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Genotype, mycorrhizae, and
herbivory interact to shape
strawberry plant functional traits

Robert L. Whyle1*, Amy M. Trowbridge2 and Mary A. Jamieson1

1Department of Biological Sciences, Oakland University, Rochester, MI, United States, 2Department
of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, United States
Arbuscular mycorrhizal fungi (AMF) and herbivores are ubiquitous biotic agents

affecting plant fitness. While individual effects of pairwise interactions have

been well-studied, less is known about how species interactions above and

belowground interact to influence phenotypic plasticity in plant functional

traits, especially phytochemicals. We hypothesized that mycorrhizae would

mitigate negative herbivore effects by enhancing plant physiology and

reproductive traits. Furthermore, we expected genotypic variation would

influence functional trait responses to these biotic agents. To test these

hypotheses, we conducted a manipulative field-based experiment with three

strawberry (Fragaria x ananassa) genotypes to evaluate plant phenotypic

plasticity in multiple functional traits. We used a fully-crossed factorial design

in which plants from each genotype were exposed to mycorrhizal inoculation,

herbivory, and the combined factors to examine effects on plant growth,

reproduction, and floral volatile organic compounds (VOCs). Genotype and

herbivory were key determinants of phenotypic variation, especially for plant

physiology, biomass allocation, and floral volatiles. Mycorrhizal inoculation

increased total leaf area, but only in plants that received no herbivory, and

also enhanced flower and fruit numbers across genotypes and herbivory

treatments. Total fruit biomass increased for one genotype, with up to 30-

40% higher overall yield depending on herbivory. Herbivory altered floral

volatile profiles and increased total terpenoid emissions. The effects of biotic

treatments, however, were less important than the overall influence of

genotype on floral volatile composition and emissions. This study

demonstrates how genotypic variation affects plant phenotypic plasticity to

herbivory and mycorrhizae, playing a key role in shaping physiological and

phytochemical traits that directly and indirectly influence productivity.

KEYWORDS

biotic interactions, chemical ecology, genotype by environment, Fragaria x ananassa,
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Introduction

Plant functional trait responses are governed by genotypic

variation and environmental conditions, of which biotic agents

such as mycorrhizae and herbivores are key contributors (Kang

Manjit et al., 1998; Agrawal, 2001; Barrett and Agrawal, 2004;

Grinnan et al., 2013; Mathey et al., 2017). A wide range of plants

are known to associate with arbuscular mycorrhizal fungi (AMF)

in a symbiosis where fungi provide water and nutrients in

exchange for carbohydrates (Bonfante and Anca, 2009; Kiers

et al., 2011) and lipids (Keymer et al., 2017). Plant genotypes

within the same species can exhibit variable responsiveness to

AMF, especially depending on environmental conditions (Berger

and Gutjahr, 2021 and citations within). Determining the genetic

underpinnings and factors that augment or constrain favorable

plant responses to environmental conditions remains a

challenge, especially in the face of global change (Kang Manjit

et al., 1998; Annicchiarico, 2002; Berg and Ellers, 2010; Tooker

and Frank, 2012). Experimental designs evaluating multispecies

interactions are required to determine how intraspecific variation

governs phenotypic plasticity in response to above- and

belowground mutualistic and antagonistic species interactions

(Bardgett et al., 1998; van der Putten et al., 2001; Bardgett and

Wardle, 2003; Tylianakis et al., 2008; Barber and Gorden, 2015).

Co-occurring interactions between plants, mycorrhizae and

herbivores have important effects on plant functional traits and

thus fitness (Vannette and Hunter, 2009; Barber and Gorden,

2015; Bennett and Meek, 2020). AMF can increase

photosynthesis and stomatal conductance (Augé et al., 2016),

above-ground biomass (Cordeiro et al., 2019), enhance plant

reproduction (Barber and Gorden, 2015; Jacott et al., 2017;

Golubkina et al., 2020; Kaur and Suseela, 2020), and

potentially mitigate negative effects of herbivory through either

enhanced tolerance or defense priming mechanisms (see Frew

et al., 2022 and references therein). These fitness benefits have

led to interest in developing AMF for improving ecological

services in managed ecosystems and sustainable crop

production (Berruti et al., 2016; Pagano et al., 2017; Basu

et al., 2018). However, evidence supporting AMF inoculum

application benefits remains mixed (Thirkell et al., 2017; Hart

et al., 2018; Ryan and Graham, 2018). Factors influencing the

benefits of AMF include intraspecific variation in the species

involved (Bennett et al., 2006), abiotic environmental conditions

(Dumbrell et al., 2010; Davison et al., 2021), and biotic

environmental conditions such as mycorrhizal colonization

and herbivores (Vannette and Hunter, 2009; Barto and Rillig,

2010; Schausberger et al., 2012; Barber, 2013; Wang et al., 2015;

