific genetic variance, and pairwise correlations, among
pairs of environments, may improve the modelling of G × E
(Smith et al., 2005; Malosetti et al., 2013). However, these models
become complex as the number of environments increases,
leading to over-parameterisation and difficulties in obtaining
unique solutions for the G × E covariance matrices (Kelly
et al., 2007). Solutions to these complex matrices can be
obtained using factor-analytic parameterisation to model the

major patterns in the covariance matrices with a reduced set of
parameter matrices (Smith et al., 2001; Thompson et al., 2003;
Kelly et al., 2007; Malosetti et al., 2013; Hardner, 2017).

While horticultural crops are planted around the world,
knowledge of patterns of G × E in these crops is generally
limited (Hardner et al., 2021). Where multi-environment trials
have been used, clonal replication is usually employed to
connect trials, but this can be expensive due to the large size of
the experimental unit and the cost of assessing these units over
several seasons (Peace et al., 2014; Hardner et al., 2021). Without
information on the patterns of G × E, many horticultural
tree breeding programs tend to have a local focus (e.g., Okie
et al., 2008; Iezzoni et al., 2020) due to a lack of confidence
in the performance in local target environments of germplasm
developed in exotic environments. Local testing may also lead to
little replication of the same germplasm among programs. Cost
constraints may also mean many programs rely on unadjusted
phenotypic observations of un-replicated germplasm to select
new parents or advanced elite selections (Okie et al., 2008).

Genomic Best Linear Unbiased Prediction (GBLUP),
which is a linear model that incorporates relationship
matrices estimated from genome-wide genotypic data (genomic
relationship matrices, GRMs), may offer a solution to exploring
G × E patterns and improving confidence in the relative
performance of exotic germplasm in local environments (Heslot
et al., 2013; Hardner et al., 2021; Sneller et al., 2021). Essentially,
genome-wide genotypic data enables the tracking of replicated
chromosome segments across individuals. Therefore, the GRM
models the overall genomic relatedness as well as the linkage
disequilibrium between genetic markers and trait loci in a
germplasm set (Habier et al., 2007). Commonly, additive genetic
effects are modelled (Habier et al., 2007; VanRaden, 2008; Hayes
et al., 2009b), but GRMs have been developed to model non-
additive variation (Su et al., 2012). As GBLUP is an extension
of standard linear mixed models, the flexibility of these mixed
models can be exploited (Zhang et al., 2007; VanRaden, 2008;
Heslot et al., 2012; Meuwissen et al., 2016).

Peach [Prunus persica (L.) Batsch] is the third-most
important temperate fruit crop globally in terms of production
and is consumed mainly as fresh fruit (Byrne et al., 2012;
NASS USDA, 2017; FAO, 2020). Currently, peach production
occurs in a wide range of adaptation zones, ranging from
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temperate high chill to subtropical and highland tropical low
chill environments (Byrne, 2005; Okie et al., 2008; Luedeling,
2012). Although peach breeding programs develop cultivars
for their specific adaptation zone, all new peach cultivars
require market-specific fruit quality traits to be successful (Okie
et al., 2008; Byrne et al., 2012; Cirilli et al., 2016). Peach
breeding is undertaken using traditional phenotypic selection,
but genotypic information is increasingly being incorporated
(Peace, 2017). Genomic resources for peaches are available
(Verde et al., 2012, 2013, 2017; Aranzana et al., 2019; Iezzoni
et al., 2020), as well as the significant quantitative trait loci
(QTLs) for many important quality traits that have been
developed into DNA tests and used for selection (Eduardo et al.,
2014; Sandefur et al., 2017; Vanderzande et al., 2018; Gasic and
Saski, 2019; da Silva Linge et al., 2021; Fleming et al., 2022).

Sweetness is an important attribute supporting consumer
demand for peach (Okie et al., 2008; Byrne et al., 2012; Delgado
et al., 2013) and is a common selection priority in peach
breeding (Byrne et al., 2012; Cirilli et al., 2016; Kelley et al.,
2016). Consumer preference for peach fruit depends on the
amount of total soluble sugars in ripe fruit (Crisosto et al.,
2006; Cirilli et al., 2016). Broad and narrow sense heritability
of sweetness measured as soluble solids content (SSC) in peach
is reportedly very low (0.01) to moderate (0.47), as is the
G × E (Byrne et al., 2012; Cirilli et al., 2016; Rawandoozi et al.,
2020; da Silva Linge et al., 2021). Large effect QTLs for SSC
and associated genetic markers in peach have been reported
(Dirlewanger et al., 1999; Eduardo et al., 2011; Fresnedo-
Ramirez et al., 2015; Hernandez Mora et al., 2017; Nunez-Lillo
et al., 2019; Rawandoozi et al., 2020) with a large-effect QTL on
chromosome 4 that is suggested to have a pleiotropic effect on
SSC and ripening date (RD) (Eduardo et al., 2011).

This study evaluated the hypotheses that, by using GBLUP
models, complex data from multiple breeding programs can be
connected to improve knowledge of G× E for breeding and new
cultivar deployment, and accounting for a known large-effect
QTL improves the prediction accuracy. Hence, the objectives
of this study were to (i) determine the magnitude of G × E
for peach fruit sweetness measured as SSC and (ii) determine
the improvement in prediction accuracy by accounting for the
large-effect sweetness QTL on chromosome 4. The unbalanced
dataset was from three US peach breeding programs with four
trial locations and 2–3 seasons each with 577 accessions in total
and 2–3 each with SNP array genotypic data for 4,473 SNPs.

Materials and methods

Plant material and phenotypic data

A total of 577 accessions (cultivars, breeding parents,
progeny) from three breeding programs—Texas A&M
University (TAMU) (Rawandoozi et al., 2021), University
of Arkansas (UARK) (Worthington and Clark, 2021), and

Clemson University (CLEM)—were evaluated for SSC (units:
◦Brix) for two or three seasons across four trial locations
established in several US states (TAMU: Fresno CA, and
College Station TX; UARK: Clarksville AR; CLEM: Seneca SC)
(Iezzoni et al., 2020; Supplementary Table 1). The preliminary
genotypic analysis identified four pairs of accessions with
identical SNP-array DNA profiles (three pairs from UARK and
one from CLEM), reducing the number of genetically unique
individuals to 573 (Table 1).

