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Rapid and accurate identification of tree species via remote sensing technology

has become one of the important means for forest inventory. This paper is to

develop an accurate tree species identification framework that integrates

unmanned airborne vehicle (UAV)-based hyperspectral image and light

detection and ranging (LiDAR) data under the complex condition of natural

coniferous and broad-leaved mixed forests. First, the UAV-based hyperspectral

image and LiDAR data were obtained from a natural coniferous and broad-

leaved mixed forest in the Maoer Mountain area of Northeast China. The

preprocessed LiDAR data was segmented using a distance-based point cloud

clustering algorithm to obtain the point cloud of individual trees; the

hyperspectral image was segmented using the projection outlines of

individual tree point clouds to obtain the hyperspectral data of individual

trees. Then, different hyperspectral and LiDAR features were extracted,

respectively, and the importance of the features was analyzed by a random

forest (RF) algorithm in order to select appropriate features for the single-

source and multi-source data. Finally, tree species identification in the study

area were conducted by using a support vector machine (SVM) algorithm

together with hyperspectral features, LiDAR features and fused features,

respectively. Results showed that the total accuracy for individual tree

segmentation was 84.62%, and the fused features achieved the best

accuracy for identification of the tree species (total accuracy = 89.20%),

followed by the hyperspectral features (total accuracy = 86.08%) and LiDAR

features (total accuracy = 76.42%). The optimal features for tree species

identification based on fusion of the hyperspectral and LiDAR data included

the vegetation indices that were sensitive to the chlorophyll, anthocyanin and

carotene contents in the leaves, the partial components of the transformed

independent component analysis (ICA), minimum noise fraction (MNF) and

principal component analysis (PCA), and the intensity features of the LiDAR
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echo, respectively. It was concluded that the framework developed in this study

was effective in tree species identification under the complex conditions of

natural coniferous and broad-leaved mixed forest and the fusion of UAV-based

hyperspectral image and LiDAR data can achieve enhanced accuracy

compared the single-source UAV-based remote sensing data.
KEYWORDS
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1 Introduction

Tree species information is a prerequisite for undertaking

research on the diversity of forest species, which is essential for

constructing prediction models for forest ecosystems. Accurate

identification of tree species is of great significance for forest

resource monitoring, biodiversity assessment, biomass retrieval,

and forest carbon sinks (Lu et al., 2019). To date, the traditional

field survey of tree species typically relies on setting up sample

plots for a manual survey, which has disadvantages such as high

field-work intensity, high cost and long cycle time. In contrast,

the application of remote sensing technology in forest inventory

has the characteristics of high efficiency, short survey time and

low cost, and can reflect the dynamic changes of surface

vegetation. With the continuous development of space

technology and communication sensing technology, remote

sensing has developed from the traditional optical remote

sensing stage to multi-source remote sensing via different

platforms, especially hyperspectral remote sensing and high-

precision light detection and ranging (LiDAR) technologies

(Feng et al., 2020).

Hyperspectral remote sensing, as a passive remote sensing

technology, obtains continuous spectral information by

acquiring the electromagnetic waves reflected by ground

objects. Compared with other remote sensing technologies, it

has the advantages of high spectral resolution and a powerful

ability to distinguish nuances of ground objects (Li et al., 2019).

Previous studies have demonstrated that hyperspectral

technology can be used to identify tree species (Jensen et al.,

2012; Fricker et al., 2019; Modzelewska et al., 2020; Wan et al.,

2020; Zhao et al., 2021). Feature extraction is the key step of tree

species identification by hyperspectral technology and then the

extracted features are used together with classification

algorithms to classify the image pixels and realize tree species

identification. Jensen et al. (2012) identified temperate tree

species in urban area using airborne hyperspectral data, and

the results showed that the classification accuracy increased

from 82% to 91.4% after combining vegetation indices, band

means and band ratios with principal component analysis (PCA)
02
transform features compared with PCA method only. Fricker et

al. (2019) used airborne hyperspectral images and RGB images

for identification of tree species in mixed coniferous forests, and

carried out individual tree level studies on the dominant species

and dead trees with the aid of convolutional neural networks.

Their results showed that the identification accuracy of tree

species via the hyperspectral image was superior to that of the

RGB image. Modzelewska et al. (2020) classified seven different

tree species by acquiring airborne-derived hyperspectral images

of natural and planted forests. An MNF (minimum noise

fraction) transformation was applied to obtain the

uncorrelated components from the hyperspectral data and

then a support vector machine (SVM) model was used to

produce thematic maps of tree species. Their results showed

that the overall classification accuracy of planted forests (77%)

was higher than that of natural forests (64%). Wan et al. (2020)

used GF-5, Hyperion and Landsat8 satellite-derived

hyperspectral data to classify mangrove tree species by random

forest (RF) and SVM models and the corresponding

identification accuracies were 87.12%, 86.82% and 73.89%,

respectively. Zhao et al. (2021) extracted spectral features,

texture features, vegetation indices and statistical features for

feature selection and identification of tree species from the

UAV-based hyperspectral images of a protected plantation

forest with simple structure in Xinjiang, China and a higher

classification accuracy was obtained. To sum up, the accuracy of

individual tree species identification in most studies was not very

high by using the spectral information of hyperspectral data

only. Since hyperspectral data only contains two-dimensional

information of the object being measured, which has poor

segmentation ability for individual trees, especially under

complex forest conditions, most studies on tree species

identification via airborne and spaceborne hyperspectral

images were performed at the plot scale (Wu and Zhang,

2020). Other technologies should be used in combination with

hyperspectral technology in order to carry out fine identification

at the individual tree level.