Orians et al., 2018). Understanding the ways in which AMF

could help mitigate effects of herbivory and other biotic stressors

is of special importance for developing sustainable and efficient

management practices, especially in agricultural cropping

systems (Basu et al., 2018).
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While a number of studies have evaluated how herbivores

and mycorrhizae interact to influence plant reproductive traits

(Vannette and Hunter, 2009; Borowicz, 2010; Orians et al.,

2018), research examining floral volatile organic compounds

(VOCs) are notably absent. This lack of empirical evidence with

regards to floral volatiles leaves researchers without a conceptual

understanding of how AMF and herbivory together influence

plant-pollinator interactions. Floral VOCs are critical

components of pollinator recognition and attraction to flowers

(Raguso, 2008; Burkle and Runyon, 2017). Additionally, these

compounds are known to influence floral microbes that affect

pollinator attraction and nutrition (Vannette, 2020) as well as

floral herbivores (McCall and Irwin, 2006). Yet surprisingly, only

one study, to our knowledge, has assessed how AMF influence

floral VOC profiles and overall emissions. Becklin et al. (2011)

found that plants with mycorrhizal associations exhibited

reduced floral VOC production, suggesting that AMF could

negatively affect pollination although this finding was context-

dependent. Studies describing the effects of herbivory on floral

VOCs are more numerous, and results similarly illustrate the

importance of ecological context, with variable responses that

depend on herbivore-plant species combinations, flower sex, and

insect feeding modes (Effmert et al., 2008; Kessler and

Halitschke, 2009; Theis et al., 2009; Schiestl, 2010; Pareja et al.,

2012; Burkle and Runyon, 2016). Further studies are needed to

understand how mycorrhizae and herbivores interact to shape

plant functional traits, especially phytochemicals such as floral

VOCs, which play a key role in plant fitness.

To address this knowledge gap,we examined the effects ofAMF

inoculation and herbivory on functional traits of the cultivated

strawberry (Fragaria x ananassa), which is a major crop across the

globe (Simpson, 2018). Using a field-based, potted-plant factorial

experiment, we examined the effects of mycorrhizal spore

inoculation and herbivory on phenotypic plasticity in strawberry

plant physiology, reproduction, biomass allocation, and floral

volatiles in three different strawberry cultivars, representing

distinct genotypes. Given the importance of intraspecific

variation in shaping multispecies interactions, we hypothesized

that strawberry genotype would affect functional trait response to

AMF inoculation and herbivory. We predicted that inoculated

plants would exhibit greater gas exchange, growth and

reproduction, and fluxes of floral volatiles. Further, we expected

AMF inoculation to ameliorate some negative effects of herbivory.
Materials and methods

Plant material, mycorrhizal inoculation,
and growing conditions

We used genetically identical clonal replicates of three

Fragaria x ananassa cultivars (herein referred to as genotypes):
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‘Seascape’, ‘Tribute’, and ‘Wasatch’. Replicate plants of each

genotype were purchased as bare-root plants (Indiana Berry,

Plymouth, IN, USA). In March 2019, these plants were potted in

9.1 L nursery fabric pots with a potting medium consisting of a

2:1:1 mixture of autoclave sterilized sphagnum peat moss

(Lambert, Rivière-Ouelle, Québec, Canada), washed play sand

(Kolorscape, Atlanta, GA, USA), and high-fired calcined clay

(Turface, Buffalo Grove, IL, USA). We conducted mycorrhizal

inoculations in mid-March using a commercial Rhizophagus

irregularis inoculum (500 spores/gram; pure inoculum; Elite 91

Myco Jordan, Murietta, CA, USA). According to manufacturer

instructions, mycorrhizal treatment plants received one

teaspoon of powder inoculant onto the potting medium at the

point of contact with roots and also dusted roots directly.

Bareroot plants were likely colonized by mycorrhizae and

other beneficial bacteria under nursery field conditions prior

to our inoculation treatment. Previous studies, however, indicate

that R. irregularis is an effective colonizer of strawberry roots

(Todeschini et al., 2018). Furthermore, analyses of roots in this

study indicated greater overall colonization of roots by fungal

hyphae (mycorrhizae x genotype: F2,82 = 3.9, P = 0.020), vesicles

(F1,81 = 12.9, P < 0.001), and arbuscules (F1,82 = 10.4, P = 0.002)

in inoculated plants (Supplementary Figure 1).

Plants were arranged into replicated experimental blocks

outdoors at the Oakland University Organic Student Farm

located in Rochester, Michigan, USA (42°39’36.51”) in late

April of 2019. Plants were watered weekly with ~1 L of water.

Plants were initially grown without fertilizer for the first 3 weeks.

Throughout the remainder of the experiment, all plants were

fertilized once weekly by adding a complete nutrient solution

formulated for soilless media (General Hydroponics, Santa Rosa,

CA, USA) to water at half the manufacturer recommendations.

We provided plants with a mixture of FloraGro (2-1-6 NPK),

FloraBloom (0-5-4 NPK), and FloraMicro (5-0-1) for the given

plant stage at the time of watering.
Experimental design and
herbivory treatment

Plants were randomly selected among genotypes to receive

one of four treatments (control, herbivory, mycorrhizae,

herbivory x mycorrhizae), in a randomized complete block

design (n=12 individual plants of each genotype per treatment;

Supplementary Figure 2). Treatment groups were repeated

across 12 blocks, comprised of four sub-blocks. Each sub-block

represented a treatment group and consisted of one plant from

each genotype. Sub-blocks of plants receiving herbivory were

spaced at least 1 m from sub-blocks without herbivory to reduce

possible herbivory-induced volatile signaling (Šimpraga

et al., 2016).