At Fresno (F), 137 individuals were assessed for SSC in
the 2011 and 2012 seasons, while 111 were assessed at College
Station (G) in 2012 and 2013, with 104 individuals in common
across these two TAMU trial locations (Table 1A). These
individuals were in nine biparental F1 peach/nectarine families
created from eight low to moderate chill nectarine/peach
parents, with family sizes of 8–87 individuals. For the Fresno
trial, SSC was assessed with a temperature-compensating
refractometer of a composite sample for each individual in a
season consisting of a macerated fruit pulp that was centrifuged
to collect the juice from five fruit. At College Station, a hand-
held refractometer was used to assess juice from individual fruit,
and the average of 3–5 five fruits was recorded. Preliminary
analysis identified that SSC data obtained from the composite
and individual fruit protocols were highly correlated; thus,
data were combined.

At Clarksville (K), 133 accessions (130 unique individuals)
were assessed for SSC in 2011, 2012, and 2013, while 302
individuals were assessed at Seneca (S) in the same seasons.
No individuals at Clarksville or Seneca were evaluated in any
other trial (Table 1A). Accessions at Clarksville consisted of
parents and seedlings from six F1 peach families of 10–44
individuals, while accessions from Seneca comprised parents
and seedlings of 12 F1 families of 6–22 individuals and three
F2 families of 22–66 individuals. The SSC assessment method
for Clarksville and Seneca followed the described (Frett et al.,
2012; da Silva Linge et al., 2021) protocols. Ten fruits from each
individual were harvested from the mid-canopy of each tree
when they are slightly firmer than the ripe tree and placed into
0.24-L corrugated trays (FormTex Plastics Corp., Houston, TX,
United States). A longitudinal slice was taken from each sample’s
five largest fruits and juiced through a hand presser. Two to four
drops of juice of the 5-fruit composite sample were measured
for SSC using a refractometer (3810 PAL-1 Digital Hand-Held
Pocket Refractometer, Atago Inc., Bellevue, WA, United States).

Genotypic data

An initial set of 4,499 curated SNP data were obtained using
the 9K peach SNP array (Verde et al., 2012) and published
methods of curation (Vanderzande et al., 2019; da Silva Linge
et al., 2021). The proportion of missing SNP genotypes per
individual was low (0.2–4.5%) as was the proportion of missing
genotypes per locus (0.4–2%). Twenty-six SNPs with a minor
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TABLE 1A Number of peach/nectarine individuals within and among ten trial-by-season environments assessed for SSC from three breeding
programs (Fresno and College Station: Texas A&M University (TAMU) population, Clarksville: University of Arkansas (UARK) population; and Seneca:
Clemson University (CLEM) population).

Trial Season
within trial

Fresno (F) College Station (G) Clarksville (K) Seneca (S) SSC (◦Brix)

2011 2012 2012 2013 2010 2011 2012 2010 2011 2012 Mean Variance

Fresno (F) 2011 (F1) 103 100 36 79 11.9 5.5

2012 (F2) 100 131 43 98 11.8 3.6

College Station (G) 2012 (G2) 36 42 49 45 12.3 3.3

2013 (G3) 79 94 45 107 12.8 6.8

Clarksville (K) 2010 (K0) 54 54 52 12.1 4.4

2011 (K1) 54 121 116 16.0 5.6

2012 (K2) 52 116 125 17.1 10.1

Seneca (S) 2010 (S0) 87 82 26 11.5 4.2

2011 (S1) 82 267 184 12.3 5.5

2012 (S2) 26 184 215 11.7 2.9

TABLE 1B Number of defined unique joint genotypes, across a 2-Mb interval encompassing a large-effect QTL for SSC on chromosome 4 of peach,
within and common across peach/nectarine germplasms evaluated at the four trials.

Trial Fresno (F) College Station (G) Clarksville (K) Seneca (S)

Fresno (F) 5 4 2 4

College Station (G) 4 2 4

Clarksville (K) 13 9

Seneca (S) 19

allele frequency lower than 0.05 were excluded. Genotypic
data for a total of 4,473 SNPs were retained for downstream
analysis (Supplementary Figure 1), representing an average
marker density of 60 kbp per SNP (given a genome size
of 265 mb, Yu et al., 2018). Missing alleles were imputed
with BEAGLE software version 4.1 (Browning and Browning,
2007; Supplementary methods) to produce a complete sample-
by-loci genotype table required by the downstream analyses.
Unique QTL joint genotypes present among the accessions
were defined for the eight SNPs within the 10,571,103–
12,512,099 bp interval on chromosome 4 (Supplementary
Figure 1), encompassing the region for the previously detected
SSC QTL (Eduardo et al., 2011; da Silva Linge et al., 2021;
Table 1B).

Genome-wide genotypic structure of
germplasm

Pairwise FST values among the populations from the three
breeding programs were estimated to evaluate diversity among
germplasm assessed across the three populations evaluated at
the four trials. Pearson’s correlation coefficients were estimated
to quantify the similarity of SNP allele frequencies for each
breeding population with minor allele frequencies estimated
across the three populations.

To evaluate the relationship between physical distance
and linkage disequilibrium (LD) for the populations, squared
correlation LD coefficients (R2) (Hill and Robertson, 1968) were
estimated among SNP locus pairs using PLINK software version
9.1 (Purcell et al., 2007) and plotted against physical distance.
A second-order, locally weighted scatterplot smoothing function
(LOESS) (Esteras et al., 2013) was fitted to describe the decay in
LD with physical distance.

Linear models for G × E

Prior to model fitting, phenotypes on the original scale of
assessment were scaled by trial-by-season phenotypic standard
deviations to reduce the influence of heterogeneity in variance
on the presence of G × E (Hill, 1984; Hardner, 2017). Total
genomic effects were assumed to be composed of additive and
dominance genomic effects with the estimated GRMs, according
to VanRaden (2008) and Su et al. (2012), respectively. Where
required, GRMs were made positive definite through bending
(Jorjani et al., 2003; Nazarian and Gezan, 2016) as implemented
in the R package ASRgenomics. An environment was defined
with respect to the genomic effect (i.e., additive, dominance,
or total) and was considered as a group of trial-by-seasons,
among which genomic effects were homogenous (i.e., uniform
genomic variance and genomic correlation of one). A full
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description of the GBLUP models used in this study is detailed
in Supplementary methods.

A structured data-modelling strategy was undertaken to
identify significant patterns and reduce the complexity of G× E
for SSC in peach. In general, a univariate genomic main
effect and genomic-by-environment interaction models were
initially fitted to test the significance (p < 0.01) of genomic-by-
environment interaction. A term for permanent environment
effects was also included. Following this, multivariate genomic-
by-environment models, where the expression of the phenotype
in a specific environment was considered a different trait
(following Falconer, 1952; Smith et al., 2001; Hardner et al.,
2010), were used to identify significant G × E patterns. Cluster
analysis (using Ward’s minimum distance) of the genomic-by-
environment covariance matrix from these multivariate models
was used to identify possible homogeneous environments (i.e.,
those that clustered together), and a reduced model (where these
environments were constrained to be the same) was fitted and
tested for a significant difference to the unconstrained model.

