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The primary task in calculating the tobacco shred blending ratio is identifying

the four tobacco shred types: expanded tobacco silk, cut stem, tobacco silk,

and reconstituted tobacco shred. The classification precision directly affects

the subsequent determination of tobacco shred components. However, the

tobacco shred types, especially expanded tobacco silk and tobacco silk,

have no apparent differences in macro-scale characteristics. The tobacco

shreds have small size and irregular shape characteristics, creating significant

challenges in their recognition and classification based on machine vision.

This study provides a complete set of solutions aimed at this problem

for screening tobacco shred samples, taking images, image preprocessing,

establishing datasets, and identifying types. A block threshold binarization

method is used for image preprocessing. Parameter setting and method

performance are researched to obtain the maximum number of complete

samples with acceptable execution time. ResNet50 is used as the primary

classification and recognition network structure. By increasing the multi-

scale structure and optimizing the number of blocks and loss function, a

new tobacco shred image classification method is proposed based on the

MS-X-ResNet (Multi-Scale-X-ResNet) network. Specifically, the MS-ResNet

network is obtained by fusing the multi-scale Stage 3 low-dimensional and

Stage 4 high-dimensional features to reduce the overfitting risk. The number

of blocks in Stages 1–4 are adjusted from the original 3:4:6:3 to 3:4:N:3

(A-ResNet) and 3:3:N:3 (B-ResNet) to obtain the X-ResNet network, which

improves the model’s classification performance with lower complexity. The

focal loss function is selected to reduce the impact of identification difficulty

for different sample types on the network and improve its performance. The

experimental results show that the final classification accuracy of the network

on a tobacco shred dataset is 96.56%. The image recognition of a single

tobacco shred requires 103 ms, achieving high classification accuracy and

efficiency. The image preprocessing and deep learning algorithms for tobacco
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shred classification and identification proposed in this study provide a new

implementation approach for the actual production and quality detection

of tobacco and a new way for online real-time type identification of other

agricultural products.

KEYWORDS

tobacco shred, image preprocessing, deep learning, classification model, residual
neural network, block threshold binarization

Introduction

China is a significant producer and consumer of tobacco
and related products. In 2019, the total import and export
value of China’s tobacco and associated products reached
US$3.325 billion. In China’s tobacco and associated products,
cigarettes’ export value is 705.4 million US dollars, accounting
for 49.68% of tobacco and related products (Beijing, China;
National Bureau of Statistics, 2020). The WHO Framework
Convention on Tobacco Control (FCTC) implements guidelines
for Articles 9 (Regulation of the contents of tobacco products)
and 10 (Provisions for tobacco product disclosure) that require
manufacturers and importers of tobacco products to disclose to
government authorities the composition of tobacco products,
including the type of tobacco shred and the blending ratio
of each kind of tobacco shred (Acuña A, 2017). Tobacco
manufacturers are also required to have the equipment and
methods to detect and measure tobacco shred components.
The blending amount of the expanded tobacco silk, cut stem,
tobacco silk, and reconstituted tobacco shred in cigarettes
influences the smoke characteristics, physical indicators, and
sensory quality of cigarettes. Therefore, the realization of high-
precision and high-efficiency identification of tobacco shred
types is of great significance for identifying the authenticity of
tobacco products, exploring formula design, and ensuring the
quality of the tobacco blending process and the consistency of
similar products.

In recent years, deep learning has provided advanced and
efficient solutions for image processing tasks, such as image
classification (Atila et al., 2021), image segmentation (Kang
et al., 2020), and object detection (Janai et al., 2020). Its excellent
feature extraction ability greatly reduces the workload of image
processing tasks (Shao et al., 2017; Xiao Q. et al., 2019; Afonso
et al., 2020). In view of the differences in the application objects,
researchers mostly adjust the network structure according to the
practical problems (Buiu et al., 2020; Liu et al., 2021; Gu et al.,
2021).

In various detection tasks in agriculture, deep learning
combined with machine vision has been widely used in plant
disease and pest identification, such as wheat blast image
classification (Fernández-Campos et al., 2021), rice disease and

insect pest image classification (Yang et al., 2021), plant leaf
disease classification (Gupta, 2017); plant variety identification,
such as vegetable and fruit classification (Zhu et al., 2018;
Steinbrener et al., 2019), rapeseed variety classification (Jung
et al., 2021); crop quality detection, such as corn seed defect
detection (Wang et al., 2022); fruit crop rapid sorting system
research, such as citrus online sorting system(Chen et al.,
2021), and so on.

With the development and maturity of deep learning
technology in agricultural inspection tasks, deep learning
research combined with machine vision in the identification and
quality inspection of tobacco and its products is also rapidly
heating up. Jiao et al. (2022) proposed a tobacco leaf grade
recognition method based on a convolutional neural network.
This method enhances 1,498 tobacco leaf images of 41 grades
to 4,494 for testing, and the final classification accuracy on the
test set reaches 95.89%. Lu et al. (2022) proposed a classification
method of flue-cured tobacco leaves based on deep learning
and multi-scale feature fusion. The process tested a total of
6,068 tobacco leaf images in 7 grades. The final classification
accuracy rate is 80.14%. He et al. (2018) proposed an algorithm
based on fuzzy pattern recognition. The method classifies the
tobacco leaf samples by extracting the appearance features of
tobacco leaves. The final accuracy on the training and test sets
is 85.81 and 80.23%, respectively. Lu et al. (2021) proposed a
tobacco leaf classification method combining a convolutional
neural network and a double-branch integral. The technique
selected 2,791 flue-cured tobacco leaves of 8 different grades
as research samples, and the final tobacco leaf classification
accuracy was 91.30%.