The LiDAR is an active remote sensing technology that uses

laser light emitted from an optoelectronic sensing device to
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determine the distance to a target and obtain spatial information

about the target (Wang et al., 2019). Compared with traditional

optical passive remote sensing, LiDAR data can accurately

extract vertical information of forest stands, and this capability

offers unparalleled advantages in forestry applications (Man et

al., 2020). The general process of tree species identification based

on LiDAR data includes individual tree segmentation, features

extraction (e.g., three-dimensional texture, clustering degree,

structure and echo intensity), and tree species classification (Li

et al., 2013; Zhang and Liu, 2013). Sooyoung et al. (2009) used

multi-temporal airborne LiDAR data for the identification of

tree species at the individual tree level based on the echo

intensity of trees before and after defoliation, and the

comparison results showed that the LiDAR data after

defoliation was more suitable for identification than that

before defoliation. Shi et al. (2018a) performed feature

extraction and tree species identification at the individual tree

level based on LiDAR data acquired by an airborne Riegl LMS-

Q680i scanner in a mixed forest in Central Europe. The results

showed that the feature of echo intensity provided a higher

identification capability compared with the geometric features.

Even though the identification of tree species at the individual

tree level can be achieved with LiDAR data, a limited number of

such studies using LiDAR data only were conducted. The reason

for this is that the LiDAR technique lacks information at the

spectral dimension level, thus only the geometric and echo

features can be used to conduct tree species identification.

Clearly, the lack of feature information had certain negative

impacts on the accuracy of identification.

It is thus difficult for a single remote sensing data source to

meet the high-precision requirements for tree species

identification. However, LiDAR and hyperspectral data are

highly complementary; therefore, the fusion of the two types

of data has been gradually applied in tree species identification.

The main idea of combining LiDAR and hyperspectral data for

tree species identification is as follows: the LiDAR data is used

for individual tree segmentation, and the hyperspectral features

and LiDAR features are extracted separately and used together

with classification algorithms for tree species identification (Liu

et al., 2013; Shen and Cao, 2017). In 2012, Dalponte et al.

conducted an identification study based on the acquired

airborne LiDAR, multispectral and hyperspectral data. They

found that the identification of the tree species was more

accurate with the addition of tree height information and the

accuracy of identification for the fused LiDAR and hyperspectral

data was superior to that of either using just the LiDAR or

multispectral data. In 2013, the Chinese Academy of Forestry

developed the LiCHy (LiDAR, CCD and Hyperspectral)

airborne observation system to obtain the vertical structure,

horizontal structure and spectral attributes of ground objects at a

higher spatial resolution, which has been widely used in forest

resource surveys (Li et al., 2016; Pang et al., 2016; Wu et al., 2018;

Jia et al., 2020; Zhang et al., 2020; Pang et al., 2021).
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In recent years, the combined UAV-based hyperspectral and

LiDAR data have been used for tree species identification in

consideration of the flexibility and cost (Sothe et al., 2019; de

Almeida et al., 2021; Jiang et al., 2021). For example Sankey et al.

(2017, 2018) employed UAV hyperspectral and LiDAR data for

monitoring forests with varying tree cover (22%-55%) and densities

(1-3.5 trees/10-m cell) and sparse vegetation in arid and semi-arid

areas, and used decision tree methods for the identification of tree

species. Their results showed that the identification performance

was better for the fused data set compared with that of the single

data set. Cao et al. (2021) extracted feature information of

mangroves in southern China based on UAV-based hyperspectral

and LiDAR data, and compared the classification accuracies of three

different classifiers (random forest, logic model tree, rotation forest

ensemble learning algorithm). The results proved that the addition

of the canopy height information from LiDAR could improve the

accuracy of tree species identification compared with hyperspectral

data alone and the rotation forest ensemble learning algorithm was

more accurate and stable in classifying mangrove species. Hartling

et al. (2021) used UAV multispectral, hyperspectral, and LiDAR

data to conduct a comparative study on tree species identification.

The results showed that the identification using the hyperspectral

data was significantly better than that of the multispectral data, and

the height and shape profile extracted from the LiDAR data were

conductive to identifying tree species. Since the research on the

fusion of UAV-based hyperspectral and LiDAR data for tree species

identification is still in the initial stage, the number of relevant

studies is quite limited and most of them focused on simple forest

conditions. The studies on tree species identification based on the

fusion of UAV-based hyperspectral data and LiDAR data in dense

and structurally complex forests such as conifer and broad-leaved

mixed forests were rarely reported. It is also known that the

hyperspectral image and Lidar data contain huge amount of

information, thus the extraction of efficient features is the key

step of realizing rapid and accurate tree species identification.

However, the best feature combination for conifer and broad-

leaved mixed forests was still unknown, which hampered the

application of the fused UAV-based hyperspectral data and

LiDAR data in different forest conditions. Therefore, it is

necessary to conduct individual tree-level species identification

based on the UAV-based hyperspectral image and Lidar data on

conifer and broad-leaved mixed forests.

The general objective of this study is to develop an accurate

tree species identification framework that integrates UAV

hyperspectral image and LiDAR data under the complex

condition of natural coniferous and broad-leaved mixed forest.