The herbivory treatment was carried out from mid-June to

early July and consisted of two parts: (1) natural herbivory from
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four second and third instar larvae of Vanessa cardui (Carolina

Biological Supply, Charlotte, NC, USA), a cosmopolitan,

continuously breeding migrant butterfly, noted to be one of

the most widespread, abundant, and polyphagous butterfly

species worldwide (Scott, 1992; Janz, 2005). This species is a

broad generalist that has been observed feeding on Fragaria spp.,

and it has been indicated as a potential pest of a variety of

agricultural crops (e.g., Aslam and Wilde, 1991; Kelly and

Debinski, 1999). Caterpillars were restricted to a single leaf per

plant with a mesh bag for 6 days. (2) Simulated herbivory was

carried out three days after caterpillars were removed from

leaves and involved clipping leaf material to remove ~20-25%

along with application of a 1 mM jasmonic acid solution in water

(Supplementary Figure 3). Natural herbivory was followed by

simulated herbivory on all plants in the two treatment groups

receiving herbivory. Data for the herbivory period was collected

only after both simulated and natural herbivory occurred. While

this combination of experimental manipulations prevented us

from determining if plant trait responses were due to tissue loss

or induction of plant defenses, it provided a close approximation

of natural herbivory in situ in such a way that leaf tissue damage

could be standardized.(e.g., see van Kleunen et al., 2004 and

Waterman et al., 2019).
Measuring plant physiology,
reproduction, and biomass

Physiological data were collected using a LI-COR 6800

portable photosynthesis system with head lamp attachment.

Measurements were taken on clear days between 11:00 and

15:00. Photosynthesis (A) and stomatal conductance (gs)

measurements were taken from the newest, fully expanded leaf

on each plant. Samples were taken from undamaged leaves on

plants that had received the herbivory treatment. Chamber

environmental conditions were set to 800 mL/min air flow,

400 µmol/min CO2, 10,000 rpm fan speed, 65% relative

humidity, and photosynthetically active radiation (PAR) set to

1000 µmol m-2 s-1 to simulate daytime sunlight levels.

Temperature was set to ambient so that chamber temperature

matched outside air temperature. Physiological measurements

were taken during three time points: ‘pre-herbivory’, ‘post-

herbivory ’ , and a post-herbivory ‘recovery ’ period

(Supplementary Figure 3).

We measured total flower and fruit number, and fruit weight

(g), total leaf area (cm2), total plant dry weight (g), and root/

shoot dry weights (g; data not shown). The number of flowers,

number of fruits, and fruit weight were recorded twice weekly

over the study period. Total leaf area was calculated at the end of

the experiment using an allometric method developed by

Demirsoy et al. (2005), in which the lengths of upper and left

lobes of the largest and smallest strawberry leaves are used to

calculate total leaf area. Initial plant fresh weight was recorded
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upon receiving bare-root plants and was included as a co-variate

in statistical models. At the end of the study, we harvested and

separated above- and belowground plant parts (flowers, fruits,

leaves, roots). We gently washed potting media away from roots

using water. All plant parts were dried at 60°C for 4 hours or as

needed to record constant mass.
Floral volatile collections

Floral volatiles were collected from new fully expanded

flowers during two sampling periods: immediately after the

herbivory treatment (‘Herbivory’ period) and several weeks

later during a recovery period ( ‘Recovery ’ period;

Supplementary Figure 3). We simultaneously collected 16

floral and two blank samples for a four-hour period between

11:00 and 15:00 on clear days using a dynamic headspace

sampling method similar to Burkle and Runyon (2016). We

attempted to sample floral volatiles from an equal number of

individuals from each treatment combination each day, though

flower availability prevented a uniform number of individuals on

several days, resulting in uneven replication among treatment

combinations. Volatiles were sampled by enclosing flowers in

12 oz. polyethylene terephthalate cups with dome lids (Comfy

Package, Rikkel Corp, NY, USA), pulling air through the semi-

open system (Supplementary Figure 4). A 1/8” hole was drilled

near the of the cup to maintain positive pressure and gas

exchange. We used a flow rate of 200 mL/min to pull samples

through HayeSep Q volatile traps (30 mg of adsorbent; VAS,

Rensselaer, NY, USA) using either a Portable Volatile Assay

System (PVAS22 model, Rensselaer, NY, USA) or an Air Lite

low-flow air sample pump (SKC, Eighty Four, PA, USA).

Average air temperature over sampling time was recorded

using data from the Oakaland University weather station

(weather station ID: KMIROCHE95). We recorded pump type

for each sample and included it as a random effect in mixed effect

general linear models. Prior tests indicated that these collection

systems were functionally equivalent. We eluted traps with 200

µL of hexane into GC vials containing microinserts and stored

samples at 20°C prior to chemical analyses. After VOC

collections, flowers were cut at the base of the receptacle, dried

for 48 hrs at 60°C and weighed.
Chemical analyses

Floral volatiles were analyzed on an Agilent 7890A gas

chromatograph (GC) with an Agilent 5977B mass

spectrometer (MS) and HP-5 column (30 m x 250 µm x 0.25

µm) with helium as a carrier gas. The GC oven was maintained

at 40°C for 1.5 min, then increased by 5°C/min to 175°C and 25°

C/min to a final temperature of 280°C which was held for 2 min.