There are many related studies on tobacco leaf grading,
and they are relatively mature. However, due to the
difficulty of obtaining tobacco shred samples, small size,
and slight morphological differences, the research on image
classification is still lacking. The identification methods
of tobacco shred types mainly include manual sorting,
near-infrared spectroscopy, and computer vision analysis.
The manual sorting method is that experienced workers
identify and then complete the sorting work manually.
The efficiency of this method is low and the classification
accuracy fluctuates significantly due to the influence of
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artificial subjective experience. The quantification and
detection accuracy of indicators cannot be guaranteed.
Near-infrared spectroscopy (NIR) detects the spectral
information of tobacco shreds to determine the spectral
difference and analyze the type of tobacco shred. Since the
raw material of reconstituted tobacco shred contains fine
tobacco slag, tobacco stems, etc., its spectral information is
less different from other types, and the identification error
is significant (Jennife, 1999; Liu et al., 2006; Hu et al., 2010;
Zhang et al., 2020).

The recognition method based on machine vision completes
the type of tobacco shred by analyzing the image features. Dong
et al. (2015, 2016a,b) proposed a patent for an identification
method for establishing a corresponding tobacco shred feature
database for different tobacco shred types. This method shows
a feature database by extracting the RGB and HSV color space
pixel variance values and texture feature values of contrast,
entropy, and correlation in the tobacco shred image. Finally,
it determines the tobacco shred type based on the correlation
threshold of the feature. Gao et al. (2017) proposed a method
for identifying the material composition of the tobacco shred
based on the LeNet-5 network. This method proves that
the macroscopic structure of the tobacco shred is different
by analyzing the visible characteristics such as duty cycle,
perimeter ratio, and uniformity of tobacco shred. The author
cropped the four types of tobacco shred images to a large
size to obtain a small picture of 52 × 52 pixels. There are
100 initial tobacco shred images, and 29,208 tobacco shred
images are obtained after cropping. The model is trained
and tested on the tobacco shred dataset, and the recognition
accuracy rates on the training and test samples are 100 and
84.95%, respectively. Zhong et al. (2021) proposed a method
for identifying tobacco shred types based on residual neural
networks and transfer learning simultaneously. The original
dataset used by the author contains a total of 400 images of
expanded tobacco silk, cut stem, tobacco silk, and reconstituted
tobacco shred. The accuracy rate of the test sample is 97.62%.
After data enhancement of the initial dataset, there are 7,832
images with 4 types, and the recognition accuracy of test
samples is 98.05%.

In a previously published research, the number of samples
in the original tobacco shred dataset was small (100 by Gao
et al., 2017 and 400 by Zhong et al., 2021). The high recognition
accuracy obtained in these research works is because the sample
directly occupies the entire shooting field of view when shooting,
and an image with more uniform brightness and more obvious
sample characteristics is obtained. In addition, more image
samples are obtained by augmenting the original dataset. This
method is challenging to apply to composition determination in
the field because it cannot place more tobacco shred samples in
the shooting field of view and can only be detected by a single
piece. The change in shooting field size must be accompanied
by the scaling of the tobacco shred image. The difference in

features, such as size and brightness, poses a more significant
challenge to the model’s generalizability. The original dataset of
this method also has fewer samples, and the model has a greater
risk of overfitting and may have specificity.

This study mainly aims at the online real-time identification
and classification of tobacco shred types and their actual
production use in the field. It proposes an overall image
processing and classification scheme that realizes the efficient
and accurate identification of different tobacco shred types. The
main contributions of this study are as follows:

1. A block threshold binarization method for the tobacco
shred image is designed. The tobacco shred image is
segmented through contour extracting and region of
interest (ROI) area cropping. The complete tobacco shred
image is then obtained by expanding the ROI area.
A dataset containing 8,202 original tobacco shred images is
established, effectively avoiding overfitting and specificity.

2. The ResNet50 network is selected as the prominent
network architecture and the MS-X-ResNet network
is constructed. The constructed network achieves an
accuracy of 96.65% on the tobacco shred dataset,
outperforming other similar deep learning methods.

3. The focal loss function is introduced to alleviate
the influence of different degrees of tobacco shred
identification difficulty on the model, effectively improving
its accuracy and stability.

Materials and methods

This study performs image acquisition, processing,
segmentation, dataset establishment, and model building for
four tobacco shred types. This section explains all materials
and methods in detail, and the research flow chart is shown in
Figure 1.

Materials

Each cigarette contains four tobacco shred types: expanded
tobacco silk, cut stem, tobacco silk, and reconstituted tobacco
shred. This study’s samples containing the four tobacco shred
types came from the Zhengzhou Tobacco Research Institute
of the China National Tobacco Corporation. Figures 2A–D
are images of the four unscreened tobacco shred types. The
JJSY30x10 circular inspection flat screen produced by Shanghai
Jiading Cereals and Oils Instrument Co., Ltd. is used to filter the
tobacco shred residues. The sieve surface is 20 mesh (0.9 mm),
and a flat sieve is used for 10 s each time. Figures 2E–H shows
the tobacco shred images after sifting the residues. Through
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FIGURE 1

Research flow chart.

FIGURE 2

The original images are (A) expanded tobacco silk, (B) cut stem, (C) tobacco silk, and (D) reconstituted tobacco shred. Images of tobacco shred
after sifting are (E) expanded tobacco silk, (F) cut stem, (G) tobacco silk, and (H) reconstituted tobacco shred.
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FIGURE 3

Image acquisition platform.

screening, 2,200 pieces of each of the four types of tobacco shred
were obtained, resulting in a total of 8,800 samples.

Image acquisition

An image acquisition darkroom with a ring light source was
designed to obtain higher quality tobacco shred images. Figure 3
is a physical map of the image acquisition system. The housing
size of the image acquisition system is 60 cm × 60 cm × 60 cm,
and a black light-absorbing cloth is used outside to prevent
interference from external light sources. The camera and the
light source are fixed on the support bracket. A Hikvision MV-
CE100-30GC 10-megapixel color industrial camera is equipped
with a Hikvision MVL-HF1224M-10MP 12 mm focal length
industrial lens. The background for the tobacco shot was a
standard white balance card to ensure quality.