Restricted maximum likelihood (implemented in the R
package ASReml v4, Butler et al., 2017) was used to estimate
the random parameters of each model. Factor analytic
parameterisation (Smith et al., 2001; Thompson et al., 2003) was
used to estimate multi-dimensional genomic-by-environment
covariance matrices. The significance of fixed effects was tested
using the Wald tests (Kenward and Roger, 1997), and the
significance of random effects was tested using log-likelihood
testing, with appropriate adjustment for testing components at
the boundary of the inference space (Stram and Lee, 1994).
Akaike Information Criteria (Akaike, 1974) were also used to
evaluate parsimony.

Single-trial genome-wide univariate (STGWU) models were
fitted independently to data from each trial to test for significant
within-trial G × E. GRMs for these analyses were estimated
using only the genotypic data for the individuals at each specific
trial. For trials where significant genomic-by-environment
interaction was detected, single-trial genome-wide multivariate
(STGWM) models were fitted to identify significantly unique
genomic environments (i.e., combinations of seasons-within-
trials, among which phenotypic variances due to genome effects
were heterogenous and genomic correlations of these effects
were less than 1) and, thereby, the most parsimonious single-
trial models.

Multi-trial genome-wide univariate (MTGWU) models
were fitted to the multi-trail data by combining the most
parsimonious single-trial models to identify significantly unique
genomic environments among trials. GRMs for these multi-
trial models were estimated from the genome-wide genotypic
data from all individuals across all trials. Pearson’s correlation
was used to compare the off-diagonal elements of single
population GRMs with the same elements in the multi-trial
GRM. Where significant G × E was detected in the multi-
trial univariate models, multi-trial genome-wide multivariate

(MTGWM) models were fitted to identify significant across-trial
G× E patterns and parsimonious multi-trial G× E models.

To evaluate the importance of QTL effects and study
the interaction of QTL with the environment, genome-wide
(additive and dominance) effects were separated into QTL and
background effects. Separate GRMs were estimated for the QTL
and background genomic effects using only the loci associated
with each effect (i.e., the eight SNPs for the QTL GRM and
the remaining 4,465 SNPs for the background GRM). A multi-
trial QTL + background univariate (MTQBU) model was used
to test for the significance of (additive and dominance) QTL-
by-environment and background-by-environment interactions.
Multi-trial QTL + background multivariate (MTQBM) models
were then used to identify significant patterns in G × E and
identify parsimonious models.

Genomic architecture of soluble solids
content

To evaluate the architecture of genomic effects for
SSC, narrow- and broad-sense heritabilities were estimated
for each trial-by-genomic environment (Supplementary
methods). Phenotypic variation was estimated as the sum of
genomic, permanent environment residual variances for the
respective trial-by-environment. Genomic correlations among
environments were estimated from the respective genomic
variances and covariances. A cluster analysis using Ward’s
(1963) minimum variance criteria of the Euclidean distance
matrix transformation of the genomic effects correlation
matrix was undertaken to visualise the genomic correlation
among environments. A biplot (Kempton, 1984) of the
environments (loadings) and individuals (scores) for the first
two dimensions of the principal component reduction of the
standardised genomic (additive or total, i.e., sum of additive
and dominance effects) values-by-environment matrix was
undertaken to visualise the major G × E patterns. Following
principal component analysis (PCA), loadings were scaled by
their respective variance, and scores were scaled to range from
−1 to 1. The predicted performance of individuals in specific
environments was obtained by projecting the performance
of individuals onto the vectors for the environments for the
respective genomic effects. Pearson’s correlation was used to
compare the total-genome-effect predictions among models.

Prediction accuracy

Expected prediction accuracy was estimated for additive
and dominance genomic effects (genome-wide, QTL, and
background) to evaluate the quality of genomic prediction
models developed in this study. Three cohorts of individuals
were constructed for each unique trial-by-genomic environment
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combination to evaluate the effect of the availability of
phenotypic data on expected prediction accuracy. The first
cohort for a specific trial-by-genomic environment included
those individuals tested within trial-by-environment (TGE).
The second cohort included those within the same trial but
tested in a different genomic environment in that trial (Trial
tested). The third cohort included individuals tested in another
trial (Trial untested). Thus, expected prediction accuracy
for the qth genomic effect (additive/dominance by genome-
wide/QTL/background) and the zqth genomic environment at
the lth trial for the xth cohort (TGE, Trial tested, Trial untested)
was estimated as

rEq(l,zq,x) =

√
1−

σ̄2
i(q,l,zq,x))

vq(zq)

Realised prediction accuracies of additive and total genomic
effects were estimated using five-fold cross-validation as the
correlation between predicted genomic values in the validation
population with their adjusted phenotypes (prediction ability),
divided by the square-root of (narrow or broad-sense)
heritability (Legarra et al., 2008; Muranty et al., 2015) estimated
from the most parsimonious model. The realised prediction
accuracy was also estimated for each trial-by-environment.

Two strategies were used to sample for validation
populations. The first was a cross-trial sampling (XTCV), where
individuals were sampled across all four trials to construct the
validation population. This first strategy simulated performance
prediction for new accessions based only on their genome-wide
genotypic data. The second strategy was within-trial sampling
(WTCV), where individuals were sampled within each trial,
simulating performance prediction of accessions untested in a
specific trial using their trained performance in other trials.

For each fold, phenotypic observations for the validation
population were masked (i.e., set to missing) and the genomic
values of the validation population were predicted by fitting
the model of interest (including the full GRM containing all
individuals in both the reference and validation populations).
Adjusted phenotypes for the validation population were
estimated by undertaking a full cross-trial model excluding any
genomic terms (i.e., only trial, season, permanent environment
effect, and residual) and summing the predicted permanent
environment effect and the residual for each observational unit.

Results

Genome-wide genotypic structure of
germplasm

Twenty-four unique QTL joint genotypes were identified.
The majority (19) were identified in the germplasm assessed at
Seneca, and only four were identified in the TAMU population
evaluated at Fresno and College Station (Table 1B). Less genetic

differentiation was detected between the CLEM population and
the UARK population (FST = 0.075) than between the TAMU
population and either the CLEM (FST = 0.104) or UARK
(FST = 0.136) populations. There was a uniform distribution
of minor allele frequencies between 0.15 and 0.45 across
populations (Supplementary Figure 2). Allele frequencies,
estimated using only genotypic data for the CLEM population,
were highly correlated (0.85) with allele frequencies estimated
across the entire study population (i.e., TAMU, UARK, and
CLEM populations combined). The correlation of local allele
frequencies across individuals in the UARK population with
the entire population was lower (0.67) and lowest for the
TAMU population (0.59) (Supplementary Figure 3A). The
correlation between the off-diagonals of the population-specific
additive GRM with off-diagonals of the GRM estimated
using all individuals was higher for the CLEM population
(0.98) than the UARK (0.96) or TAMU (0.93) populations
(Supplementary Figure 3A).