Standards for trans-2-hexen-1-al, a-pinene, benzaldehyde, 6-
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methyl-5-hepten-2-one, cis-3-hexanyl acetate, D-limonene,

benzyl alcohol, ocimene isomers, nonanal, p-anisaldehyde,

trans-ß-ionone, and the internal standard, nonyl acetate, were

purchased from Sigma-Aldrich (St. Louis, MO, USA). The

internal standard was added at 9% v/v concentration to all

hexane blanks, standards, and sample elution aliquots for GC

analysis. Compounds were identified using NIST 08 Mass

Spectral Search Program (National Institute of Standards and

Technology, Gaithersburg, MD, USA) and confirmed by

comparing retention times and mass spectra with commercial

standards when available.

Volatiles were quantified by normalizing peak areas by the

internal standard and applying the compound-appropriate four-

point standard curve. In cases where samples contained volatiles

for which we did not have standards, compounds were

quantified as equivalents of compounds with similar functional

groups. Peaks were integrated using Agilent’s Agile 2 integration

software. If multiple peaks coeluted, manual drop-down

integration was used. Quantities were then normalized by dry

flower mass and converted to hourly emission rates. Strawberries

produced three ocimene isomers, but due to some emissions

being below the limit of detection and issues with co-eluting

peaks, these isomers were analyzed col lect ively as

ocimene isomers.
Measuring root colonization by
mycorrhizal fungi

To verify the effectiveness of our mycorrhizal inoculation, we

measured AMF root colonization as % hyphal, vesicular, and

arbuscular structures per root length. Specifically, dried roots

were transferred to tissue cassettes, cleared for 5 mins in 3%

KOH, acidified for 30 mins in 2% HCl, and stained for 20 mins

in 0.05% trypan blue solution (methods described in Phillips and

Hayman, 1970). Roots were scored for AMF colonization using

the magnified intersection method (McGonigle et al., 1990) at

100 intersections per root.
Statistical analyses

All statistical analyses were conducted using R Statistical

Software (v4.1.2; R Core Team, 2021). We investigated treatment

effects and their interactions on physiological traits,

morphological traits, floral volatile emission rates, and

colonization rates by fitting response variables to linear mixed

models with block as a random effect followed by three-way

ANOVA tests, and Tukey HSD tests to determine pairwise

differences. Additionally, floral volatile emission models

included pump ID as a random effect. Air temperature at

sampling time of physiology measurements, initial plant

weight, and average air temperature during volatile collections,
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were included as covariates in physiological, morphological, and

volatile models, respectively. Least square means are reported.

Treatment effects on floral volatile composition were tested

using three-way MANOVAs (‘adonis’ in vegan package in R).

The ‘betadisper’ function (‘vegan’ package in R) was used to

evaluate differences in volatile dispersion. Non-metric

multidimensional scaling (NMDS) was used to visualize

treatment effects on composition and dispersion. We used

similarity percentage analysis (‘simper’ function in R) to

determine which compounds contributed most to differences

in significant treatment effects.

In addition to total volatile class emission rates, we analyzed

the top five terpenes, top two benzenoid, and top two aliphatic

compounds that contributed to differences among significant

effects based on similarity percentage analysis results. These

compounds included ocimene isomers, 6-methyl-5-hepten-2-

one, a-farnesene, D-limonene, a-pinene, benzaldehyde, p-
anisaldehyde, cis-3-hexanyl acetate, and (E)-3-hexen-1-ol. All

emission rates were natural log-transformed to meet

assumptions of normality. The long-chained aldehydes

hexenal, heptenal, octanal, nonanal, and decanal were removed

from analyses due to high variability in ambient background

volatile collections (i.e. blank samples), making it difficult to

reliably quantify emissions of these compounds from flowers in

the field. Additionally, the sesquiterpenes a-copaene and ß-
Frontiers in Plant Science 05
bourbonene were excluded from analyses as they were detected

in less than a third of samples.
Results

Effect of genotype and biotic treatments
on plant physiology, reproduction,
and biomass

Genotype was the primary determinant of variation in

photosynthesis (A) and stomatal conductance (gs) (Figure 1;

Table 1). Prior to herbivory treatments, there were no significant

differences in A among genotypes and gs was approximately 30%

higher in Wasatch than in other genotypes. During the post-

herbivory and recovery sampling periods, Tribute exhibited

higher A and gs relative to Seascape and Wasatch. In recovery

measurements, plants receiving herbivory exhibited 16% higher

conductance rates (Table 1).