The official MVS software provided by Hikvision was used
for image acquisition. The exposure time was 1/100 s, the sRGB
model was selected for gamma correction, and the automatic
white balance was turned on. A Huakang Technology 120-80-25
industrial ring angle light source equipped with a diffuser plate
to diffuse the light evenly was used to ensure the light source
uniformity. The front of the platform is open for easy insertion
and removal of tobacco shred samples. The model image is

transmitted to a computer via an optical fiber. Images were
collected for the four shred types with 2,200 pieces each, a total
of 8,800 pieces, and the size of each image was 2,788 × 2,238
pixels. Unqualified tobacco shred images, such as blurry and
incomplete backgrounds, were manually screened out, and
8,202 tobacco shred images were obtained.

Image preprocessing

This research on tobacco shred type identification aims to
meet the needs of subsequent online tobacco shred component
detection in the field. For the component detection of tobacco
shreds, it is necessary to simultaneously identify various types
of tobacco shreds spread on-site and to calculate and obtain the
component ratio. Therefore, our shooting field must be much
larger than a single tobacco shred. Then, all shooting platform
parameters need not be changed, and the current recognition
model and dataset can be directly applied in the subsequent on-
site component detection.

The sizes of the original tobacco shred images are
2,788 × 2,238 pixels. The overall image size in the original
image is large, and the area occupied by the tobacco shred
is small. It is necessary to perform image processing on the
original image to facilitate system accuracy and efficient feature
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recognition to reduce irrelevant information, accelerate model
convergence, and improve classification accuracy. The image
preprocessing process is as follows: (1) grayscale image; (2) block
threshold binarization; (3) obtain the tobacco shred outline; and
(4) crop the ROI area.

Block threshold binarization: Comparison with
other binarization methods

First, a simple threshold binarization was tested using a
fixed threshold to binarize the grayscale image directly. The
binarization results using four different thresholds are shown
in Figure 4, which shows that different tobacco shred images
have different threshold requirements. In Figure 4A, when
the threshold is 175 and 180, and in Figure 4F when the
threshold is 180, an unbroken binarized tobacco shred image
can be obtained without splitting into two contours after
processing. There are differences in tobacco shred thickness,
light transmittance, and color depth, so different thresholds
must be used for other tobacco shreds.

The total performance of the simple threshold binarizations
at 165, 170, 175, and 180 thresholds is shown in Table 1. Table 1
shows that different thresholds have almost no effect on the
tobacco shred processing (execution) time. The best performing
threshold is 175. Among the 8,202 samples, 7,948 binarized
tobacco shred images are complete. The proportion of complete
samples to the total samples is 96.90% and requires 203.96 s.

Second, the adaptive threshold binarization is tested. This
method sets the threshold according to the local image
characteristics and can alleviate the problem of uneven
image brightness to a certain extent. The adaptive threshold
binarization results using five different neighborhood block sizes
are shown in Figure 5. As seen in Figure 5, the neighborhood
block size affects the contour’s details. A larger neighborhood
block results in a more obvious contour. The interference also

increases, and reducing the size of the neighborhood block can
filter out more noise.

The performance of the adaptive threshold with the mean
and Gaussian weighting methods is shown in Table 2. Table 2
shows that both adaptation methods are time-consuming when
the neighborhood block sizes are 7 × 7, 13 × 13, 19 × 19,
25 × 25, and 31 × 31. Gaussian weighting is more time-
consuming than the mean method, but performance is also
significantly improved. When the size of the neighborhood
block is 7× 7 with the Gaussian weighting method, 7,811 of the
8,202 samples have complete binarized tobacco shred images,
and the proportion of complete samples is 95.23%. However, the
execution time reaches 9,411.28 s, which is impractical.

Third, Otsu’s threshold binarization is tested. Otsu’s
threshold binarization finds a value between the double peaks
of the grayscale histogram as a threshold. Since the light source
coverage on the camera’s field of view is not entirely uniform,
the use of Otsu’s threshold causes an aperture shadow, which
generates more spots and increases the calculation amount
for subsequent contour screening. Otsu’s threshold binarization
effect is shown in Figure 6. The performance of Otsu’s threshold
is shown in Supplementary Table 1. This method is time-
consuming and has low precision, making it unsuitable for the
binarization of tobacco shred images.

The performance of the three threshold binarization
methods has been comprehensively analyzed. The simple
threshold processing speed is fast, but there are still many cases
of incomplete tobacco images. The adaptive threshold method
takes too long to be practical. Otsu’s threshold causes many
useless contours in the final binarized image, which increases
computational and time costs for subsequent contour screening
because the bimodal feature of the grayscale tobacco shred
image is not apparent. The above three binarization methods
are unsuitable for tobacco shred images. Starting from the
processing ideas of the adaptive threshold and Otsu’s threshold,

FIGURE 4

Results of simple threshold binarization under different thresholds (A) original image 1, (B) threshold 165, (C) threshold 170, (D) threshold 175, (E)
threshold 180, (F) original image 2, (G) threshold 165, (H) threshold 170, (I) threshold 175, and (J) threshold 180.
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TABLE 1 Simple threshold binarization performance evaluation table.

Binarization method Threshold Complete samples/
total samples

The proportion of
complete samples (%)

Execution time(s)

Simple threshold 165 7,697/8,202 93.84 203.88

170 7,876/8,202 96.03 205.08

175 7,948/8,202 96.90 203.96

180 7,833/8,202 95.50 204.86

FIGURE 5

Results of adaptive threshold binarization under different neighborhood block sizes. (A) 7 × 7, (B) 13 × 13, (C) 19 × 19, (D) 25 × 25, and (E)
31 × 31.

this study designs a block threshold binarization method that is
applied to tobacco shred images.

The block threshold binarization process is as follows:
(1) divide the original image according to the size of the
neighborhood block and calculate the standard deviation (SD)
of the pixels in the neighborhood block; (2) compare the SD
of the neighborhood block with the SD threshold size. When
the SD in the tobacco shred block is less than the SD threshold,
set all pixel values in the neighborhood block to zero, filter the
useless blocks, and reduce the computational cost of subsequent
contour screening; otherwise, use Otsu’s threshold to binarize
the block; (3) complete the binarization of the original image by
traversing all neighborhood blocks.