The average intra-chromosomal LD across the entire
peach genome for the entire germplasm set was 0.38.
Considerable variability among chromosomes was detected
for LD (Supplementary Figure 4). LD decayed sharply with
physical distance for the entire population with an average LD of
0.41 at 60 kpb (average marker density) (Figure 1). The distance
among markers at 50% of maximum LD was 750 kpb across the
entire population.

G × E model fit

The main effect of season was significant for all trials
(p< 0.001). No significant effect of the genome-wide dominance
effects-by-season interaction on scaled SSC was detected for
any of the STGWU models (Supplementary Table 2). The
interaction between additive genome-wide effects and season
was not significant at Fresno or College Station. The significant
interaction between additive genome-wide effects and season
at the Clarksville trial was associated with the contrast
between the average of additive genomic effects across 2010
and 2011 (K01) against effects in 2012 (K2) (Supplementary
Tables 2, 3A,B). The most parsimonious single-trial of a
multivariate genome-wide model for accessions at Seneca
contained heterogeneous additive genome-wide variances
and unique pairwise additive genome-wide correlations for
each assessment year (i.e., S0, S1, and S2) (Supplementary
Tables 2, 3A,B).

A multi-trial univariate genome-wide model (MTGWU01)
was successfully fitted to the full data sets of scaled SSC.
Seven environments for additive genome-wide effects were
defined for this model, following the results from the
single-trial analyses (F, G, K01, K2, S0, S1, and S2).
However, no significant dominance genomic-by-environment
interaction was detected (MTGWU02, Supplementary Table 4).
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FIGURE 1

Decay trend of the linkage disequilibrium (LD) coefficient (R2) with a physical distance by the study population of peach/nectarine individuals
assessed for SSC (UARK, University of Arkansas population; TAMU, Texas A&M University population; CLEM, Clemson university population; ALL,
all populations combined). The vertical line is drawn at 30 kbp and the horizontal line at 0.42; the average LD across the entire set of
peach/nectarine.

A multi-trial genome-wide model with a first-order factor
analytic structure for the additive genome-wide environments
(MTGWM02) was not significantly different from a higher-
order model (MTGWM03) for the initial seven additive
genome-wide environments. However, there was no significant
difference between MTGWM02 and a model where the
Clarksville 2010 and 2011 (K01) with Seneca 2012 (S2) were in a
single environment (K01S2) (MTGWM07). No other reductions
in complexity were identified.

Additive genome-wide by environment and dominance
main genome-wide effects were successfully separated into
effects associated with the QTL and with the background
genome in a multi-trial univariate model (MTQBU01,
Supplementary Table 5). However, no significant dominance
QTL effects (MTQBU02 cf. MTQBU01), nor additive QTL-by-
environment interaction (models MTQBU02 cf. MTQBU04),
were detected. The fit of multi-trial multivariate models
that attempted to reduce the complexity of the additive
background genomic effect-by environment interaction
was significantly poorer than the fit of MTQBMB1, which
included six additive background genome environments
(F, G, K01S2, K2, S0, and S1). As no significant G × E
was detected for additive QTL and background dominance
genome effects, the six additive genome-wide environments

also defined the dimensions of the environments for total
genome-wide effects.

Genomic architecture of soluble solids
content

Individual narrow-sense heritability for SSC estimated from
the most parsimonious multi-trial QTL + background genome
multivariate model varied between 0.57 and 0.72 among
the seven trial-by-genomic environments (Fresno_F, College
Station_G, Clarksville_K01S2, Clarksville_K2, Seneca_S0,
Seneca_S1, and Seneca_K02S2) derived from the most
parsimonious model (MTQBM91) (Table 2). Estimates of
individual broad-sense heritability from the same model ranged
from 0.66 to 0.80.

Additive genomic effects were the largest source of genomic
variation (Table 2). The proportion of total genomic variance
explained by additive effects varied between 86 and 91%
for multi-trial QTL + background models and 76 and 90%
for the multi-trial genome-wide models. The proportion of
total genomic variance explained by additive genomic effects
was more variable for the single-trial models as near-zero
additive genomic variance was estimated for College Station
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TABLE 2 Estimated model parameters (vAW, additive whole-genome variance; vAQ, additive QTL variance; vAB, additive background-genome
variance; vDW, dominance whole-genome variance; vGW, total whole-genome variance; vU, within trial permanent among tree variance; vR, within
trial tree-by-season residual variance; vP, phenotypic variance; h2, narrow sense heritability; H2, broad sense heritability) for most parsimonious
single-trial genome-wide (STGW); multi-trial genome-wide (MTGW), or QTL + background (MTQB) multivariate models for SSC assessed on 577
peach/nectarine individuals across 10 trial-by-season environments.