Specifically, the objectives are to: (1) obtain the high-precise

hyperspectral data and LiDAR point cloud at the individual tree

level for a natural coniferous and broad-leaved mixed forest; (2)

extract hyperspectral features and LiDAR features, and analyze

the feature importance by RF algorithm in order to select

appropriate features for the single-source and multi-source

data, and (3) perform tree species classification by SVM
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algorithm and determine the best feature combination for tree

species identification in the study area.
2 Study area and data acquisition

2.1 Overview of the study area

The study area (Figure 1) is located inMaoershan Experimental

Forest Farm in Shangzhi City, Heilongjiang Province of China (127°

30′~127°34′ E, 45°20′~45°25′ N), which is a part of the western

slope region of Zhangguangcai Range in the Changbai Mountains.

The area is a low hilly area with an average slope of 10° and an

average elevation of 300 m. The region has a temperate continental

monsoon climate, with an average annual temperature and

precipitation of 3.1°C and 629 mm, respectively. The soil is fertile,

and the soil types are mainly dark brown soil, white mud soil,

meadow soil, swamp soil, etc. The flora belongs to the Changbai

Mountain flora, and the existing stand types include natural

secondary forests at different stages after the destruction and

succession of the original zonal climax community. Major arbor

species include Populus davidiana, Ulmus pumila, Betula

platyphylla, Fraxinus mandshurica, Phellodendron amurense,

Juglans mandshurica, Quercus mongolica, Acer pictum, Tilia

amurensis, Pinus koraiensis and Larix gmelinii.
2.2 Data acquisition

2.2.1 UAV data acquisition
Before the flight of the UAV, the flying path for the study

area was determined. The flight was conducted on August 26,
Frontiers in Plant Science 04
2021 and the weather was clear and cloudless, and the wind

speed was less than 3.0 m/s. The LiDAR sensor was mounted on

an UAV Pegasus D200 (Feima Robotics Technology Company),

the flight speed was set to 5.0 m/s, and the flight altitude was 80

m. The laser source was a RIEGL mini VUX-1UAV. A

measurement distance of >250 m was employed with an

accuracy range of ±1 cm. The number of echoes was 5, the

echo intensity was 16 bit, the wavelength was 905 nm, and the

point density was about 180 points/m2.

The hyperspectral imaging sensor was mounted on an UAV

DJI M300RTK, with a flight speed of 4.5 m/s and a flight height

of 100 m. The hyperspectral imaging sensor was a Resonon Pika

L. The wavelength range was 400–1000 nm, the spectral

resolution was 2.1 nm, and the pixel size was 5.86 µm. The

shooting method was linear push-broom imaging, and the

spatial resolution of the hyperspectral images was 10 cm.

2.2.2 Ground survey data
On September, 2021, the tree species in the sample plot were

investigated in detail. The RGB image obtained by the UAV for

the sample plot was acquired and printed. Then, the actual

investigation of different tree species was carried out in the

sample plot, and the tree species and locations were marked on

the drawing of the RGB image. Combined with a visual

interpretation method, the detailed distribution information of

tree species in the study area was obtained.
3 Methods

At first, the point clouds of individual trees were obtained by

using the distance-based point cloud clustering algorithm for
FIGURE 1

Location of the study area (The red frame of the RGB image on the left is the study area; LiDAR and hyperspectral zoomed-in views are on the
right).
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segmentation of individual trees based on the LiDAR data, and the

UAV hyperspectral image was segmented by the point cloud

projection outline to obtain the hyperspectral data of the

individual trees. We then calculated and extracted the point cloud

features and the hyperspectral features for the individual trees. After

fusing the two types of features, the average value reduction

algorithm of the Gini coefficient in the RF algorithm was used to

calculate the importance of the features; the SVM algorithm was

also used to complete the identification of the tree species. Next, the

feature screening results were obtained according to the results for

the accuracy of identification of the tree species. Finally, a thematic

map for the tree species was produced. The flowchart of the overall

process is presented in Figure 2.
3.1 Data preprocessing

The original point cloud data of the UAV LiDAR was

denoised by LiDAR360 software to remove the high-level gross

errors caused by flying objects (such as birds), and the low-level

gross errors caused by multipath errors or laser rangefinder

errors during measurement. Then, an improved progressive
Frontiers in Plant Science 05
TIN densification proposed by (Zhao et al., 2016) was used to

separate the ground points, and the parameters were selected as

follows: moderate terrain scene, iteration angle 10°, and

iteration distance 1.5m. Finally, the point cloud data were

normalized according to the separated ground points and cut

to obtain the point cloud data for the study area. For the

original hyperspectral data, stitching, radiometric calibration,

geometric correction, and atmospheric correction were

implemented, and then the Savitzky-Golay convolution

smoothing algorithm was used to remove the burr noise

from the hyperspectral image. During data collection, the

GNSS and IMU carried by the UAV can ensure the spatial

accuracy of the data. However, there are still slight deviations

between the two types of data. In order to improve the accuracy

of hyperspectral data, the coordinates of the common ground

objects such as the boundary points of tree crowns, road

corners were extracted from point cloud data, which were

used together with the function of quadratic polynomial

correction in ArcGIS to realize the registration of

hyperspectral data. The data error was within 1 pixel (10

cm), which can ful ly sat i s fy the requirements of

this experiment.
FIGURE 2

Flowchart for the identification of tree species based on fusion of the hyperspectral and LiDAR data.
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3.2 Data acquisition for individual trees

The acquisition of accurate data for individual trees laid the

foundation for the identification of tree species at the individual

tree level. The three-dimensional information contained in the

LiDAR data ensures the unparalleled advantages in individual

tree segmentation compared with other remote sensing data.