This study explores the neighborhood block size and the
SD threshold of the neighborhood block. Figures 7A–J shows
tobacco shred images for ten neighborhood block sizes between
50× 50 and 500× 500.

Figure 7 shows that a smaller neighborhood block size
implies more neighborhood blocks into which the sample is
divided. When the neighborhood block sizes are 50 × 50 and
500 × 500, the numbers of neighborhood blocks are 2,520 and
30 blocks, respectively, a factor of 84. From this, it can be
concluded that the smaller the neighborhood block size, the
greater the number of neighborhood blocks to be processed, and
the greater the amount of computation required.

The SD threshold is used to process the neighborhood block.
The SDs of a tobacco shred image neighborhood block before
and after processing are shown in Figure 8.

As shown in Figure 8A, the pixel SD in each neighborhood
block is not zero before the tobacco shred image processing. The
SD of the neighborhood block containing the tobacco shred is

nearly ten times larger than without the tobacco shred. The SD
threshold of the neighborhood block can effectively eliminate
the background neighborhood blocks that do not contain the
tobacco shred image, and the pixel values of the neighborhood
blocks to be eliminated are set to zero.

The following discusses finding a neighborhood block
threshold suitable to all tobacco shred images and the
neighborhood block size with the best performance. As shown
in Figure 8A, among the 208 neighborhood blocks, only 8
of them contain parts of the tobacco shred. The SDs of the
neighborhood block containing the tobacco shred and the
background block are quite different. Therefore, this study
uses a statistical method to determine the neighborhood
block’s threshold. The neighborhood block’s size is determined
according to the complete proportion of the samples and the SD
threshold is adjusted.

The steps for determining the threshold of the
neighborhood block are as follows: (1) obtain the SD of all
neighborhood blocks of the 8,202 tobacco shred samples; (2)
draw the SD as a histogram with kernel density. The abscissa
of the histogram is the SD, and the ordinate is the number of
neighborhood blocks; (3) find the abscissa of the first trough in
the kernel density curve and round it down as the neighborhood
block threshold.

The principle of the above method is that the number of
background neighborhood blocks is very different from the
target neighborhood blocks containing tobacco shreds, and the
position of the first trough of the kernel density curve is the
boundary between the number of target blocks and the standard
blocks. The first peak and valley are selected to minimize the
errors caused by the following two situations: (1) an image with
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TABLE 2 Adaptive threshold binarization performance evaluation table.

Binarization method Adaptive
method

Block size Complete
samples/total samples

The proportion of
complete samples (%)

Execution
time(s)

Adaptive threshold Mean 7× 7 6,685/8,202 81.50 6,566.98

13× 13 6,321/8,202 77.07 5,249.03

19× 19 5,503/8,202 67.09 5,532.24

25× 25 5,091/8,202 62.07 6,022.61

31× 31 4,986/8,202 60.79 6,139.02

Gaussian 7× 7 7,811/8,202 95.23 9,411.28

13× 13 6,717/8,202 81.89 6,344.37

19× 19 6,583/8,202 80.26 6,065.46

25× 25 6,364/8,202 77.59 6,153.02

31× 31 6,085/8,202 74.19 5,853.46

shredded tobacco shred residues appearing in the background
block; (2) an image containing part of a tobacco shred is
divided into background blocks. Both cases increase the SD of
the background neighborhood blocks. Using subsequent peaks
and valleys increases the probability of removing background
blocks. It is unreasonable to directly remove the neighborhood
blocks in case 2, which would affect the integrity of the
tobacco shred image.

Figures 9A–J show histograms of the SD of the
neighborhood blocks for different neighborhood block sizes.
The abscissa is the neighborhood block SD, and the ordinate is
the logarithm of the number of neighborhood blocks. The SD
thresholds for different neighborhood block sizes are obtained
from Figure 9 according to the steps for determining the SD
threshold.

Figures 10A–J are the tobacco shred images after removing
the background using the corresponding SD threshold. As
shown in Figure 10, the method for confirming the SD
threshold using the statistical neighborhood block SD is
effective. However, when the size of the neighborhood block
is 400 × 400 pixels, the tobacco shred binarized image is
incomplete, indicating that choosing a larger size for the
neighborhood block may cause the image to be incomplete. But
choosing a smaller size for the neighborhood block increases
the computational load, so a tradeoff must be made between
neighborhood block size and processing time.

The block threshold’s binarization performance indicators
are shown in Table 3. As seen from Table 3, when the
neighborhood blocks range from 50 × 50 to 125 × 125, the
block threshold performance is good, and the proportion of
complete samples is over 98%. The binary value optimization
performance is the best when the neighborhood block size is
75 × 75, and the fraction of complete samples is 99.67% but
requires 472.74 s. When the neighborhood block size ranges
from 175 × 175 to 500 × 500, the proportion of complete
samples and the performance decreases as the neighborhood
block size increases. Furthermore, when the neighborhood block

is 125 × 125 pixels, the SD threshold is reduced from 7 to 6
to retain more original information about the neighborhood
block, and the proportion of complete samples reaches 99.29%
in 320.01 s. Therefore, this study uses a neighborhood block
size of 125 × 125, and a SD threshold of 6 is adopted as the
binarization parameter of the block threshold.

The performance of the four threshold binarization methods
is shown in Table 4. Overall, the block threshold binarization
proposed in this study retains more contour information during
binarization and has a low execution time, resulting in the best
overall performance.

Tobacco shred image segmentation
After the block threshold binarization process, residue

contours may still be near the tobacco shred, so we continue
to perform contour screening to obtain accurate tobacco shred
images. Furthermore, because the same input image length
and width are needed for the classification network, this study

FIGURE 6

Result of Otsu’s threshold binarization.