Reproductive traits were influenced by genotype and both

biotic treatments. Genotypes differed in total flower and fruit

number and flower dry weight (Figure 3; Table 2). Herbivory

explained the greatest amount of variation in strawberry

reproductive traits. Specifically, the herbivory treatment

reduced fruit weight by 20% and total flower and fruit number
FIGURE 1

Photosynthesis (A) and stomatal conductance (gs) of Seascape (Pre-herbivory:n = 39; Post-herbivory and Recovery: n = 48), Tribute (Pre-
herbivory: n = 39; Post-herbivory and Recovery: n = 48), and Wasatch (Pre-herbivory: n = 37; Post-herbivory and Recovery: n = 48).
Physiological measurements were collected pre-herbivory (mid-May), post-herbivory (early-July), and after an herbivory recovery period (mid-
August). Bars are least-square means ± 1SE. Brackets with an asterisk represent significant pairwise differences (P ≤ 0.05) as determined by
Tukey’s HSD tests. * = <0.05, ** = <0.01, *** = <0.001.
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by 19% and 25%, respectively. (Figures 2A–C; Table 2).

Mycorrhizal inoculation enhanced flower number by 20% and

fruit number by 17% (Figures 2A, B; Table 2). Mycorrhizal

inoculation also benefited the total fruit yield (measured by

weight), although that effect was genotype-specific (Figure 3;

Table 2). Namely, Wasatch responded most strongly to the AMF

treatment, with 30-40% greater fruit production overall. Total

fruit weight produced by Wasatch over the growing season

increased by 42% when grown in the mycorrhizal treatment

with no herbivory. Even when exposed to herbivory,

mycorrhizal inoculation enhanced fruit production by 34% on

average (Figure 3; Table 2). We found no interactive treatment

effects of herbivory and mycorrhizae on strawberry

reproductive traits.

Genotype and herbivory were key predictors of variation in

strawberry total plant dry weight and leaf area. Wasatch root and

shoot dry weights were ~40% larger and had over twice the leaf

area of Seascape and Tribute plants by the end of the study.

Similar to reproductive traits, herbivory negatively impacted all

biomass metrics. Herbivory reduced total dry weight by 15%

(Figure 2D; Table 2), which was partitioned into a 13% decrease

in root weight (F1,119 = 12.2, P = <0.001) and 21% decrease in

shoot dry weight (F1,121 = 20.5, P = <0.001; see Figure 2D for

total dry weight effects) across genotypes. However, there were

no significant effects on root:shoot ratio (data not shown).
Frontiers in Plant Science 06
Herbivory reduced final total leaf area of all genotypes equally

by ~20% (Figure 2E; Table 2).
Effect of genotype and biotic treatments
on floral volatile emissions

Flowers from all genotypes consistently produced 24

common volatile compounds, including 12 terpenoid, 3

aliphatic, 7 benzenoid, one S-containing, and one C5

branched-chain compound (Figure 4; Supplementary Table 1).

Similar to other reproductive traits, genotype had a stronger

overall influence on variation in floral volatile emission rates and

composition relative to biotic treatments (Figures 5, 6; Tables 3,

4). Biotic treatments primarily affected volatile emission rates

during the ‘herbivory’ sampling period, and treatment effects

were less apparent during the ‘recovery’ period (Figures 4–6;

Tables 3, 4). Temperature positively influenced emission rates of

all compound classes except aliphatics during the ‘herbivory’

period, and all but benzenoids and aliphatic compounds during

the ‘recovery’ period (Table 3). Flower dry weight was generally

pos i t ive ly a ssoc i a ted wi th a l l vo la t i l e compound

classes (Table 3).

During the ‘herbivory’ volatile collection period, the

composition of strawberry flower volatile emissions differed
TABLE 1 Mixed model ANOVA results showing effects on plant physiological measurements: Photosynthesis (A) and stomatal conductance (gs).

Treatments Pre-herbivory Post-herbivory Recovery

A gs A gs A gs

Mycorrhizae 0.079 1.193 3.056 0.422 2.277 0.399

Herbivory NA NA 1.265 0.132 1.790 4.67*

Genotype 0.866 15.70*** 21.80*** 10.62*** 7.109** 5.73**

Mycorrhizae*Herbivory NA NA 0.895 1.608 0.025 0.368

Mycorrhizae*Genotype 0.766 0.956 0.422 0.242 0.243 0.272

Herbivory*Genotype NA NA 0.265 0.489 0.468 1.263

Temperature 2.847 50.22*** 21.28*** 0.012 9.790** 9.02**
frontiers
NAs indicate when variables or covariates were not used in models. Significant F values are in bold: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. Temperature at the time of measurement was used as a
covariate.
TABLE 2 Mixed model ANOVA results examining effects on plant biomass allocation response variables.

