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Cotton is an important source of fiber. The precise and intelligentmanagement

of cotton fields is the top priority of cotton production. Many intelligent

management methods of cotton fields are inseparable from cotton boll

localization, such as automated cotton picking, sustainable boll pest control,

boll maturity analysis, and yield estimation. At present, object detection

methods are widely used for crop localization. However, object detection

methods require relatively expensive bounding box annotations for supervised

learning, and some non-object regions are inevitably included in the annotated

bounding boxes. The features of these non-object regions may cause

misjudgment by the network model. Unlike bounding box annotations, point

annotations are less expensive to label and the annotated points are only likely

to belong to the object. Considering these advantages of point annotation,

a point annotation-based multi-scale cotton boll localization method is

proposed, called MCBLNet. It is mainly composed of scene encoding

for feature extraction, location decoding for localization prediction and

localization map fusion for multi-scale information association. To evaluate

the robustness and accuracy of MCBLNet, we conduct experiments on our

constructed cotton boll localization (CBL) dataset (300 in-field cotton boll

images). Experimental results demonstrate that MCBLNet method improves by

49.4% average precision on CBL dataset compared with typically point-based

localization state-of-the-arts. Additionally, MCBLNet method outperforms or

at least comparable with common object detection methods.

KEYWORDS

deep learning, point annotation, multi-scale, cotton boll, localization

1. Introduction

Cotton is a kind of important economic crops in China, as well as important source

of fiber and feed. With the increasing demand for sustainable development in modern

agriculture (Dubey et al., 2021), cotton production has changed from high yield at

any cost to high quality at low cost with better ecological sustainability. Throughout

the growth cycle of cotton, cotton bolls are susceptible to pests and diseases such as

bollworm and boll rot diseases. In recent years, large-scale fertilization and pesticide
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spraying are highly required to reduce the impact of pests

and diseases on the yield and quality of cotton (Hafeez et al.,

2022). A typical example is that cotton bolls are susceptible

to verticillium wilt, resulting in premature senescence. Usually

spraying a large amount of fungicides on the foliage can

prevent the occurrence of Verticillium wilt (Lang et al., 2012).

However, this strategy not only requires a mass of labor and

material costs, but easily damages the ecological environment

of cotton fields (Chi et al., 2021). To save costs and achieve

sustainable planting, fixed-point quantitative fertilization and

precise pesticide application can be used for misuse and overuse

of chemical fertilizer and pesticide. The automatic cotton boll

localization method is a key step to realize the precise and

intelligent management of cotton fields. In addition, agricultural

automation methods such as automatic cotton picking, cotton

boll maturity analysis, and yield estimation are also inseparable

from cotton boll localization. Therefore, it is necessary to

develop a simple, effective and low-cost method for automatic

localization of cotton bolls with computer vision technology,

which also contributes to the realization of cost saving, quality

improvement and sustainable intelligent planting.

The development of computer vision technology has

promoted the agricultural automation level. At present, some

researchers have studied the usage of image segmentation or

object detection methods to automatically identify crop such as

apples (Si et al., 2015), tea leaves (Chen and Chen, 2020), grapes

(Luo et al., 2016) and cotton (Bhattacharya et al., 2013; Kumar

et al., 2016; Singh et al., 2021). These methods usually require

bounding box annotations or even pixel-level annotations for

supervised learning. Bounding box annotation not only requires

high annotation cost, but also inevitably contains some non-

target regions, which may allow the model to learn some non-

target features and cause misjudgment. Unlike bounding box

annotation, point annotation has a relatively low labeling cost

and the labeled points must belong to the object. Therefore, it

seems possible to explore a simple and robustmethod for in-field

crop localization based on point annotations.

Considering the advantage that point annotation will

provide target location information simply and efficiently, a

multi-scale cotton boll localization method is proposed based

on point annotation and encoder-decoder network structure,

named MCBLNet. It is mainly composed of scene encoding

for feature extraction and generation of features at different

scales, location decoding for location prediction and generation

of multi-scale localization maps, and localization map fusion for

multi-scale information association. Experiments are conducted

to verify the effectiveness of MCBLNet and report relatively

accurate localization performance. In general, the proposed

MCBLNet method aims to locate cotton boll in real scenes

simply and efficiently, and provides a theoretical basis for the

realization of sustainable intelligent planting.