Frontiers in Plant Science 08 frontiersin.org

https://doi.org/10.3389/fpls.2022.962664
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-962664 August 12, 2022 Time: 18:7 # 9

Niu et al. 10.3389/fpls.2022.962664

FIGURE 7

Schematic diagram of image segmentation under different neighborhood block sizes. (A) 50 × 50, (B) 75 × 75, (C) 100 × 100, (D) 125 × 125, (E)
150 × 150, (F) 175 × 175, (G) 200 × 200, (H) 300 × 300, (I) 400 × 400, and (J) 500 × 500.

FIGURE 8

Annotation map of the standard deviation of neighborhood blocks before and after processing (A) before, (B) after.

adjusts the ROI area so that the length and width of the cropped
image are the same to prevent the scaling operation from
distorting the tobacco shred image proportions.

Figure 11 shows some tobacco shred image segmentation
results. The green frame is the original ROI area and the red box
is the adjusted ROI area in Figure 11A. The segmented tobacco
shred image in the ROI is shown in Figure 11B.

Model construction

Dataset construction
Of the 8,202 image samples, 5,741 images were randomly

selected as the training set, and the remaining 2,461 images were

used as the test set (a 7:3 ratio). The quantity information for
each tobacco shred type is shown in Table 5.

Multi-Scale-X-ResNet model construction
The ResNet50 network is adopted as the primary structure

of the neural network. ResNet50 consists of 50 layers of
networks, which can be divided into six stages: Stem, Stage
1–Stage 4, and Head. The model’s input is a 224 × 224
pixel tobacco shred image and the output size of Stage 4
is 7 × 7 × 2,048. The tobacco shred image classification is
completed through the fully connected (FC) layer, and the
model output is the tobacco shred type. The characteristic
differences between tobacco shred types are slight, and using
7× 7 convolution results is less effective for identifying tobacco
shreds with smaller sizes.
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FIGURE 9

Histogram of neighborhood block standard deviation under different neighborhood block sizes. (A) 50 × 50, (B) 75 × 75, (C) 100 × 100, (D)
125 × 125, (E) 150 × 150, (F) 175 × 175, (G) 200 × 200, (H) 300 × 300, (I) 400 × 400, and (J) 500 × 500.

FIGURE 10

Result of block threshold binarization to remove background under different neighborhood block sizes. (A) 50 × 50, (B) 75 × 75, (C) 100 × 100,
(D) 125 × 125, (E) 150 × 150, (F) 175 × 175, (G) 200 × 200, (H) 300 × 300, (I) 400 × 400, and (J) 500 × 500.

Furthermore, since the expanded tobacco silk is made from
tobacco silk through an expansion process, the proportion of
expansion varies. It is difficult to distinguish between tobacco
silk and expanded tobacco silk. The shallow feature map has

a smaller receptive field and more details of small objects but
lacks rich semantic information. The deep feature map has a
more receptive lot and rich semantic information but contains
less small object information. Therefore, using the multi-scale
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TABLE 3 Block threshold binarization performance evaluation table.

Block
size

Standard
deviation
threshold

Complete
samples/
total

samples

The
proportion of
complete

samples (%)

Execution
time(s)

50× 50 8 8,157/8,202 99.45 724.25

75× 75 6 8,175/8,202 99.67 472.74

100× 100 8 8,044/8,202 98.07 416.57

125× 125 7 8,085/8,202 98.57 328.92

125× 125 6 8,144/8,202 99.29 320.01

150× 150 8 7,824/8,202 95.39 289.94

175× 175 6 8,044/8,202 98.07 265.87

200× 200 5 7,951/8,202 96.94 276.52

300× 300 7 7,569/8,202 92.28 253.85

400× 400 7 7,362/8,202 89.76 281.64

500× 500 8 6,841/8,202 83.41 277.85

TABLE 4 Performance evaluation table of different
threshold methods.

Binarization
method

Complete
samples/total
samples

The proportion
of complete
samples (%)

Execution
time(s)

Simple threshold 7,948/8,202 96.90 203.96

Adaptive threshold 7,811/8,202 95.23 9,411.28

Otsu’s threshold 6,896/8,202 84.08 1,544.65

Block threshold
binarization

8,144/8,202 99.29 320.01

structure for feature fusion can solve the problem of feature loss
to a certain extent. According to the shallow and deep network
characteristics, the output results of Stage 3 and Stage 4 of the
ResNet50 network are passed through the AvgPOOL layer and
the Flatten layer, and the Concat layer is then used for feature
splicing the output. The output is passed through the FC layer to

obtain the final classification result. Tobacco shreds with small-
sized features can be effectively extracted using the multi-scale
structure, and the model recognition accuracy can be improved.
After adding the multi-scale structure, the resulting network is
named MS-ResNet.

Each stage of a ResNet network consists of a sequence of d
blocks. The numbers of blocks in Stage 1–Stage 4 of ResNet50
and ResNet101 are (3, 4, 6, 3) and (3, 4, 23, 3), respectively. The
two networks only have different numbers of blocks for Stage 3.
The A-ResNet network is also obtained by changing the number
of blocks in Stage 3. In addition, to reduce the complexity of the
A-ResNet network and retain more shallow feature information,
the number of blocks in Stage 2 of the A-ResNet network is
changed to 3 to obtain the B-ResNet network. A-ResNet and
B-ResNet are collectively referred to as the X-ResNet network.
The numbers of blocks for the different ResNet networks are
provided in Supplementary Table 2.

The MS-X-ResNet network structure proposed in this study
is shown in Figure 12. The MS-ResNet network is obtained
by fusing the multi-scale features of the ResNet network. The
numbers of blocks of Stage 1–Stage 4 are adjusted from the
original 3:4:6:3 to 3:4:N:3 (A-ResNet) and 3:3:N:3 (B-ResNet)
to obtain the X-ResNet network. The MS-X-ResNet network is
obtained by combining the MS-ResNet and X-ResNet networks.

The identity and Conv block structures in Figure 12 are
shown in Figure 13.