Treatments Flower dry
weight

Total flower
number

Total fruit
weight

Total fruit
number

Total dry
weight

Total leaf
area

Mycorrhizae 0.144 10.043** 3.100 5.773* 0.521 3.687

Herbivory 0.001 13.472*** 8.107** 22.214*** 17.281*** 17.137***

Genotype 21.584*** 2.864 2.443 15.894*** 89.372*** 94.810***

Mycorrihzae*Herbivory 3.746 0.008 0.418 0.002 0.021 2.508

Mycorrhizae*Genotype 5.878** 0.356 2.494 0.493 1.305 0.514

Herbivory*Genotype 0.600 1.413 0.272 0.408 0.829 2.453

IPW 6.937 30.655*** 1.279 6.967** 11.408*** 5.152*
NA indicates when covariates were not included in model. Bolded F values are significant: * P < 0.05; ** P < 0.01; *** P < 0.001. Initial plant weight (IPW) was included in models as a
covariate in all models except for % root length colonized, in which root dry weight was included as a covariate.
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significantly between genotypes across all treatment groups

(F2,57 = 4.152, P = 0.001; Figure 5A). Similarity percentage

analyses showed ocimene isomers, a-pinene, a-farnesene, and
6-methyl-5-hepten-2-one, and (E)-3-hexen-1-ol were

responsible for differences among genotypes (Supplementary

Table 2). Volatile compositions also differed between herbivory

treatment and herbivory control plants (F1,57 = 3.245, P = 0.009;

Figure 5). These compositional differences were largely driven by

three compounds: ocimene isomers, (E)-3-hexen-1-ol, and 6-

methyl-5-hepten-2-one (Supplementary Table 2).

Total floral volatile emissions differed by genotype during

‘herbivory’ collections (Table 3). Wasatch had the highest

emission rate among genotypes, followed by Tribute, and was

significantly higher than Seascape (Table 3). Herbivory increased

total terpene emissions by 61% (Figure 6; Table 3). This effect

was driven by several individual terpene compounds. Notably,

herbivory increased ocimene isomers by ~200% (Figure 6).

Herbivory affected benzenoid emissions differently among

genotypes (Table 3), with no effect on Tribute and Wasatch

but a 50% reduction in benzenoids compared to controls

(Table 3). Aliphatic compounds differed among genotypes, as

Seascape emitted significantly less than Tribute and Wasatch

(Figure 6; Table 4).

During the ‘recovery’ collections, floral volatile composition

differed only by genotype (F2,85 = 6.406, P = 0.001; Figure 5B),

indicating that herbivore damage did not have long-lasting

effects. Variation in volatile composition among genotypes was
Frontiers in Plant Science 07
largely driven by a-pinene, ocimene isomers, and a-farnesene,
and cis-3-hexanyl acetate (Supplementary Table 3). Surprisingly,

Tribute flowers emitted 70% more benzenoids than Seascape

(Figure 6; Table 3). There were no significant treatment effects

on total emissions, terpenes, and aliphatic compound during

‘recovery’ collections.
Discussion

Adaptive phenotypic plasticity is influenced by plant

genotype, and thus shapes plant functional trait response to

antagonistic and mutualistic species interactions (Agrawal,

2001). In this study, we found that genotype was the primary

factor contributing to variation in strawberry plant

physiological, reproductive, growth, and phytochemical traits.

Moreover, genotype interacted with herbivory and mycorrhizae

to yield cultivar-specific outcomes to biotic interactions,

confirming our hypothesis that genotype would interact with

biotic agents to influence trait expression. For example, while

mycorrhizal inoculation improved the number of flowers and

fruits in all strawberry genotypes and across herbivory

treatments, the benefits of inoculation on total fruit yield were

only found in one genotype, in which yields were increased by

30-40%. While AMF inoculation and herbivory treatments

altered several growth, reproductive, and volatile traits,

genotype produced greater effect sizes than treatments across
B C

D E

A

FIGURE 2

Key effects of herbivory and mycorrhizal inoculation treatments (n = 36) on the number of flowers (A) and fruit (B), fruit weight (C), plant dry
weight (D), and total leaf area (E). Asterisks with brackets indicate significant main effects (P < 0.05). Asterisks above data points indicate
herbivory effects and asterisks on the right indicate mycorrhizal inoculation effects. Values are least-square means ± 1 SE.
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the majority all plant traits. In this study, the Wasatch genotype

demonstrated relatively higher mycorrhizal colonization

compared to controls, which likely underlie some of the

observed genotype x AMF interactive effects. Previous studies

indicate that plant genotypes, including different strawberry

cultivars, can show variable responsiveness to different species

or strains of AMF (Chávez and Ferrera-Cerrato, 1990; Vestberg,

1992; Estaún et al., 2010; Sinclair et al., 2014), and recent

research highlights the importance of fungal diversity (De

Tender et al., 2021; Frew et al., 2022). Because we did not

identify fungal species when measuring root colonization, there

is uncertainty about AMF community composition and the

ex t en t to wh i ch our inocu l a t i on con t r ibu t ed to

higher colonization.

AMF have been shown to alter plant reproductive traits such

as increased flower and fruit number as well as fruit yield (Gange

and Smith, 2005; Wolfe et al., 2005; Perner et al., 2007; Varga

and Kytöviita, 2010). While increases in fruit yield as a result of
Frontiers in Plant Science 08
mycorrhizal inoculation are often attributed to improvements in

physiology and nutrient availability (Smith and Read, 2010),

increases in flower number can be attributed to both

physiological and hormonal changes that result from

mycorrhizal associations (Bryla and Koide, 1998), leading to

extended flowering periods and increases in the number of

flowers (Torelli et al., 2000). In this study, we expected that

inoculated plants would have improved trait expression as a

result of improved physiology. However, we found inoculation

had no effect on photosynthesis and stomatal conductance, yet

inoculated strawberry plants produced more flowers and fruits

than controls, indicating that the increased floral display could

be a result of changes in plant signaling upon symbiosis rather

than improved gas exchange. While many studies have found

mycorrhizal plants exhibit improved gas exchange, others have

found no effect or even reductions in the same measures, which

can ultimately result in reduced yields (see Augé et al., 2016;