2. Related work

At present, crop localization methods based on deep

learning technology are usually implemented by object detection

or segmentation (Agrawal et al., 2016; Su et al., 2021; Franchetti

and Pirri, 2022). Among them, the object detection method

can be divided into one-stage and two-stage. Typical one-stage

object detection methods include SSD (Liu et al., 2016) and

YOLO series (Redmon et al., 2016; Redmon and Farhadi, 2017,

2018). Shi et al. (2020) designs channel and spatial masks based

on the YOLOv3-tiny network to detect convolution kernels in

the network that are closely related to specific target outputs,

resulting in more efficient mango detection. Jintasuttisak et al.

(2022) used the YOLOv5-m network to detect crowded date

palms in UAV images. A series of networks from RCNN

(Girshick et al., 2014) to Faster RCNN (Ren et al., 2017) are

typical two-stage methods in object detection. Li et al. (2021)

adopted a high-resolution network as the backbone to improve

Faster RCNN to detect dense hydroponic lettuce seedlings. Mask

RCNN (He et al., 2017) is an image segmentation method in

the RCNN series of networks. Wang and He (2022) integrated

the attention module into the Mask RCNN model, which

enhanced the feature extraction ability of the model, thereby

segmenting apples of different maturity levels. Although both

object detection methods and image segmentation methods

can localize crops with little scale variation and high color

distinguishability, they require high labeling costs as a basis.

Furthermore, both of them may have difficulty effectively

detecting small objects in dense images due to the loss of spatial

and detailed feature information (Wang et al., 2022). In addition,

since objects in highly dense images may overlap each other, the

prediction boxes of object detection methods also overlap each

other. This will lead to unfriendly visualization results.

Some researchers localize dense objects based on point

annotations. Song et al. (2021) proposed the P2PNet network

to directly predict a set of points and perform one-to-one

matching for dense object localization. Zand et al. (2022)

proposed a multi-task dense object localization method based

on VGG network. Although these methods can localize dense

objects only with point annotations, they are difficult to localize

various crops effectively due to their limited feature extraction

ability, field crop scale changes, and natural plant growth

changes. In addition, Ronneberger et al. (2015) proposed a

fully connected network UNet based on the encoder-decoder

structure, which can effectively extract image features while

using skip connections to further enhance the localization

accuracy. Ribera et al. (2019) located different targets in different

scenes based on UNet. To sum up, a simple and efficient cotton

boll locationmethod based on point annotationmay be designed

by combining the dense crowd location strategy based on point

annotation with the structure of UNet network.
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FIGURE 1

Location of field boll image acquisition sites.

FIGURE 2

Example of CBL dataset. (A) Is the original image, (B) is the corresponding ground-truth.

3. Materials and methods

3.1. Materials

The CBL dataset targets in-field cotton boll localization.

Field cotton boll images were collected in Xinjiang Uygur

Autonomous Region (44.18N, 86E), and taken under natural

illumination by the ground-based non-contact observation

system (Li et al., 2020). The geographical location of the image

acquisition is shown in Figure 1. Three hundred images exposed

normal images were selected from images collected from 2016

to July and August 2018 to compose the CBL dataset, which

contains a series of cotton field images during the growth cycle

of cotton bolls.

As shown in Figure 2, the dataset consists of front

view images of field bolls with four different resolutions of

3088×2056, 3456×2304, 1920×1080, and 5184×3456. In order

to ensure the diversity of cotton boll images during the

experiment, 180 images are used for training, 58 images are

used for validation, and the other 62 images are used for testing.

Following standard practice (Lu et al., 2021), the center of each

boll is manually annotated with a point since point annotations

provide information on the location and class of the target.

The number of cotton bolls in the image varies from 1 to

44, and a total of 5,794 boll instances were finally annotated.

Ground-truth is generated by Gaussian smoothing on a matrix

of annotated points. The labeling tool used is LabelMe, which

can be found at https://github.com/wkentaro/labelme.
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FIGURE 3

The pipeline of MCBLNet network architecture.

3.2. Methods

In this section, we introduce our proposed fully

convolutional network MCBLNet based on UNet. MCBLNet

aims to learn a mapping from an input image of size h × w × 3

to a localization map of size h × w × 1, as shown in Figure 3.

MCBLNet mainly composed of scene encoding for feature

extraction, location decoding for position prediction and

localization map fusion for multi-scale information association.

The scene encoding, location decoding, and localization map

fusion are as follows.

3.2.1. Scene encoding and location decoding

Referring to the UNet network (Ronneberger et al., 2015),

the detailed structure of feature encoding and multi-scale

localization map prediction in MCBLNet is shown in Figure 4.