Loss function

Focal loss
The traditional loss function uses the cross-entropy

function, which describes the distance between the actual and
expected output probability distributions. The smaller the value
of the cross-entropy, the more effective the learning in the model

FIGURE 11

Result of tobacco shred image segmentation (A) cropped ROI outline (B) segmented tobacco shred image through ROI.
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TABLE 5 Details of tobacco shred dataset.

Name Expanded tobacco silk Cut stem Tobacco silk Reconstituted tobacco shred Total

Training set 1,417 1,426 1,413 1,485 5,741

Testing set 606 611 605 639 2,461

Total 2,023 2,037 2,018 2,214 8,202
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FIGURE 12

Multi-Scale-X-ResNet network structure.

A B

FIGURE 13

Structure of identity mapping module and convolution module in a residual neural network (A) identity block, (B) Conv block.

training process (Bishop and Nasrabadi, 2006; Xiao Z. et al.,
2019).

Table 6 shows shape images of the four tobacco shred
types. As seen from Table 6, the same tobacco shred type can
have many different shapes. The difference between tobacco
shred images is slight and identification is difficult. However,

the traditional cross-entropy as a loss function ignores the
identification difficulty of different types of samples. It only
focuses on the accuracy of the correct label. In this study, the
focal loss function (Lin et al., 2017) is selected to reduce the
impact of sample identification difficulty on the network and
improve its performance.
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TABLE 6 Tobacco shred shape image table.

Name Shape of most samples Shape of a little samples

Expanded tobacco silk

Cut stem

Tobacco silk

Reconstituted tobacco shred

The expression for the cross entropy loss function is

Closs = −
1
m

m∑
i=1

j=4∑
j=1

yjilog
(
ŷji
)

(1)

and the expression for the focal loss function is

Floss = −
1
m

m∑
i=1

(
1−pi

)γlog
(
pi
)

(2)

where, Closs, cross-entropy loss function; Floss, focal loss
function; m, number of the current batch of images input to the
network; yji, authentic label; ŷji, predicted label; γ, modulation
factor; pi, probability of softmax output.

Equation 2 gives the contribution of the classification
samples to the loss. The introduction of the modulation factor
γ makes the model weaken the contribution of the loss values of
the easily identified samples and gives higher weight to difficult-
to-classify samples during training. To void the model value to
be equal to 0 or 1 during training, the set value range is [0.005,
0.995], if values below 0.005 are set to 0.005 and values above
0.995 are set to 0.995.

Influence of γ on model accuracy
The size of the modulation factor γ mainly affects the

contribution of the loss value of the sample. With increasing
γ, the contribution of the sample loss value is suppressed, with
the loss values of easily identified samples suppressed more.
Figure 14 shows the accuracy of the ResNet50 and MS-A-
ResNet-50 networks on the test set for different γ values.

As shown in Figure 14, the ResNet50 + FL (Focal Loss)
network has its highest accuracy (93.01%) when γ = 0.5, and

MS-A-ResNet-50 + FL has its highest accuracy (96.12%) when
γ= 0.75. The multi-scale structure improves the performance of
the model effectively. This study mainly explores the accuracy
of the MS-X-ResNet network and selects γ = 0.75 as the
modulation factor of the focal loss function.

Implementation details

Test platform
The experiment in this study is based on the Windows

10 operating system; the GPU is GeForce GTX 3080 (10 GB
video memory), the processor is Intel(R) Core(TM) i7-12700K
CPU at 3.61 GHz, and the running memory is 64 G. Model
building, training, and testing are implemented in Python
language, based on the PyTorch deep learning framework, the
parallel computing framework uses CUDA 11.3 version, and the
development environment uses Pycharm.

Network evaluation
This study uses accuracy rate (ACC), precision rate (P),

recall rate (R), F1 score (F1), and avg_metrics as evaluation
indicators (Table 7). In Table 7, TP, TN, FP, FN and ki
represent true positive, true negative, false positive, false
negative, and the evaluation indicators of samples of a tobacco
shred type, respectively. Among the evaluation indicators, F1
is a comprehensive indicator that fuses precision rate and
recall rate, and higher F1 values correspond to a better model
(Kang and Gwak, 2021).

We use the four indicators, namely, accuracy rate, precision
rate, recall rate, and F1 score, for performance evaluation of
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FIGURE 14

Accuracy rates of ResNet50 + FL and MS-A-ResNet-50 + FL
networks under different γ.

our improved model and other contrasting models. Weighted
or equally weighted averaging methods can be chosen when
calculating the average indicator. Due to the differences in
classification difficulty of the different tobacco shred images, the
equally weighted average method was chosen in this study.

Training details
We use bilinear interpolation (Guo et al., 2011; Kirkland,

2016) to ensure the image quality after scaling as much as
possible. Each image in the tobacco shred dataset is scaled to
224× 224 pixel size. Each channel of data is standardized with a
mean of 0.5 and a SD of 0.5. The training set images are shuffled
randomly before input to reduce the effect of image order on the
model. Through the function of the optimization algorithm, the
model performs gradient descent after multiple iterations and
attenuates the learning rate during the model training process
so that the model can obtain better classification performance.

The optimization algorithm of the model is Adam: the initial
learning rate is 10−4, the weight decay is 10−4, β1 = 0.9,
β2 = 0.99, and ε = 10−8. The batch size is set to 32. When
training with the focal loss function, the initial learning rate is
set to 10−3 because the focal loss function reduces the strength
and frequency of network updates. The maximum number of

TABLE 7 Table of evaluation indicators.

No. Evaluation indicators Calculating formulas

1 Accuracy rate (ACC) ACC =
TP + TN

TP + TN + FP + FN

2 Precision rate (P) P =
TP

TP + FP

3 Recall rate (R) R =
TP

TP + FN

4 F1 score (F1) F1 = 2×
P × R
P + R

5 Average metrics (avg_metrics) avg_metrics =
∑i=4

i=1 ki
4

× 100%

iterations is set to 50. After each iteration, the model’s accuracy
is tested on the test set, and the model and results generated by
each iteration are retained.