Balestrini et al., 2020 and references therein). However,
FIGURE 3

Key effects of herbivory and mycorrhizal inoculation treatments on plant allocation patterns within genotypes (n = 12). Asterisks with brackets
indicate significant main effects and asterisks without brackets indicate significant pairwise differences from post hoc analyses (P ≤ 0.05). Values
are least-square means ± 1SE. * = <0.05, ** = <0.01, *** = <0.001.
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enhanced flower production can improve a plant’s attractiveness

to pollinators (Bauer et al., 2017), and studies have shown that

increasing pollinator abundance can improve strawberry yield,

firmness, shelf-life, and nutritional content (Klatt et al., 2014).

Our results suggest that even in the absence of physiological

benefits, mycorrhizal inoculation may increase strawberry

production indirectly by increasing the number of flowers

produced by host plants, but benefits will still depend on

cultivar selection.

As expected, herbivory had negative effects on the expression

of nearly all growth and reproductive plant traits. Interestingly,

herbivory altered floral VOC composition and emission rates

immediately following treatment application, but effects were

absent several weeks after herbivory, during the recovery period.

Floral VOC compositional shifts were driven largely by an

increase in terpene emissions, in particular of ocimene
Frontiers in Plant Science 09
isomers. b-Ocimene plays a key role in plant tri-trophic

interactions as it is emitted from plant vegetative tissues upon

herbivore attack and is known to attract predators and

parasitoids of herbivores (Loughrin et al., 1994; Miresmailli

et al., 2010). Although there are no studies directly linking

floral b-ocimene to increased pollinator activity, its spatial and

temporal emission patterns resemble those of known bee

attractants, suggesting that b-ocimene may be important for

pollinator interactions (Farré-Armengol et al., 2017). Thus, it’s

possible that increases in b-ocimene following herbivore attack

could improve plant fitness by reducing herbivore abundance

while simultaneously increasing pollinator attraction to flowers.

In addition to herbivore effects on volatile composition, all

three genotypes exhibited significantly different compositions,

driven largely by variation in a-farnesene, a-pinene, and

ocimene isomers. Thus, both herbivory and genotypic effects
FIGURE 4

Heatmap of floral volatile emissions for strawberry plants in each treatment group during the ‘herbivory’ (left) and the ‘recovery’ (right) volatile
sampling periods. Colors illustrate relative differences in floral volatile emissions as determined by range-scaled log-transformed values of VOC
emission rates (ng/g of dry flower/hr) for each compound. Compounds are grouped by volatile class: (1) terpenes, (2) benzenoids, (3) aliphatic
compounds, (4) C5 branched-chain compounds, and (5) S-containing compounds.
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on floral VOC composition have the potential to influence

pollinator attraction to strawberry flowers. Klatt et al. (2013)

and Ceuppens et al. (2015) found that differences in floral VOC

profiles among three Fragaria x ananassa genotypes influenced

attraction of bee pollinators such as Osmia bicornis and Bombus

impatiens to strawberry genotypes. Further studies examining
Frontiers in Plant Science 10
the effects of crop floral volatile profiles on pollinators,

herbivores, florivores, and natural enemies are needed, as these

biotic interactions influence plant fitness as well as crop yield

and quality.

In summary, our findings indicate that genotype plays a key

role in determining how herbivory and mycorrhizae influence
FIGURE 6

Summary of floral volatiles collected after the herbivory treatment period across genotypes. Total terpene (purple), benzenoid (red), and
aliphatic (green) emissions are bolded. Graphs for individual compounds are colored according to their compound class. Asterisks above
brackets indicate significant pairwise differences among genotypes (P ≤ 0.05). Asterisks below brackets indicate significant pairwise differences
among herbivory treatments within genotypes (P ≤ 0.05). Sample sizes (n) of genotype and herbivory treatment combinations range from 6
(Seascape, No herbivory) to 21 (Tribute, no herbivory) plants. * = <0.05, ** = <0.01, *** = <0.001.
BA

FIGURE 5

Non-metric multidimensional scaling (NMDS) plots for herbivory (A) and recovery (B) volatile sampling periods. Plots illustrate variation in floral
volatile composition for plants of three strawberry genotypes (Seascape, Tribute, and Wasatch) grown in one of four treatments (control,
mycorrhizae, herbivory, and herbivory x mycorrhizae). Sample sizes (n) of genotype and treatment combinations ranged from 3 to 11 for a total
of 70 plants during the herbivory period. Recovery period sample sizes range from 6 to 10 for a total of 97 plants.
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TABLE 3 Mixed model ANOVA results evaluating effects on floral volatile organic compound classes.