It consists of an initial convolution block, four Down modules,

four UP modules, and four end convolution blocks. The

initial convolution (Init Conv) block is a set of two 3×3

convolutions with a stride of 1 and a padding of 1 for

channel number expansion; the end convolution (End Conv)

block is a combination of 1×1 convolution and sigmoid

function for localization map prediction; Down module for

scene encoding; Up module for location decoding. Scene

encoding and localization decoding map the input image of

size h × w × 3 into four localization maps of size h ×

w × 1, h
2 × w

2 × 1, h
4 × w

4 × 1, and h
8 × w

8 × 1,

respectively. The four localization maps are designed to locate

FIGURE 4

Detailed structure of scene encoder and location decoder.

cotton bolls at different scales to ultimately reduce the missed

detection rate.

Due to the repetitiveness of the structure, a part of the

continuous downsampling convolution process in the UNet

network is defined as the Down module, and its structure is

shown in Figure 5A. It consists of a 2×2 max pooling layer

for dimensionality reduction and two 3×3 convolutions with

stride 1. Researchers have demonstrated that pooling layers can

cause drastic changes in the output (Zhang, 2019). To obtain

stable image features, the pooling layer is replaced by strided

convolution. In order to expand the receptive field, the original

ordinary convolution is replaced by three dilated convolutions

with gradually increasing dilation rates. Then a new Down

module is constructed as shown in Figure 5B. The network

structure constructed by Down module is called MCBLNet-lite.
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FIGURE 5

Down module structures. (A) Is Down of UNet, (B) is Down of MCBLNet-lite, (C) is Down of MCBLNet. “+” indicating matrix addition.

FIGURE 6

Up module structures. (A) Is Up of UNet, (B) Is Up of MCBLNet. “C” representing concatenate.

In addition, to further enhance the feature extraction capability

of the network, a 3×3 dilated convolution with a dilation rate

of 4 is added. At the same time, skip connections are added

to further utilize redundant information. Then the final Down

structure is constructed as shown in Figure 5C. The final Down

module is adopted in the proposed MCBLNet network.

Similar to the Down module, a part of the continuous

upsampling convolution process in the UNet network is defined

as the Up module, shown in Figure 6A. In order to obtain more

stable localization results, the upsampling layer is replaced with a

transposed convolution (TransConv) for trainable upsampling.

A new Up module is constructed as shown in Figure 6B.

The convolutions in the UNet network are not padded, so

the output localization map is smaller than the original input

image. Therefore, it needs to be cropped before performing the

concatenate operation. In order to simplify the operation and

improve the robustness of themodel, the corresponding padding

is set for the convolution in MCBLNet, so that the size of the

feature map after each layer of convolution is fixed. The output

localization map size of MCBLNet is fixed to 1, 1
2 ,

1
4 , and

1
8

times the input image. In fact, the output localization map is

a fixed-size 2D matrix. The value of each point in the matrix

represents the probability that this point is predicted to be the

target. So the location map can be expressed as:

ML = [pij]
n
m, 0 < i < n, 0 < j < m (1)

Among them, [∗]nm represents a matrix of size n×m, and pij
represents the probability that the point in the ith row and the

jth column is the target.

3.2.2. Localization map fusion

After scene encoding and localization decoding, the original

input image is mapped into 4 predicted localization maps of

different sizes. To obtain uniform and accurate localization

results, it is necessary to combine the results of the four

localization maps. Generally speaking, small-sized localization

maps are more robust to large targets, and large-sized

localization maps are more robust to small targets. In order

to reduce the missed detection rate and false detection rate,

localization map fusion module is designed to fuse four different

localization maps to obtain the final localization map. First, the

size normalizer in Figure 3 upsamples the localizationmaps with
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sizes of 1
8 ,

1
4 , and

1
2 , respectively to the same size as the original

image. The upsampled 4 localization maps are added to obtain

the final predicted localization map with the same size as the

original input image. Then the final predicted location map can

be expressed as:

FML = [
∑4

k=1(pk)
i
j]
h
w (2)

where h and w are the height and width of the original

image, respectively.

3.2.3. Loss function

Each point in the four predicted localization maps obtained

by the proposed method represents the probability of whether

the store belongs to the target. The cross-entropy loss

function mainly describes the distance between actual output

probability and expected output probability (Farahnak-Ghazani

and Baghshah, 2016). Therefore, the cross-entropy loss function

can be used to calculate the distance between each point in

the predicted location map and the corresponding point in the

ground-truth, which is expressed as:

LBCE = −

N∑
i=1

p̂ilogpi (3)

whereN is the number of pixels in the image, pi is the probability

that the model predicts the ith pixel as a positive sample, and p̂i

is the true value of the ith pixel.