Parameter Model Trial Fresno College Station Clarksville Seneca

GEnv F G K01S2 K2 S0 S1 K01S2

vAW STGW 0.728 0.000 0.762 0.891 0.530 0.428 0.236

MTGW 0.908 1.247 0.552 0.696 0.434 0.469 0.552

MTQB 1.082 1.245 0.740 0.746 0.768 0.714 0.740

vAB MTQB 0.818 0.981 0.476 0.482 0.504 0.449 0.476

vAQ MTQB 0.264 0.264 0.264 0.264 0.264 0.264 0.264

vDW STGW 0.194 0.706 0.000 0.000 0.000 0.000 0.000

MTGW 0.134 0.134 0.134 0.134 0.134 0.134 0.134

MTQB 0.118 0.118 0.118 0.118 0.118 0.118 0.118

vGW STGW 0.922 0.706 0.762 0.891 0.530 0.428 0.236

MTGW 1.042 1.381 0.686 0.830 0.568 0.603 0.686

MTQB 1.200 1.363 0.858 0.864 0.886 0.832 0.858

vU STGW 0.144 0.175 0.000 0.000 0.046 0.046 0.046

MTGW 0.054 0.000 0.000 0.000 0.039 0.039 0.039

MTQB 0.010 0.211 0.000 0.000 0.053 0.053 0.053

vR STGW 0.282 0.282 0.429 0.429 0.237 0.237 0.237

MTGW 0.282 0.334 0.413 0.413 0.227 0.227 0.227

MTQB 0.283 0.330 0.433 0.433 0.172 0.172 0.172

vP STGW 1.348 1.163 1.191 1.320 0.813 0.711 0.519

MTGW 1.378 1.715 1.099 1.243 0.834 0.869 0.952

MTQB 1.493 1.904 1.291 1.297 1.111 1.057 1.083

h2 STGW 0.54 0.00 0.64 0.68 0.65 0.60 0.45

MTGW 0.66 0.73 0.50 0.56 0.52 0.54 0.58

MTQB 0.72 0.65 0.57 0.58 0.69 0.68 0.68

H2 STGW 0.68 0.61 0.64 0.68 0.65 0.60 0.45

MTGW 0.76 0.81 0.62 0.67 0.68 0.69 0.72

MTQB 0.80 0.72 0.66 0.67 0.80 0.79 0.79

Genomic environments (GEnv, where letters refer to trials and numbers refer to seasons) are defined as groupings of trial-by-seasons such that genomic variance is homogeneous, and
genomic correlations are 1 within environments.

TABLE 3 Correlation among additive and total genomic effects predicted from single-trial G × E (Fresno, College Station, Clarksville, and Seneca)
and multi-trial genome-wide (MTGW) and QTL + background (MTQB) multivariate models for SSC across four peach/nectarine breeding trials.

Model Source Additive Total

Model MTGW MTQB MTGW MTQB

Fresno 0.94 0.94 0.96 0.96

College Station 0.75 0.77 0.93 0.94

Clarksville 0.97 0.93 0.98 0.97

Seneca 0.96 0.86 0.99 0.95

MTGW 0.79 0.87

and near-zero dominance variances were estimated for the
Clarksville and Seneca trials. Additive QTL effects were
estimated to account for between 21 and 37% of the additive
genomic variance, 19–32% of total genomic variation, and 14–
25% of phenotypic variation.

Correlations among total genomic effects predicted
from single-trial and multi-trial, and genome-wide and QTL
+ background, multivariate models were higher (>0.87)
than correlations among additive genomic effects (Table 3).
Reflecting the relatively high correlation in total genomic effects
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FIGURE 2

Cluster dendrogram of total genomic correlation matrix across
genomic environments (F = Fresno 2011 and 2012, G = College
Station 2012 and 2013, K01S2 = Clarksville 2010 and 2011 and
Seneca 2012, S0 = Seneca 2010, S1 = Seneca 2011) estimated
from the most parsimonious multivariate QTL + background
genome model (MTQBM01, Supplementary Table 5) for SSC
assessed across four peach/nectarine breeding trials. Genomic
environments are defined as groupings of trial-by-seasons such
that genomic variance is homogeneous, and genomic
correlations are 1 within environments.

predicted from the alternative multivariate models (0.87),
there was little difference in the correlation of total genomic
effects predicted from single-trial and multivariate models. On
the other hand, correlations among additive genomic effects
predicted from the single-trial or multi-trial models were more
heterogeneous than for total genomic effects.

There was a strong pattern in genomic correlations
among environments across the various multi-trail G × E
models for additive and total genomic effects (Figures 2, 3,
Supplementary Table 6, and Supplementary Figures 5A–
E); with a main group of environments defined by a large
group of environments including all seasons at Fresno, College
Station, and Clarksville, and the 2012 season at Seneca, and
a looser grouping of genomic effects at Seneca in 2010 and
2011. Total genomic correlations for the most parsimonious
QTL + background genomic effects model ranged from
0.66 to 1 within the main group, was 0.54 between 2010
and 2011 at Seneca and ranged between 0.06 and 0.33
among environments in across the two groups (Supplementary
Table 6). These patterns were reflected in additive and total
genomic correlations estimated with multi-trial genome-wide
or QTL + background models (Supplementary Table 6).
In general, genomic correlations were lower for additive
genome-wide or background genome effects compared to total
genomic effects.

The biplot (of standardised environmental loadings and
scaled individual scores for the first two principal components

of the decomposition of the total genomic-by-environment
predicted effects for SSC from the most parsimonious QTL
+ background model) displayed the differential adaptation
of individuals to genomic environments (Figure 3). Elite-
performing individuals in each environment could be detected
among all three breeding populations. For example, the two
individuals with the highest predicted total genomic effect
for SSC in the main group of environments (all seasons at
Fresno, College Station, and Clarksville, and the 2012 season
at Seneca) were from CLEM, while the third highest effect
was from UARK and two individuals from TAMU had the
eight and ninth highest values for this group of environments.
Similarly, the 10 individuals with the highest predicted total
genomic effect in the two Seneca environments originated from
all three breeding programs. An accession from UARK was
predicted to have high SSC in all environments except 2010
at Seneca.

Prediction accuracy

The average expected prediction accuracy of additive
genomic effects was higher than for dominance genomic effects
(Table 4). In addition, the expected prediction accuracy of the
cohort of genotypes tested at the respective trial-by-genomic
environment (TGE cohort) was higher than for the cohort
of individuals not tested at this trial-by-genomic environment
(Trial tested and Trial untested cohorts) for all trial-by-
genomic environments.

Prediction accuracy from single-trial models for the cohort
of individuals not tested at the respective trial could not be
estimated. In addition, the accuracy of additive effects predicted
with the single-trial model at College Station could not be
estimated as the estimate of additive genomic variance in this
model was near zero (Tables 2, 4). A similar situation occurred
for dominance effects at Clarksville and Seneca.

There was little difference in the accuracy of predicted
additive genome-wide or additive background genomic effects
between multi-trial genome-wide and multi-trial QTL +
background genome multivariate models (Table 4). There was
also little difference in the expected accuracy of genome-wide
dominance effects for either model. However, the expected
prediction accuracy of QTL effects was consistently very high
for all cohorts in all trial-by-genomic environments.

The difference between the expected accuracy of additive
effects predicted from single-trial or multi-trial models was
inconsistent among trial-by-genomic environments and cohorts
(Table 4). For example, the prediction accuracy of additive
genome-wide effects for the cohort of individuals tested within
the respective trial-by-genomic environment (TGE,Table 4) was
similar for single-trial and multi-trial models, except for the
Clarksville trial where expected prediction accuracy was lower
for the multi-trial models.
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FIGURE 3

A biplot of the predicted total genomic effect for SSC of peach/nectarine individuals by genomic environment (defined in Figure 2) from the
most parsimonious QTL + background genome model (MTQBM01).