Generally, two basic approaches are available for the

segmentation of individual tree point clouds. The first method

is based on canopy height model (CHM), which is to compress

the three-dimensional point cloud data to a two-dimensional

plane, thus reducing the computational complexity; however,

this data reduction approach causes the loss of information, and

the point cloud difference will produce errors in the process of

CHM generation, resulting in a relatively low segmentation

accuracy for individual trees under a complex stand with a

high canopy density (de Almeida et al., 2021). The other method

is to use segmentation of individual trees which directly faces the

point cloud. This method can not only use more point cloud

spatial information to improve the accuracy of segmentation (Li

et al., 2020), but also can be used to extract structural parameters

and features of the individual tree based on the point cloud data.

Therefore, this study used a distance-based point cloud

clustering algorithm (Li et al., 2012) to segment the forest

stand point cloud data and to obtain the point cloud data at

the individual tree level.

The hyperspectral data for individual trees were obtained

based on the LiDAR point cloud data of individual trees. Given

that the LiDAR data was registered with the hyperspectral data,

the positions of the individual trees in LiDAR data corresponded

to those in the hyperspectral data. The concave hull algorithm

was used on the point cloud data of the individual tree to obtain

the projection outline vector file, and then the projection profile

was used to segment the registered hyperspectral image to obtain

the hyperspectral canopy data.
3.3 Feature extraction

3.3.1 Hyperspectral feature extraction
Hyperspectral data contains a massive amount of spectral

information, which may be used for the accurate identification of

tree species. Although the complete hyperspectral image for

individual trees has been obtained through segmentation, the

overlapping and crossing of tree branches at the edges of the

hyperspectral image may result in the existence of mixed pixels.

In addition, previous studies have demonstrated that the spectral

signal of the tree canopy illuminated by sunlight was dominated

by first-order scattering, which was less affected by soil and

shade, hence the data set was more suitable for tree crown

modeling and identification (Coops et al., 2003). Therefore, in

order to obtain more accurate hyperspectral information at the
Frontiers in Plant Science 06
individual tree level, this study selected the spectral average of

100 sunlight pixels around the center of the individual tree as the

hyperspectral data of individual tree. Since the difference in

reflectivity between sunlight pixels and shadow pixels in the

near-infrared region was obvious (Shen and Cao, 2017),this

study determined the sunlight pixels at the 850 nm near-

infrared band with reflectivity greater than 0.25. The

hyperspectral data obtained at the individual tree level were

subjected to PCA in order to select the first 10 components

(PCA1~PCA10), and minimum noise fraction rotation (MNF)

to select the first 15 components (MNF1 ~MNF15), and

independent component analysis (ICA) to select the first 20

components (ICA1~ICA20), respectively. In addition, 18

vegetation indices were extracted, as shown in Table 1. So a

total of 363 hyperspectral features including 300 original bands

(bands 1~300) and 63 components and indices were selected for

identification purposes.

3.3.2 LiDAR feature extraction
The LiDAR point cloud data contains not only accurate 3D

information of the target, but also information on the reflection

intensity, thus the technique provides a strong capability for

accurate segmentation of individual trees, and this information

clearly aids the tree species identification process. Based on the

information of the point cloud for individual trees, four

parameters, namely, tree height (HT), crown width (WC),

crown area (AC) and crown volume (VC), were extracted in

the LiDAR360 software, and three shape features associated with

individual trees, that is, the ratio of the crown width to tree

height (RW/H), the ratio of the crown area to tree height (RA/H)

and the ratio of the crown volume to tree height (RV/H) were

computed according to the above parameters. The formulae

used for the calculations are given in Table 2.

The clustering degree of the point cloud for different tree

species is different. Therefore, the average height (Hnmean), the

standard deviation (Hnstd), the coefficient of variation (HnCV),

the skewness (HnS), the kurtosis (HnK) of the point cloud of

individual trees and the cumulative heights of 25%, 50%, 75%

and 95% (Hn25, Hn50, Hn75, Hn95) for the point cloud of

individual trees were calculated, respectively. Among them, n =

0, 1, 2, which represents the total echo point cloud, the first echo

point cloud and the second echo point cloud, respectively.

Differences in the morphological structure of different tree

species may also lead to some differences in the spatial

distribution of the respective point clouds, thus the number of

points at different quantile heights can be used as a reflection of

the tree structure (Lu et al., 2019). Consequently, the ratio

(HnPm) of the number of point clouds in the height range of

0-20%, 20-40%, 40-60%, 60-80%, and 80-100% to the total

number of point clouds for individual trees were extracted as

distribution features of the point clouds. The calculation is

expressed as Eq. (1), where n = 0, 1, 2, representing the total
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echo point cloud, the first echo point cloud and the second echo

point cloud, respectively; Pm is the proportions of point clouds

within a height range, where m= 0-20%, 20-40%, 40-60%, 60-

80%, and 80-100%; Nn
Pm is the number of different echo point

clouds within the height range; Nn is the total number of echo

point clouds for an individual tree.