To accurately localize each object at each scale, the cross-

entropy loss for each scale is computed separately. The total

loss at final training is the sum of the losses generated

from aforementioned four different scale maps, which can be

expressed as Ltotal =
∑4

k=1 Lk.

4. Results and discussion

4.1. Implementation details

In order to reduce the amount of model parameters as

much as possible without reducing the location accuracy, the

number of output channels from the initial convolution block

to the scene encoder is 16, 32, 128, 256, and 512 in turn. The

number of output channels of the location decoder is 256, 128,

64, and 32 in sequence. In training, the resolution of images is

resized to 768×512 to enable batch training without excessively

missing the target pixels of the boll. Inspired by Ronneberger

et al. (2015), the 768×512 input image is cropped into 12 image

patches (256×256) for training separately to speed up training

and perform data augmentation. The parameters epoch, batch

size, and learning rate are set to 60, 16, and 0.0001, respectively.

Our method is implemented based on pytorch. All

experiments are implemented on a server with Intel Core i9-

10900X CPU at 3.70GHz and GeForce RTX 3090. The software

is Ubuntu20.4 and python3.6.

4.2. Evaluation metrics

The object localization performance of the MCBLNet is

evaluated by average precision (AP) (Everingham et al., 2015), a

commonly used evaluation metric for object detection methods

to ensure fairness and accuracy. AP is the area under the

precision (P) and recall (R) curves. The calculation methods of

P, R and AP are:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =

∫ 1

0
P(R)dR (6)

where TP (true positive) is the number of correct localizations

in all targets, FP (false positive) is the number of incorrect

localizations in all targets, and FN (false negative) is the number

of targets that were not detected. The connected domain of all

points with predicted probability exceeding 50% is regarded as

the predicted localization area. The set of their center points is

used as the prediction point set. The nearest neighbor distance

between prediction point set and ground-truth point set is

calculated as the evaluation condition. Similar to Ribera et al.

(2019) and Zand et al. (2022), the point is considered to belong

to TP when the predicted point is within 10 pixels of some

ground-truth point, otherwise it is classified to FP. Each ground-

truth point is matched against only one predicted point. The APs

used later are all AP50s.

In addition, FPS and parameter amount (Param) are used to

evaluate the running speed and storage cost of the model. FPS

represent the number of images that can be detected per second,

and the size of the parameter amount refers to the size of space

occupied by the model.

4.3. Model evaluation

4.3.1. Comparison of di�erent localization
methods

To demonstrate the effectiveness of the proposed method

for cotton boll localization, we compare it with several object

localization networks and object detection networks on the CBL

dataset. Specifically, comparisons are made with the bounding

box annotation-based SSD (Liu et al., 2016), FasterRCNN (Ren

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.960592
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.960592

TABLE 1 Table of experimental results for each method on the CBL

dataset.

Model Label AP(%) FPS Param(M)

SSD Box 8.23 13.18 95

Faster RCNN Box 38.5 9.67 165.7

YOLOv3-tiny Box 51.1 33.34 17.4

YOLOv3-spp Box 64.4 28.21 125.6

YOLOv5m Box 60.8 28.92 42.2

YOLOv5s Box 57.2 31.42 14.4

P2PNet Point 8.3 23.38 86.4

MSPSNet Point 34.5 7.16 263.3

MCBLNet-lite Point 78.3 22.5 37.8

MCBLNet Point 83.9 20.86 50.3

The optimal values in each column are bold-faced.

TABLE 2 Localization results of three methods under di�erent density

distributions.

Model
Moderately dense Highly dense

P (%) R (%) AP (%) P (%) R (%) AP (%)

MSPSNet 74.7 18.2 14.3 78 16.9 34.3

YOLOv3-spp 74.5 68.4 67.6 75.7 59.3 63.7

MCBLNet 69 56.8 61.7 82.9 58.6 83.9

et al., 2017), YOLOv3 series (Redmon and Farhadi, 2018), and

YOLOv5 series and point annotation based object localization

methods P2PNet (Song et al., 2021) and MSPSNet (Zand et al.,

2022). The specific experimental results are shown in Table 1.

The localization performance of MCBLNet-lite and

MCBLNet methods on the CBL dataset is better than other

compared methods, as shown in Table 1. Specifically, the AP of

the MCBLNet is improved by 49.4% compared with the best

point-based target localization algorithm MSPSNet, and the

model parameter amount is only one-fifth of that. Compared

with the best bounding box annotation based object detection

algorithm yolov3-spp, the point annotation based MCBLNet

method has an AP improvement of 19.5% with comparable

detection speed.