Results

Multi-Scale-X-ResNet: Comparison
with other networks

We chose the following models as baseline models: VGG16
(Rodríguez et al., 2018; Simonyan and Zisserman, 2019),
GoogleNetV3 (Szegedy et al., 2016), ResNet50 (He et al.,
2016), ResNet101 (Szegedy et al., 2015), and MobileNetV2
(Sandler et al., 2018).

Table 8 shows the performance indices obtained using
the cross-entropy function for the baseline networks. It can
be seen from Table 8 that the VGG16 network performs the
worst among the baseline networks with an accuracy rate of
90.33%, and ResNet50 performs the best with an accuracy
rate of 92.77%. The GoogleNetV3 and MobileNetV2 networks
achieved 91.43 and 91.83% classification accuracy, respectively.
The GoogleNetV3 network’s Inception structure includes the
fusion of various scale features, which enables it to achieve
excellent performance. The MoblileNetV2 network introduces
an Inverted residual block, causing a smaller loss of high-
dimensional information after passing through the ReLU
activation function. In addition, the linear bottleneck is used
to replace the nonlinear activation to prevent the activation
function from filtering too much practical information during
low-dimensional transformation, thereby improving the
classification performance. From the classification performance
of the GoogleNetV3 and MobileNetV2 networks, low-
dimensional features contain the details of tobacco shred
images, so the loss of this information reduces the network’s
tobacco shred classification performance.

Figure 15 shows the test accuracy of MS-X-ResNet using the
focal loss function with different numbers of residual blocks.
From Figure 15, the accuracy of the MS-A-ResNet + FL
network is 94.84–96.26%, and the accuracy of the MS-B-
ResNet+ FL network is 94.91–96.54%.

Supplementary Table 3 shows the best test accuracies of
the MS-X-ResNet network, in which the accuracy of the MS-
A-ResNet-92 network using the focal loss function test set is
96.26%, and the accuracy of MS-B-ResNet-77 is 96.54%. The
MS-B-ResNet-77 network has advantages in classifying tobacco
shred images, so this network is selected to complete the tobacco
shred classification task.

The performance of different networks using the focal loss
function is given in Table 9, which shows that MS-B-ResNet-
77 + FL has the best performance with the highest accuracy,
average precision (Avg_Precision), average recall (Avg_Recall),
and average F1 score (Avg_F1 Score). Compared with the
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TABLE 8 Performance index of baseline models with tobacco shred images.

Model Accuracy (%) Avg_Precision (%) Avg_Recall (%) Avg_F1 score (%)

VGG16 90.33 90.33 90.20 90.22

GoogleNetV3 91.43 91.32 91.31 91.30

MobileNetV2 91.83 91.97 91.72 91.72

ResNet50 92.77 92.66 92.67 92.66

ResNet101 91.87 91.79 91.76 91.75

TABLE 9 Performance comparison of different models using focal loss function.

Model Accuracy (%) Avg_Precision (%) Avg_Recall (%) Avg_F1 score (%)

VGG16+ FL 90.53 90.40 90.40 90.36

GoogleNetV3+ FL 91.75 91.66 91.65 91.64

MobileNetV2+ FL 93.78 93.72 93.70 93.69

ResNet50+ FL 93.01 92.89 92.91 92.89

ResNet101+ FL 92.04 91.97 91.92 91.90

MS-A-ResNet-92+ FL 96.26 96.24 96.21 96.22

MS-B-ResNet-77+ FL 96.54 96.50 96.50 96.49

baseline networks in Table 8, the performance of all the baseline
networks has also improved.

We choose the high-performing MobileNetV2 + FL
and ResNet50 + FL baseline networks to make a detailed
comparison with MS-B-ResNet-77 + FL for each tobacco shred
type classification. The performance of each model on the test
set is shown in Table 10. The precision of MobileNetV2 + FL
(92.55%) for expanded tobacco silk is 3.02% higher than for
ResNet50 + FL (89.53%), and the probability of other types
of tobacco shred being mistaken for expanded tobacco silk
decreases. The recall rate of MobileNetV2 + FL for tobacco
silk (91.74%) is 3.97% higher than for the ResNet50 + FL
network (87.77%), indicating that MobileNetV2 + FL has
dramatically improved the recognition accuracy of tobacco silk.
Compared with ResNet50+ FL, MobileNetV2+ FL has slightly

FIGURE 15

Accuracy with different number of residual blocks in
MS-X-ResNet.

better performance, especially in classifying between expanded
tobacco silk and tobacco silk, which is the most challenging
classification task because these have no apparent macro-scale
characteristic differences.

Compared with ResNet50 + FL, MS-B-ResNet-77 + FL has
obviously better performance, especially in classifying between
expanded tobacco silk and tobacco silk. The precision of
MS-B-ResNet-77 + FL (94.70% for expanded tobacco silk
and 94.85% for tobacco silk) is 5.17 and 5% higher than
ResNet50 + FL (89.53 and 89.85%, respectively). The recall rate
of MS-B-ResNet-77 + FL (94.39% for expanded tobacco silk
and 94.38% for tobacco silk) is 5.45 and 6.61% higher than for
ResNet50 + FL (88.94 and 87.77%, respectively). The average
precision, recall rate, and F1 score (96.50, 96.50, and 96.49%,
respectively) of MS-B-ResNet-77 + FL are all higher than for
ResNet50+ FL (92.89, 92.91, and 92.89%, respectively).

Overall, MS-B-ResNet-77 + FL performs the best in
classification tests of each tobacco shred type compared with
MobileNetV2 + FL and ResNet50 + FL. We believe this is
because MS-B-ResNet-77 + FL adds a multi-scale structure,
retaining detailed information about very small targets in the
shallow feature map and reducing feature loss.