Greater differences were detected in the realised prediction
accuracy among environments than among sampling methods
or prediction models (Table 5). Prediction accuracy tended
to be highest at Seneca, lowest at Clarksville, moderate for
Fresno, and variable for College Station. The realised prediction
accuracy was slightly higher for within-trial sampling compared
to cross-trial sampling, particularly for the multi-trial models,
but this was not consistent across models and trial-by-genomic
environments. Prediction accuracy of additive effects ranged
from 0.17 to 0.63 for single trial models and 0.25 to 0.70
for multi-trial models. The realised prediction accuracy of
additive genomic effects was of similar magnitude to that
for total genomic effects, except at Clarksville for single-trial
models and the S1 and K01S2 genomic environments in the
Seneca trial, particularly for single-trial models. Estimates of the
realised prediction accuracy of additive genomic effects were
higher for QTL + background models compared to single-trial
models for most trial-by-genomic environments, except for the
K02S1 environment at the Clarksville trial where prediction
accuracy appeared lower. Differences in the realised prediction
accuracy of additive effects between single-trial and multi-trial

genome-wide models, and among all models for total genomic
effects, were less consistent.

Discussion

Modelling strategy

This study extended and implemented multivariate GBLUP
linear mixed models initially developed in cherry (Hardner
et al., 2019b) to combine complex phenotypic data for SSC in
peach assessed across multiple trials, with limited records of
genetic connectedness among trials and unbalanced repeated
assessment across seasons, and include dominance effects.
Additive and dominance GRMs were successfully employed
to connect multi-trial data, even though individuals were
not replicated across trials, as the GRMs effectively tracked
replicated genome segments across individuals. The linear
mixed model framework employed here optimised the use
of available data from unbalanced designs by weighting each
observation by its correlation with each factor in the model
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TABLE 4 Expected peach/nectarine SSC prediction accuracy (rE) of additive (A) and dominance (D) genomic effects for most parsimonious
single-trial genome-wide (STGW), multi-trial genome-wide (MTGW), and multi-trial QTL + background genome (MTQB) multivariate models, and
the number of individuals (n), by genomic environment (GEnv, for details, see Figure 2), within the trial for three test cohorts (TGE tested,
individuals tested in the corresponding genomic environment within a trial; Trial tested, individuals tested in a different genomic environment at
the corresponding trial; Trial untested, individuals not tested in the corresponding trial).

Parameter Testcohort Source Model Trial Fresno College Station Clarksville Seneca

GEnv F G K01S2 K2 S0 S1 S2

rE TGE AW STGW 0.87 – 0.91 0.90 0.71 0.76 0.78

AW MTGW 0.85 0.86 0.80 0.79 0.74 0.80 0.82

AB MTQB 0.84 0.84 0.78 0.75 0.78 0.82 0.83

AQ MTQB 0.97 0.97 0.96 0.96 0.97 0.86 0.97

DW STGW 0.49 0.81 – – – – 0.70

DW MTGW 0.44 0.44 0.55 0.56 0.64 0.61 0.59

DW MTQB 0.45 0.45 0.55 0.56 0.65 0.62 0.61

Trial AW STGW na na 0.82 0.81 0.51 0.60 0.55

AW MTGW na na 0.69 0.64 0.52 0.62 0.58

AB MTQB na na 0.66 0.59 0.56 0.63 0.59

AQ MTQB na na 0.97 0.94 0.96 0.97 0.97

DW STGW na na – – – – –

DW MTGW na na 0.56 0.56 0.59 0.57 0.64

DW MTQB na na 0.57 0.56 0.60 0.57 0.64

Untested AW STGW na na na na na na na

AW MTGW 0.57 0.68 0.74 0.70 0.49 0.57 0.75

AB MTQB 0.56 0.67 0.75 0.68 0.54 0.59 0.73

AQ MTQB 0.97 0.97 0.97 0.97 0.97 0.97 0.97

DW STGW na na na na na na na

DW MTGW 0.59 0.58 0.56 0.56 0.50 0.49 0.50

DW MTQB 0.60 0.59 0.57 0.57 0.50 0.50 0.50

n TGE 134 111 121 125 87 267 215

Trial 0 0 9 5 125 35 87

Untested 439 462 443 443 271 271 271

(Henderson, 1963). Simpler models are expected to result in
less optimal use of data (Hardner, 2017). Similar to our study,
Biscarini et al. (2017) fitted within family repeated measures
GBLUP models for peach fruit quality to accommodate non-
genomic covariance of observations on the same tree, however,
those models are not as general as the multi-family approach
presented here.

This study has extended the structured approach for
identifying significant parsimonious G × E models developed
using pedigree relationship matrices (Hardner, 2017) to
incorporate genomic relationship matrices. This approach
contrasts with that used in other genomic prediction studies
examining relative performance across multiple locations that
assumed only a main genomic effect across locations (e.g.,
Hernandez Mora et al., 2017; da Silva Linge et al., 2021).
Scaling observations by the phenotypic variance of each trial-
by-season undertaken here to reduce the influence of variance
heterogeneity in peach SSC on G× E (sensu Hill, 1984; Hardner,
2017) was not entirely successful as some unconstrained models

were a significantly better fit to the data compared to those
where highly correlated environments were constrained to be
the same. A factor-analytic parameterisation (Smith et al., 2001;
Thompson et al., 2003) was successfully implemented in this
study to obtain estimates of model parameters for complex
genomic-by-environment covariance matrices. The structured
approach adopted in this study was preferable to an exhaustive
naïve model of background genomic and QTL effects for both
additive and dominance genomic effects for each of the 10
trial-by-season combinations, as the exhaustive model would be
challenging to solve and interpret.

This study also implemented models to decompose
anonymous genome-wide variation into the effect of a
previously identified functional QTL and anonymous
background genome variation. The higher than expected,
and to some degree realised, prediction accuracy estimated here
for the QTL + background model compared to a genome-wide
anonymous model agrees with other studies (Bernardo, 2014;
Bhandari et al., 2019). The inclusion of background effects was
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70 expected to have reduced confounding of the QTL effect with

correlated unlinked SNPs (Lander and Schork, 1994; Yu et al.,
2006; Bink et al., 2014). In addition, by treating the QTL region
as random in this study—in contrast to treating it as a fixed
effect (e.g., Bernardo, 2014)—over-estimation of QTL effects
(e.g., Beavis, 1998) and bias due to dataset unbalance were
expected to have been reduced. The successful implementation
of a local genomic relationship matrix for the QTL region
enabled information from related QTLs to be leveraged to
improve accuracy and prediction of the effect of QTL genotypes
in environments in which they were untested and therefore
into other new environments in the future. Alternatively, QTL
regions could have been modelled as haplotypes (Hernandez
Mora et al., 2017) and a relationship matrix among the
haplotypes incorporated. While the models used here assumed
a Gaussian distribution of gene effects so that the flexibility
of GBLUP models could be exploited, other models that
incorporate a mixture of QTL allelic effect distributions were
possible (Meuwissen et al., 2001; Erbe et al., 2012; Bink et al.,
2014) but multivariate implementation has been challenging
(e.g., Kemper et al., 2018).