HnPm =
Nn
Pm

Nn (1)

Since the intensity features of the echo had high degree of

importance for identification of tree species (Shi et al., 2018a), the

average intensity (Inmean), the standard deviation (Instd), the

coefficient of variation (InCV), the skewness (InS), the kurtosis

(InK) of the point cloud for individual trees were calculated,

respectively. Among them, n = 0, 1, 2, which represents the total

echo point cloud, the first echo point cloud and the second echo

point cloud, respectively. As a result of the above extraction and

calculation, the total number of point cloud features for LiDAR in

this study was 60.
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3.4 Ranking of feature importance

A total of 423 hyperspectral features and LiDAR point cloud

features were obtained by the above methods. If all the features

were involved in recognition of the tree species, this would

increase the computational complexity and workload of the

recognition process, and the high-dimensional features would

reduce the accuracy of the tree species identification due to the

existence of the Hughes phenomenon (Luo et al., 2005; Richards

and Jia, 2008; Taskin et al., 2017). The RF algorithm has a strong

advantage for assessing the importance of variables (Ziegler and

Konig, 2014), thus this study used the Gini exponential mean

descent method in the RF algorithm to analyze the importance

of the features of the hyperspectral image (HSI), LiDAR features,

and HSI+LiDAR fusion features, respectively. After obtaining

the ranking, correlation analysis was performed on these

features, and only the one with the highest importance was

retained among the features with high correlation.
3.5 Identification of tree species

The SVM algorithm is a supervised machine learning

method based on statistical theory and the main idea is to

generate a random hyperplane which keeps moving until the

samples belonging to different categories are located on both

sides of the hyperplane, thus it is a method specifically designed

for classifying small sample training areas. The SVM algorithm

can remedy the shortcomings of traditional classification
TABLE 2 Calculation of shape features.

Features Calculation formulae

RW/H RW/H = WC/HT

RA/H RA/H = AC/HT

RV/H RV/H = VC/HT
TABLE 1 Calculation table for the vegetation index.

Property Vegetation Index Description Computing method

Broadband greenness NDVI Normalized difference vegetation index (r865 - r672)/(r865 + r672)

SRI Simple ratio index r865/r672

EVI Enhanced vegetation index 2.5 × ((r865 - r672)/(r865 + 6 × r672 -7.5 × r464 + 1))

ARVI Atmospherically resistant vegetation index (r865 - (2 × r672 - r464))/(r865 + (2 × r672 - r464))

SGI Sum green index Average value:500 – 599nm

Narrowband greenness RENDVI Red edge normalized difference vegetation index (r750 - r705)/(r750 + r705)

MRESRI Modified red edge simple ratio index (r750 - r445)/(r705 + r445)

MRENDVI Modified red edge normalized difference vegetation index (r750 - r705)/(r750 + r705 – 2 × r445))

VREI1 Vogelmann red edge index 1 r740/r720

REPI Red edge position index Max first derivative: 690 – 740 nm

Light use efficiency PRI Photochemical reflectance index (r570 - r531)/(r531 + r570))

SIPI Structure insensitive pigment index (r800 - r445)/(r800 - r680)

RGRI Red green ratio index
o
699

i=600

ri=o
599

i=500

ri

Leaf pigments CRI1 Carotenoid reflectance index 1 (1/r510) - (1/r550)

CRI2 Carotenoid reflectance index 2 (1/r510) - (1/r700)

ARI1 Anthocyanin reflectance index 1 (1/r550) - (1/r700)

ARI2 Anthocyanin reflectance index 2 r800[(1/r550) - (1/r700)]

Canopy water content WBI Water band index r970/r900
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methods such as the maximum likelihood method in the case of

large volumes of data with high-dimensional and multi-source

features and improve the generalization performance, thus it is

widely used in the remote sensing field (Bahria et al., 2011; Liu et

al., 2013; Zhang and Liu, 2013; Xun andWang, 2015). This study

used the SVM classification algorithm to obtain the

identification results for the tree species via the different data

sources and the different combinations of features by gradually

increasing the features according to the importance of

the features.
3.6 Verification of accuracy and
acquisition of optimal features

In order to evaluate the capability of different feature

combinations in tree species identification, 60% samples for

each species was selected randomly as the modeling sample and

the remaining 40% were used as the test samples. The accuracy

of the results was assessed using the producer accuracy (PA), the

user accuracy (UA), the commission, the omission, the overall

accuracy (OA) and the Kappa coefficient. The feature

combination with the highest and stable identification

accuracy of tree species was taken as the optimal feature

screening result of tree species identification in the study area.