4.3.2. Comparative experiments under di�erent
density distributions

The accuracy of the model may be affected by different

occlusions and cotton boll counts in images of different

densities distributions. Contrastive experiments are carried out

according to the difference of object density in the CBL test

images. Referring to the settings of Wang et al. (2022), images

containing 10-20 cotton bolls are considered as moderately

dense, and images containing more than 20 cotton bolls are

considered as highly dense. Experiments are conducted on

moderately dense and highly dense images with YOLOv3-spp,

MSPSNet, and MCBLNet, respectively. Among them, YOLOv3-

spp is the best localization method based on bounding box

annotation in Table 1, and MSPSNet is relatively better among

the localization methods based on point annotation except

MCBLNet. The experimental results are shown in Table 2 and

Figure 7.

It can be seen from Table 2 that the object detection

method based on bounding box annotation has better accuracy

for moderately dense cotton boll images than highly dense

cotton boll images. The localization method based on point

annotation is more accurate for highly dense cotton boll images

than for moderately dense cotton boll images. It indicated

that the localization method based on point annotations

is more robust in localizing dense objects. Specifically,

MCBLNet achieves 83.9% AP for high-density cotton boll

images and comparable AP to YOLOv3-spp for moderately

dense cotton boll images. It demonstrated that MCBLNet

has better localization performance for cotton bolls with

different densities.

The localization effect is shown in Figure 7. The red dots

in Figure 7C are the predicted anchor points by MSPSNet.

The yellow-green blob in Figure 7E is the prediction area by

MCBLNet, and the red point is the center of blob. Compared

with YOLOv3-spp and MCBLNet, MSPSNet has a large number

of missed detections. When detecting dense boll regions,

some prediction boxes of YOLOv3-spp overlap each other.

Contrary to YOLOv3-spp, the prediction points of MCBLNet

are distinguishable. Therefore, compared with YOLOv3-spp,

MCBLNet has better visual localization results.

4.3.3. Ablation study

Tomeasure the contribution of various factors toMCBLNet,

ablation experiments are performed on the CBL dataset. The

experimental results are shown in Table 3, in which Enhance

Down represents the final Down module, and Map Fusion

means the localization map fusion module.

Comparing the experimental results of MCBLNet-lite and

MCBLNet, the Enhance Down module can enhance the feature

extraction ability by increasing the number of parameters. The

AP of MCBLNet-lite is 6.5% higher than that of MCBLNet-

lite_base, and the AP of MCBLNet is 1.5% higher than that of

MCBNet_base. It can be seen that the localization map fusion

module can improve the AP without increasing the amount of

parameters and without affecting the running speed.

5. Conclusion

In this paper, a point annotation-based cotton boll

localization method named MCBLNet is proposed. It can solve
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FIGURE 7

Localization e�ect of three methods in di�erent density images. (A) Is original image and (B) is ground-truth. (C–E) Are the localization e�ects of

MSPSNet, YOLOv3-spp, and MCBLNet, respectively.

the localization problem of multi-scale objects in complex

backgrounds simply and efficiently. The method mainly

includes three parts: scene encoding which can effectively

extract image features, location decoding which can output

multi-scale localization maps and localization map fusion

which can combine localization map information of different

scales. Experiments were conducted on the CBL dataset.

Experimental results show that the localization performance of

our method significantly outperforms other point-annotation-

based localization methods, and the performance is also better

than or at least comparable to bounding-box annotation-based

localization methods. Overall, the MCBLNet can simply and

robustly locate crops using only point annotations.

In future work, we consider to fundamentally solve the

problem of insufficient target feature extraction by further

combining the structural characteristics of corresponding cotton

TABLE 3 Ablation experiments on the CBL dataset.

Model Configurations AP (%) FPS Param(M)

Enhance Map

down fusion

MCBLNet-lite_base 71.8 22.5 37.8

MCBLNet-lite X 78.3 22.5 37.8

MCBLNet_base X 82.4 20.86 50.3

MCBLNet X X 83.9 20.86 50.3

“X” means joining the corresponding module.

boll to optimize the labeling method. At the same time, we

also plan to add some output headers to reuse the extracted

target features for object counting. In addition, locationmethods

can be used in some practical agricultural applications, such as
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directional high-efficiency water-saving irrigation, fixed-point

quantitative fertilization and precision pesticide application.
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