Discussion of study results

Estimates of narrow- and broad-sense heritability of
sweetness (measured as SSC) reported here (0.6–0.7 and 0.7–
0.8, respectively) were considerably higher than those reported
in some previous studies (e.g., 0.02–0.33 in Brooks et al., 1993)
but comparable to others (0.49—averaged over within family
heritability estimates, Biscarini et al., 2017; 0.49, Hernandez
Mora et al., 2017; 0.73—using essentially the same populations
are these used in this study, da Silva Linge et al., 2021).
Heritabilities reported in Rawandoozi et al. (2021) were not
comparable here because of differences in approaches for
estimating this parameter. The high heritability estimated in our
study may be due to the large genetic diversity among parents.
As expected (Su et al., 2012), estimates of dominance (and
hence estimates of broad-sense heritability) in this study were
less precise than estimates of additive genomic variance (and
narrow-sense heritability). The higher heritability of the QTL
+ background model demonstrated the benefit of modelling
the underlying genetic architecture of the trait (Meuwissen
et al., 2001). Nevertheless, the genomic models employed
here may not necessarily explain all variations (Yang et al.,
2010). In addition, our results confirmed that the multi-trial
estimates of heritability are less variable than the estimates from
individual trial data.

While 50–70% of the total genomic variation of SSC in
this study was due to the interaction of background genomic
effects with the environment, the cluster and biplot results
suggested genomic effects were stable across most environments
sampled (Fresno, College Station, Clarksville, and 2012 season
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at Seneca—representing low- to high-chill environments) and
that the major source of interaction was due to factors specific
to the 2010 and 2011 seasons at the Seneca trial. In agreement
with these results, Cantin et al. (2009) also reported that G × E
for peach SSC was not significant. While moderate G× E in SSC
between the Fresno and College Station environments using the
same phenotypic data as this study was reported (Rawandoozi
et al., 2021), the genetic models were not comparable. Other
multi-trial studies (Biscarini et al., 2017; Hernandez Mora et al.,
2017; da Silva Linge et al., 2021) did not directly model G × E.
Further research is required to determine the cause of the
differential performance of individuals at Seneca in 2010 and
2011. Our results also suggested that QTL and genome-wide
dominance effects are expected to be stable across environments
similar to those in this study, although the reduced precision in
estimating dominance variance (discussed above) may also be a
reason for this result.

This study confirmed the significant effect of a QTL on
chromosome 4 for SSC in peach. Here, 20–30% of the total
genomic variation was explained by the additive effect of the
QTL, but significant dominance effects were not detected.
Similarly, Eduardo et al. (2011) reported that this region
explained 25% of the phenotypic variation in SSC in a single
peach family, although only a minor (but significant) effect of
this region was reported in other studies (Hernandez Mora et al.,
2017; Rawandoozi et al., 2020) or was not detected (Fresnedo-
Ramirez et al., 2015; Nunez-Lillo et al., 2019). No significant
QTL× E interaction effects were detected, despite this QTL not
being the most significant QTL in another study (Rawandoozi
et al., 2020) using only the Fresno and College Station data.
The absence of a significant QTL × E interaction here may
be due to the limited segregation for this QTL in the TAMU
population. Nevertheless, as the QTL was treated as random
and the QTL segregated in correlated populations, the effect of
all QTL genotypes was predicted for all environments, even for
those in which they were untested.

The range of the realised prediction accuracy achieved in
this study under the most parsimonious multi-trial QTL +
background genome models (0.36–0.68) is considered (Hickey
et al., 2014) relatively low. Biscarini et al. (2017) reported
the realised prediction ability of 0.65–0.78 for peach SSC
from fitting GBLUP models within individual full-sib families.
This may be a consequence of trait architecture, prediction
model, population size and structure, marker density, and
validation strategy, as reviewed in other studies (reviewed
Isidro et al., 2015; Crossa et al., 2017; Lebedev et al., 2020).
However, higher marker density for these peach populations
may not greatly increase prediction accuracy. This is because
the LD of 0.41 at 60 kpb (average marker density) reported
here is greater than an LD of 0.15 among adjacent markers
suggested by Calus and Veerkamp (2007) as the minimum to
capture all genetic variation in their study. Prediction accuracy
in here may have been underestimated as the heritability

estimates, used to adjust the correlation of the predicted
genomic and phenotypic values, might be upwardly biased (as
discussed above).

The difference between expected and realised prediction
accuracies reported here indicated that these parameters
assessed different characteristics of the genomic prediction
models. The relatively high (0.75–0.97) expected prediction
accuracy estimated in this study for additive, dominance, and
QTL effects for individuals in the environments in which
they were tested suggested that genetic effects are well-
predicted, given the assumed genetic model is true. This
assumption is similar to that made for the estimation of
expected prediction accuracy in pedigree-based models which
are based on laws of inheritance (Mrode, 2005). In contrast,
the lower realised prediction accuracies reported in this study
suggested that the assumption of a common GBLUP model
of QTL and background effects across populations may not
be the best model for prediction of untested individuals
based only on genome-wide genotypic data. Similar to our
results, Hayes et al. (2009a) reported expected prediction
accuracy is lower than realised prediction accuracy for
GBLUP models trained with multi-breed animal data. However,
Hayes et al. (2009a) reported no difference between the
two measures of prediction accuracy for models trained and
applied within the same breed of animal in contrast to
our results where differences were apparent even for single-
trial models.

The higher expected, and in some cases realised, prediction
accuracy, observed in this study demonstrated the value of using
multi-trial models compared to single-trial models. Predictions
from single-trial models only included those individuals tested
at a particular trial; hence, the expected accuracy would be
zero for untested individuals not included in the single-trial
genomic relationship. In contrast, multi-trial models such as
that developed here support the prediction of all individuals
in all environments through genomic correlations among trials
(Burgueno et al., 2012). The benefit of leveraging data from
individuals in correlated trials was demonstrated by the higher
expected prediction accuracy for individuals tested within a
particular environment compared to predictions for individuals
not tested in that environment. The higher realised prediction
accuracy at Fresno and College Station (where individuals
were replicated across trials) for multi-trial models compared
to single-trial models for within-trial sampling for cross-
validation (where individuals were replicated across trials)
further demonstrates the benefit of correlated performance data.
However, in agreement with previous studies (Burgueno et al.,
2012; Krause et al., 2020), there was little enhancement in the
realised prediction accuracy from multi-trial models where no
phenotypic data were available (i.e., cross-trial sampling for the
validation population).