According to the tree species identification results, a thematic

map of tree species in the sample plot was made. Finally, box

charts were made for the selected features to analyze the

identification ability of different features for tree species.
4 Results and analysis

4.1 Segmentation results for individual
trees

4.1.1 LiDAR point cloud segmentation results
for individual trees

There were 1040 dominant trees in the sample plot, and 936

trees were detected during segmentation, of which 880 were

classified correctly. Most of the mis-segmented trees were under-

segmented, probably because the sample plot was natural

coniferous and broad-leaved mixed forest, with a complex

stand structure, high densities and overlapping canopies. A

small amount of over-segmentation was found to exist in the

tall broadleaf canopy. The rate of detection for individual trees

was 90%, and the total accuracy for individual tree segmentation

was 84.62%. The correctly segmented individual trees, including

132 Juglans mandshurica (JM), 363 Larix gmelinii (LG), 223

Tilia amurensis (TA), 73 Quercus mongolica (QM), and 89

Ulmus pumila (UP). The results for the individual trees

segmentation and the projection profile are illustrated in

Figure 3.
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4.1.2 Segmentation results for hyperspectral
image

The hyperspectral image was segmented based on the point

cloud projection profile of individual tree to obtain the

hyperspectral data. The segmentation results for the hyperspectral

image and the average spectral curve of the central sunlight pixels in

the hyperspectral image for different tree species are shown in

Figures 4, 5, respectively. Some of the strip data in the acquired

hyperspectral images were anomalous due to cloud shadow, which

were eliminated for identification purposes. It can be seen from

Figure 4 that the concave hull algorithm can well describe the

individual tree canopy, and the central area of the canopy

corresponds accurately. Some of the tree canopy borders in the

hyperspectral image are dark in color, which is not land but low

shadows at the edge of the tree canopy. It can be seen from Figure 5

that the average spectral curve corresponding to the central sunlight

pixels of the hyperspectral image for different tree species shows the

differences in reflectance in the visible light of green light bands, and

the differences are more significant in the near-infrared bands.
4.2 Results of feature extraction and
ranking importance

Based on the point cloud and the hyperspectral data of

individual trees, the identification features for the tree species

were extracted. The top 40 normalized results for each type of

features (i.e., HSI features, LiDAR features, and HSI+LiDAR

features) in terms of ranking importance are shown in Figure 6.

With regard to the features extracted from the hyperspectral

data, the MNF, the ICA, and the PCA transformed components

and the vegetation indices have higher importance compared to

the original spectrum. For the features extracted from the LiDAR

data, the features of first and total echo intensity are ranked as

the top two features. The ranking of the HSI+LiDAR features

shows that the importance of the spectral features is generally

stronger than that of the LiDAR features, which indicates that

the LiDAR data contains less information pertinent to the

identification of tree species in comparison with that of the

hyperspectral data.
4.3 Identification results of tree species

Based on the SVM algorithm, the three types of data

features, namely, HSI, LiDAR and HSI+LiDAR, were modeled

and subjected to the identification process by gradually

increasing the number of features from 1 to 40 according to

their relative importance. The variation tendency of accuracy

based on multiple (120 times) identification results of tree

species is shown in Figure 7.

It can be seen from Figure 7 that an increase in the number

of features can result in a significant improvement in the
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accuracy when the number of features is relatively small.

However, when the number of features reaches a certain

number, the trend in the curves becomes more stable. The

optimal accuracy can be realized when the number of HSI
Frontiers in Plant Science 09
+LiDAR features, LiDAR features and HSI features is 21, 9,

and 19, respectively. The optimal results of identification and the

indices for accuracy evaluation based on the three types of

features are presented in Tables 3, 4, and 5.
FIGURE 4

Segmentation results for hyperspectral image.
FIGURE 3

The point cloud and the projection profile of individual trees.
frontiersin.org

https://doi.org/10.3389/fpls.2022.964769
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhong et al. 10.3389/fpls.2022.964769
The identification results and evaluation indices in Tables 3, 4,

and 5 show that the three types of data had better performance for

the identification of coniferous and broad-leaved tree species.

Although the LiDAR data yielded the poorest identification

capability, the fusion of LiDAR with HSI resulted in an

enhanced identification performance compared with the use of

the HSI data only. In general, the combined HSI+LiDAR features

yielded the highest accuracy of identification, followed by the HSI

features and LiDAR features. The thematic map of tree species

identification based on the optimal results for the HSI+LiDAR

feature combination is presented in Figure 8.
4.4 The capability of features for tree
species discrimination

According to the identification results based on the

combination of the HSI+LiDAR, the optimal number of

features selected in this study was 21, including 19 HSI

features and 2 LiDAR features. The box plot (Figures 9, 10)

shows the capability of these 21 features in identifying 5 different

tree species. For comparison purposes, the identification

capability of the other three variables in the LiDAR features

was also mapped. Although they were not selected for inclusion

in the final fused data set, it can be seen from Figure 10 that these
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three feature variables of LiDAR did have some effect on the

identification of the tree species. For instance, ICA4 and MNF6

can well separate coniferous and broad-leaved trees, and the

PCA5 and RGRI features differed obviously in Juglans

mandshurica compared with other species. Similarly, PRI and

MNF8 were beneficial for the identification of Quercus

mongolica. Overall, the extracted features presented clear

differences among the different tree species, and the differences

between coniferous and broad-leaved trees were higher than that

among different broad-leaved trees. In addition, as previously

highlighted, the HSI features had a stronger capability to identify

different tree species than the LiDAR features.
5 Discussion

In this study, identification of tree species using the HSI

features alone could achieve a high level of accuracy, whereas the

identification of tree species using LiDAR features on their own

was less accurate. However, it was found that the combination of

hyperspectral and LiDAR features could achieve an

improvement in accuracy over HSI, and this finding is

consistent with the conclusions of independent studies

(Dalponte et al., 2012; Hartling et al., 2021). Zhao et al. (2020)

has pointed out that the average spectrum of the tree canopy can
FIGURE 5

Average spectral curves for different tree species.
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FIGURE 6