Treatments Total Total Total Benzenoids Aliphatic
compounds

C-5 branched-chain
compounds

S-containing compound

1.205 0.130 0.662 0.006

0.692 1.268 2.619 2.671

2.776 5.945** 4.850* 0.984

1.754 0.735 0.719 0.053

1.267 1.811 2.588 1.131

4.912* 1.005 0.913 0.331

4.357* 0.007 4.078* 38.779***

4.912* 41.286*** 20.825*** 13.219***

0.452 2.237 0.233 2.100

2.893 1.330 0.774 2.830

6.902** 0.594 0.632 0.285

0.390 0.280 0.150 0.071

1.737 0.285 2.531 0.326

1.264 0.182 0.350 2.232

2.527 1.876 5.001* 15.917***

12.411*** 32.815*** 9.899** 2.993

ing of collection was included in models as a covariate.
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Emissions Terpenes

Herbivory Period

Mycorrhizae 0.208 0.099

Herbivory 0.708 7.045*

Genotype 4.249* 0.224

Mycorrhizae*Herbivory 3.520 0.154

Mycorrhizae*Genotype 0.008 0.414

Herbivory*Genotype 2.994 2.312

Temperature 0.114 9.350**

Flower dry weight 43.600*** 22.742***

Recovery Period

Mycorrhizae 1.933 2.691

Herbivory 1.287 1.939

Genotype 2.770 1.804

Mycorrhizae*Herbivory 0.001 0.606

Mycorrhizae*Genotype 2.100 0.829

Herbivory*Genotype 2.181 1.459

Temperature 6.784* 4.386*

Flower dry weight 48.805*** 36.982***

Significant F values are in bold: * P < 0.05, ** P < 0.01, *** P < 0.001. Temperature at the begin
n
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TABLE 4 Mixed model ANOVA results examining effects on individual floral volatile organic (VOC) compounds.

Terpenes Benzenoids Aliphatics

ne ocimene a-pinene benzaldahyde p-anisaldehyde cis-3-hexanyl acetate (E)-3-hexen-1-ol

0.030 0.537 0.378 0.848 0.365 0.091

12.702*** 8.133** 0.634 0.996 1.663 1.089

8.261*** 8.198*** 3.875* 2.271 5.596** 4.492*

0.006 1.602 0.911 1.615 0.836 0.378

0.634 1.208 1.692 1.367 1.750 0.380

1.780 1.454 5.895** 4.317* 1.227 0.738

10.013** 0.579 3.317† 2.493 0.005 0.035

9.303** 23.085*** 7.698** 1.242 40.696*** 27.091***

0.000 0.401 0.032 0.830 2.571 0.455

1.003 0.992 1.963 0.268 1.093 1.390

24.052*** 51.153*** 18.076*** 0.883 0.320 1.440

1.002 0.036 0.000 0.087 0.577 0.118

1.688 0.113 1.859 2.475 0.235 0.776

0.323 0.563 1.890 0.666 0.239 0.361

5.222* 2.885 4.299* 3.420 1.313 12.933***

29.281*** 25.404*** 12.563*** 2.285 29.718*** 34.600***

covariate.
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Treatments a-farnesene D-limonene 6-methyl-5-hepten-2-o

Herbivory Period

Mycorrhizae 0.001 1.346 0.016

Herbivory 4.084* 5.596* 1.131

Genotype 4.542* 3.339* 2.172

Mycorrhizae*Herbivory 0.081 0.661 0.130

Mycorrhizae*Genotype 1.078 2.279 0.638

Herbivory*Genotype 1.144 0.267 2.613

Temperature 2.669 13.021*** 0.084

Flower dry weight 15.611*** 29.564*** 16.859***

Recovery Period

Mycorrhizae 0.005 2.443 0.005

Herbivory 0.591 0.126 0.390

Genotype 4.985** 0.342 0.835

Mycorrhizae*Herbivory 1.851 0.010 0.496

Mycorrhizae*Genotype 1.642 0.921 0.340

Herbivory*Genotype 0.725 1.021 0.945

Temperature 1.796 0.056 1.848

Flower dry weight 13.520*** 5.816* 38.906***

Temperature at the beginning of volatile collection and flower dry weight were included in models as a
Significant F values are in bold: * P < 0.05, ** P < 0.01, *** P < 0.001.
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strawberry functional trait expression. We found that AMF

inoculation can mitigate negative consequences of herbivory to

plant reproductive success, confirming our original hypothesis,

but genotype will ultimately modulate plant response. Thus, the

value of AMF, and likely other beneficial microbes, for

enhancing crop production depend on genotype and cultivar

selection. Here, we demonstrate that AMF inoculations have the

potential to increase fruit yield by ~40%, which may be especially

important for crop production systems lacking natural soil

microbes, like those that involve soilless potting media

supplied with nutrient solutions. In these systems, the addition

of AMF may reduce nutrient inputs and losses. Furthermore,

this study illustrates the importance of genotype and herbivore-

induced phenotypic plasticity in understanding variation in

floral volatiles emissions and composition, which is important

not only for shaping plant interactions with pollinators (e.g.

Klatt et al., 2013) but also plant-associated microbes (e.g. Wei

et al., 2022). Developing a better understanding of how

genotypic variability shapes phenotypic plasticity in functional

traits, including phytochemicals that mediate species

interactions, can help inform cultivar selection and selective

breeding for sustainable agriculture.
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