This study highlighted the influence of population structure
on estimates of the realised prediction accuracy. The major
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drivers of genomic prediction are short-range ancestral LD,
co-segregation of linkage blocks within families, and general
genome relationships, particularly among parents (Habier et al.,
2013; Hickey et al., 2014). This study found evidence for
divergent genetic structure among the breeding populations
(FST values > 0.1, differences in LD among populations, and
reduced correlation of within-population allele frequencies with
overall allele frequencies). This structure was expected as the
TAMU germplasm is focused on low-chill production while
the focus of UARK and CLEM germplasm is on high-chill
environments (Okie et al., 2008). In addition, the CLEM
population was an admixture of alleles found in either the
TAMU or UARK populations (da Silva Linge et al., 2021).
However, estimates of th realised prediction accuracy in this
study are unlikely to be upwardly biased by spurious correlations
between unlinked markers and QTLs induced by historical
selection history (sensu Yu et al., 2006; Toosi et al., 2010; Guo
et al., 2014) as the breeding population was confounded with
trial, and prediction accuracy was estimated for each trial-by-
genomic environment. However, studies (Windhausen et al.,
2012; Hickey et al., 2014; Werner et al., 2020) demonstrated that
the realised prediction accuracy is driven by parental genetic
values for training populations with strong family structures,
such as in this and other horticultural tree crop studies (Kumar
et al., 2012; O’Connor et al., 2021). While not undertaken here,
training models within families (e.g., Biscarini et al., 2017)
might avoid bias arising from strong family structure (Hickey
et al., 2014; Werner et al., 2020), but such training might be
expensive with little utility due to poor prediction accuracy in
unrelated families (Riedelsheimer et al., 2013; Schopp et al.,
2017). Training in a diverse unstructured population with high-
density markers (e.g., Lorenz and Smith, 2015; Roth et al., 2020)
is likely to better capture short-range ancestral LD between
markers and functional QTLs.

The lack of consistent improvement in the realised
prediction accuracy between single-trial and multi-trial models
observed here might be explained by confounding testing
location with population structure. The GRM for the single-
trial models was estimated using only the local-germplasm
genotypic data in contrast to the multi-trial GRM. However,
allele frequencies differed between the single and combined
populations. Thus, the single-trial models might have more
accurately reflected the correlation between genomic effects of
an individual and its phenotype compared to the multi-trial
GRMs. In addition, the linkage phase between the marker and
large-effect QTL alleles might be opposite across populations,
hence reducing the correlation between marker and phenotype
across a structured population. In contrast to our study, it
is expected that the realised prediction accuracy would be
improved if there was less differentiation among trials such
as if some individual are replicated across trials (e.g., Hardner
et al., 2019b). Prediction accuracy might also be improved
if prediction models that explicitly account for population

structure (Janss et al., 2012; Guo et al., 2014; Wientjes et al.,
2017) are employed.

Implications of study results

This study confirmed the hypothesis that the GBLUP models
can be used to combine phenotypic data from multiple trials
to support the genetic improvement of horticultural tree crops.
In general, genomic models used in this study identified and
dissected significant patterns in G × E for the deployment of
elite germplasm, predicted additive and total genomic values
for the selection of elite germplasm, and predicted genomic
performance of untested germplasm in new environments.
However, this study also identified population structure as a
challenge for the use of genomic prediction models to combine
data from different breeding programs.

Assuming the trials included in this study were
representative of local production environments, the high
genomic correlation of additive QTL background and
dominance genomic effects among most environments
observed here suggests attention to genotype-environmental
matching for this trait is not required. However, other traits
might influence the genomic expression of SSC in particular
environments. For example, germplasm adapted to fruit
production in high-chill environments similar to Clarksville,
Fresno, and Seneca might not produce any fruit in low-chill
environments, such as College Station, although introgression,
particularly guided by genomic prediction, could support
the development of locally adapted germplasm from exotic
germplasm elite for particular traits (e.g., Kumar et al., 2020).
A clearer understanding of the factors causing the poor
genomic correlation of performance in 2010 and 2011 at Seneca
with the other environments would improve confidence in
deployment strategies.

The predictions of additive and total genomic values for
individuals tested in this study could be used to select elite
parents to produce new breeding populations (e.g., Kumar
et al., 2020) and to select candidate cultivars for advanced
testing and possible deployment in commercial orchards. The
trials included in this study were similar to many others in
horticultural tree crop improvement where only the phenotype
of a single replicate of an individual is available to infer its
genetic value. Given that heritability is the square of prediction
accuracy, the expected prediction accuracy of individuals tested
in a particular environment (TGE cohort in Table 4) is higher
than the accuracy of the phenotypic section (estimated as the
square root of heritability from the QTL + background model
following Falconer, 1989). However, the advantage of genomic
predictions over own phenotype is expected to be greater for
traits with lower heritability compared to high-heritability traits
such as SSC as information from genomic correlated individuals
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can be used to improve the performance of un-replicated
individuals (Burgueno et al., 2012).

The relatively low estimates of the realised prediction
accuracies for SSC in peach reported here suggested that the
response to genomic selection for this trait may not be large
(Hickey et al., 2014). However, these estimates may be low
due to inflated individual heritability estimates. In addition,
due to the family structure, our estimates of the realised
prediction accuracy may more reflect the accuracy of predicting
the breeding value of the parents used in this study rather
than for genomic selection of individuals within families (sensu
Hickey et al., 2014). On the contrary, our results, and those of
others (Burgueno et al., 2012), suggest that genomic prediction
would reduce experimental costs through unbalanced testing of
individuals across environments (Krause et al., 2020) because
prediction accuracy is higher for individuals tested in exotic
environments but untested locally compared to individuals
without any performance data.

Similar to the approaches undertaken here, Hardner et al.
(2021) and others (Heslot et al., 2012; Hickey et al., 2014; Sneller
et al., 2021) proposed using GBLUP models to connect data
from breeding programs on a global scale to leverage additional
value (i.e., improved prediction accuracy and increased selection
intensity) from multiple available datasets. While our results
confirm that there are benefits to improved understanding of
patterns in G × E, prediction of untested germplasm into
new environments, and increased prediction accuracy, the
population structure needs to be better accounted to optimise
this approach. This accounting could be through the use
of less-structured germplasm that is more genetically related
across testing locations and with denser genotyping than in
the present study and/or statistical methods that account for
population structure.
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