The ranking of features based on importance.
FIGURE 7

Accuracy of identification of tree species.
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represent the spectrum of individual trees and can weaken the

influence of mixed pixels, making the approach more suitable for

identification at the individual tree level than pixel-based

identification. Most of the current research concerning the

fusion of hyperspectral and LiDAR data for the identification

of tree species is based on the use of airborne derived data. This

type of study can cover large study areas, but the hyperspectral

data typically has relatively low resolution. In our study, data

acquisition was based on UAV hyperspectral images at low flight

altitude, and the platform was capable of acquiring hyperspectral

images with a spatial resolution of 10 cm. The hyperspectral data

of individual trees obtained by a point cloud projection profile

has more pixels, so that a large number of high quality pixels

may be selected to generate the average spectral curve for the

individual tree. Considering the complexity of natural mixed

coniferous and broad-leaved forests, some mixed pixels do exist

in the overlapping canopy boundaries. Therefore, the selection

of sunlight pixels in the central area of the canopy to obtain the

average spectral curve for individual trees can further reduce the

influence of mixed pixels and improve the identification

accuracy of tree species.

According to the results of tree species identification

presented in Figure 8, and given the distinct differences of the

preferred features in Figures 9, 10 among the five different tree

species, it is clear that the features extracted and optimized are

suitable for the identification of tree species investigated in the

area under study. Using the feature selection capabilities of the

RF algorithm, feature variables that have a positive impact on

species identification can be selected, and the feature dimension

can be greatly reduced without affecting the overall accuracy of
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identification, thereby reducing the complexity of species

identification and improving the overall efficiency of the

identification process.

The optimal feature combination includes 8 vegetation index

features, 3 ICA transformed components, 5 MNF transformed

components, 2 PCA transformed components, 1 original

spectral band feature, and 2 LiDAR intensity features. Previous

studies have also confirmed that the use of biochemical

parameter-based vegetation indices as a means to characterize

and identify tree species can effectively improve the accuracy of

identification (Maschler et al., 2018; Shi et al., 2018b; Wu and

Zhang, 2020). The present study further demonstrated that

certain vegetation index highly correlated with biochemical

parameters can be used for identification of tree species.

Among them, the photochemical reflectance index (PRI) is

very sensitive to the changes in the carotenoid content of

vegetation, while the magnitudes of the anthocyanin

reflectance index 1 (ARI1) and the anthocyanin reflectance

index 2 (ARI2) values reflect mainly the contents of

anthocyanin in leaf tissue. The red green ratio index (RGRI) is

influenced mainly by both the anthocyanin and chlorophyll

contents. However, Wu and Zhang (2020) and Maschler et al.

(2018) pointed out that the identification of tree species based

only on the use of several vegetation indices was not sufficiently

robust, and further feature extraction methods should be

included in the process. Therefore, in this study, the ICA,

MNF, and PCA transformation methods were applied in the

feature extraction process. Although it is not easy to explain

these transformed components in the context of remote sensing

mechanism, present research and other studies showed that ICA,
TABLE 3 Optimal results of tree species identification and accuracy indices based on HSI features.

Class JM LG TA QM UP User accuracy (%) Commission (%)

JM 42 4 2 1 2 82.35 17.65

LG 0 139 3 0 2 96.53 3.47

TA 6 1 77 6 5 81.05 18.95

QM 3 0 3 21 3 70.00 30.00

UP 2 1 4 1 24 75.00 25.00

Producer accuracy (%) 79.25 95.86 86.52 72.41 66.67 OA (%) 86.08

Omission (%) 20.75 4.14 13.48 27.59 33.33 Kappa 0.81
TABLE 4 Optimal results of tree species identification and accuracy indices based on LiDAR features.

Class JM LG TA QM UP User accuracy (%) Commission (%)

JM 37 3 4 2 2 77.08 22.92

LG 3 132 6 0 3 91.67 8.33

TA 10 9 66 8 10 64.08 35.92

QM 1 0 7 17 4 58.62 41.38

UP 2 1 6 2 17 60.71 39.29

Producer accuracy (%) 69.81 91.03 74.16 58.62 47.22 OA (%) 76.42

Omission (%) 30.19 8.97 25.84 41.38 52.78 Kappa 0.67
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PCA, and MNF transformations can compress useful high-

dimensional hyperspectral data into useful components and

improve the accuracy of identification. As shown in this study,

ICA4 did achieve a good separation of coniferous and broad-

leaved tree species. In general, the feature extraction capability of

the ICA and MNF transformation methods, in the context of

tree species identification, was superior to that of the PCA

transformation method. It is worth noting that PCA, MNF

and ICA transformations were used as methods for the

reduction of data dimensions, and the useful information

obtained from the dimensional reduction was concentrated in

the front part of the components. For example, the higher the

PCA component, the higher the amount of information; the

higher the MNF components, the higher the signal-to-noise
Frontiers in Plant Science 13
ratio. However, present results showed that the most “superior”

component didn’t necessarily have the highest importance in

identification of the tree species.

The two most important features of LiDAR were the mean of

the first echo intensity and the mean of the total echo intensity,

respectively. The first echo intensity can reduce multiple

scattering effects in discrete echo systems. The subsequent

LiDAR features included some features related to tree height

such as the 95% quantile height of the first echo and the ratio of

the number of point clouds at 80-100% height, these findings

being similar to those reported previously (Korpela et al., 2010;

Shi et al., 2018a). Although such studies and the present study

have demonstrated that the features of tree height have a

positive impact on the identification of tree species, it is
TABLE 5 Optimal results of tree species identification and accuracy indices based on HSI+LiDAR features.