Time complexity

When deep learning is used for tobacco shred image
classification tasks and performance indicators such as model
precision, recall rate, and F1 score, the time complexity is
also important. Too high time complexity will affect the actual
deployment and application in the field. To ensure that the
model proposed in this study can run smoothly on a computer
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without GPU, MS-X-ResNet model is compared with the
baseline model to emphasize that the modified model can be
practically used for tobacco shred image recognition. The test
is performed on a computer with an Inter(R) Core(TM) i7-
12700K CPU at 3.61 GHz and a running memory of 64 G.
Only one image is used per test to test the actual model
execution speed, which is most likely to occur in actual use.
We calculate the average inference time for 2,458 tobacco shred
images in the entire test set, and the results are shown in
Supplementary Table 4. It can be found that our proposed MS-
B-ResNet-77 network performs on par with ResNet-101. The
network can process nine datasets containing a single image
in 1 s. At the same time, since replacing the model’s loss
function with Focal loss is performed during the model training
process, it will not affect the inference execution speed of
the model.

Discussion

In the deep learning image classification task, the dataset’s
quality is one of the core factors affecting the model’s
classification accuracy. The tobacco shred residue image size
can be too small, and differences between the different types
of tobacco shred residue images are not apparent. These
residue images eventually become dirty data in the sample.
Therefore, we first screened the tobacco shred residue. In
addition, our dataset and current research are constructed
for the subsequent detection of tobacco shred components
and actual field production use. The shooting field of view is
much larger than the single tobacco shred field of view, so
the parameters of the subsequent shooting platform do not
need to be changed.

Furthermore, different tobacco shred types have significant
differences in thickness, light transmittance, and color depth,
resulting in substantial challenges to the binarization of the
tobacco shred images. We have performed many tobacco
shred image processing experiments. The simple, adaptive,
and Otsu’s threshold binarization performance were compared.
Finally, a block threshold binarization method was designed,
and its parameter settings and performance were researched.
After follow-up contour screening, adjustment, and cropping
of the ROI area, a dataset for the four tobacco shred types
was constructed.

Network selection, structure adjustment, and
hyperparameter optimization are complicated in deep learning
classification tasks. In this study, the ResNet network’s Stage 3
and Stage 4 features are fused to obtain the MS-ResNet network.
From the performance of ResNet50 and ResNet101, it can be
concluded that different numbers of Stage 3 blocks affect the
model’s performance in tobacco shred image classification tasks.
To further improve the model’s performance, the number of
blocks in MS-ResNet’s Stage 3 and the impact of the model
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classification performance are explored, and MS-A-ResNet is
obtained. We also reduced the number of Stage 2 blocks in
MS-A-ResNet from 4 to 3 to build MS-B-ResNet with reduced
complexity. Since the image classification difficulty of different
tobacco shred types is quite different, the focal loss function
replaced the cross-entropy loss function to accommodate the
test characteristics of the tobacco shred samples.

The advantages and disadvantages of the proposed methods
and follow-up research directions are now discussed. The
current, complete tobacco shred classification scheme has the
following benefits:

1. The proposed scheme provides a complete set of solutions
for screening samples, taking images, processing images,
and building datasets for tobacco shred classification.

2. The number of raw tobacco shred data samples is large,
consists of actual digital images, and provides a better
generalizability for actual field use.

3. The MS-X-ResNet network demonstrates excellent
performance in classifying and recognizing tobacco
shreds. It has a good classification capability for tobacco
shred images having different sizes and types.

4. The execution speed of the proposed network is fast, so the
execution time in identifying tobacco shred images is low,
saving computing resources and identification time.

5. The field of view of the shooting platform is much
larger than the contour field of view of a single tobacco
shred. The current shooting platform parameters and
experimental data can be directly used in the subsequent
online component detection research of tobacco shreds,
providing good continuity with practical scenarios for
application.

The proposed scheme also has the following limitations:

1. The specific size information of a tobacco shred image
is not used in the model, and the tobacco shred images
are scaled to 224 × 224 pixels before being sent to the
network. Adding the size characteristics of tobacco shreds
may improve the network’s performance.

2. Different convolutional network models have different
sensitivities to the focal loss modulation factor γ. Focal loss
with the same γ value for all convolutional networks in
this study may not achieve optimal performance for each
network.

Follow-up work is as follows: (1) the designed black
box image acquisition device needs to be optimized further
to obtain higher quality images, especially to improve the
lighting installation methods to prevent shadows. (2) The
block threshold binarization used was traditional and was
not robust enough. Semantic segmentation can be used
for tobacco shred extraction. (3) The influence of different

tobacco shred types’ geometric features, such as length, width,
area, and aspect ratio, on the classification can be explored,
and these features can be input into the network with
the image information. (4) The γ parameter of the focal
loss can be optimized for different convolutional network
models, and the network performance can be evaluated after
obtaining the optimal tuning factor corresponding to each
network. (5) This study was performed in the laboratory,
and the method must be validated in practical scenarios
for application.

Conclusion

This study describes the construction of an experimental
platform and subsequent image processing to establish a
tobacco shred dataset aimed at the practical classification and
identification of tobacco shred types on a production line.
Based on ResNet50, the MS-B-ResNet-77 network is proposed.
Performance indicators including accuracy, precision, recall
rate, F1 score, and time complexity are used to evaluate the
network’s performance. This research achieves the following
innovations:

1. A block threshold binarization method is designed by
combining the processing ideas of the adaptive and Otsu
thresholds. Further, contour screening and ROI area
cropping steps are designed to segment tobacco shred
images, and complete tobacco shreds can be obtained by
expanding the ROI area.

2. The MS-X-ResNet network is proposed by fusing the
multi-scale Stage 3 low-dimensional and Stage 4 high-
dimensional features to reduce overfitting risk. The
number of blocks in each stage is optimized to improve the
model’s classification performance with lower complexity.
Furthermore, performance evaluation for MS-X-ResNet is
performed, and it is compared with multiple convolutional
network models for tobacco shred image classification
and recognition.

3. The focal loss function is applied to tobacco shred
classification, which alleviates the influence of varying
degrees of classification difficulty for different tobacco
shred types on the model. This function effectively
improves the accuracy and stability of the model.
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