Class JM LG TA QM UP User accuracy (%) Commission (%)

JM 43 2 2 0 1 89.58 10.42

LG 0 143 2 0 2 97.28 2.72

TA 5 0 78 4 4 85.71 14.29

QM 2 0 3 24 3 75.00 25.00

UP 3 0 4 1 26 76.47 23.53

Producer accuracy (%) 81.13 98.62 87.64 82.76 72.22 OA (%) 89.20

Omission (%) 18.87 1.38 12.36 17.24 27.78 Kappa 0.85
FIGURE 8

Thematic map of tree species.
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believed that the tree height-related features will show some

differences in identification capability for the different regions

from the perspective of model applicability. Despite the fact that

the spectrum of the same tree species in different regions may be

affected by some factors (e.g., season, weather, sensors, etc.), this

can be explained in terms of the remote sensing mechanism;

also, the morphological structure of the same tree species

does not vary significantly in normal forest stands, however,
FIGURE 10

LiDAR features capability for tree species discrimination (JM Juglans mands
UP Ulmus pumila).
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the tree height does vary greatly in different locations due to the

growth cycle or environmental factors. Therefore, in the model

transfer studies, it may be possible to give priority to the

selection of spectral features, morphological structure of the

tree and the echo intensity features in order to achieve

enhanced results.

In general, most of the optimal features for identification of

tree species were derived from hyperspectral data, while relatively
FIGURE 9

HSI features capability for tree species discrimination (JM, Juglans mandshurica; LG, Larix gmelini; TA, Tilia amurensis; QM, Quercus mongolica;
UP, Ulmus pumila).
hurica; LG Larix gmelini; TA Tilia amurensis; QM Quercus mongolica;
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few LiDAR features were utilized. The possible reasons include:

(1) The LiDAR data contains less information than the

hyperspectral data; (2) The high spatial resolution (10 cm) and

high spectral resolution (2.1 nm) of the hyperspectral data

obtained by the UAV system were of high quality, and were

able to provide more accurate features for identification of tree

species than airborne data; (3) The study area for this research

was a natural mixed forest of coniferous and broadleaf trees with

complex forest conditions and high canopy closure, which

resulted in the incomplete acquisition of understory

information by the LiDAR data, while the acquisition of the

hyperspectral canopy information was almost unaffected.

Therefore, the combined effect of these three factors

contributed that the identification capability via the

hyperspectral features was superior to that of LiDAR. Although

the LiDAR data did not play such a prominent role as the

hyperspectral data in the identification of the tree species, the

LiDAR data were, nevertheless, indispensable to the success of

this research. Due to the 3D information acquired by LiDAR, the

data set has unparalleled advantages relative to other remote

sensing in segmentation of individual trees. In this study, we used

the distance-based point cloud clustering algorithm to segment

the LiDAR data into individual trees basis and projected the

profile for individual trees based on the point cloud for individual

trees; the hyperspectral data was then segmented by the profile to

obtain the hyperspectral data of individual trees. Therefore, the

LiDAR and hyperspectral data complemented each other. The

LiDAR data played an indispensable role in the acquisition of

individual tree data, which laid the foundation for species

identification at individual tree level. Thus, fusion of the HSI

features and the LiDAR features achieved the best accuracy for

identification of tree species.

It is noted that the combined UAV hyperspectral imagery

and LiDAR data was used to identify tree species in natural

mixed coniferous and broad-leaved forests in Northeast China.

Although it proved possible to correctly classify the tree species,

there is still a need for further in-depth and systematic studies.

The availability of accurate data at the individual tree level is

clearly the basis for ongoing research on tree species

identification. In the future, we will explore whether HSI can

be involved in individual tree segmentation and develop a point

cloud optimization algorithm for individual tree segmentation to

improve the effect of segmentation in natural coniferous and

broad-leaved mixed forests. In the present work, the traditional

machine learning algorithms were used for identification of tree

species and feature selection. Future research can be conducted

by using other exiting algorithms or new algorithms such as deep

learning. Finally, due to the influences of temporal and spatial

variations, the universality of achievements in remote sensing

technology has always been a focus and difficulty for research. In

this study, the best HSI and LiDAR features for identification of

tree species in the study area were selected, however, their

applicability to other geographical regions needs to be verified.
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6 Conclusions

In this study, hyperspectral image and LiDAR data for a

complex natural coniferous and broad-leaved mixed forest were

performed by UAV. The accurate identification of tree species at the

individual tree level was realized by combining the two types of

data. The screening of optimal features for identification of tree

species was conducted and a thematic map for tree species was

created. By comparing the identification results for tree species with

different data sources, it was demonstrated that the fusion of the

hyperspectral and LiDAR data features resulted in improved

accuracy for species identification. The optimal hyperspectral and

LiDAR features for identification of tree species included the use of

vegetation indices which were sensitive to chlorophyll, anthocyanin

and carotene in the leaves, the partial components of the

transformed ICA, MNF and PCA, and the LiDAR echo intensity

features, respectively. The research will provide data support for

diversity monitoring of forest species, forest biomass inversion and

estimation of forest carbon stocks. The data can also act as a useful

reference source for application of multi-source remote sensing

technology in forestry.
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