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Litchi flowering management is an important link in litchi orchard

management. Statistical litchi flowering rate data can provide an important

reference for regulating the number of litchi flowers and directly determining

the quality and yield of litchi fruit. At present, the statistical work regarding

litchi flowering rates requires considerable labour costs. Therefore, this

study aims at the statistical litchi flowering rate task, and a combination of

unmanned aerial vehicle (UAV) images and computer vision technology is

proposed to count the numbers of litchi flower clusters and flushes in a

complex natural environment to improve the efficiency of litchi flowering

rate estimation. First, RGB images of litchi canopies at the flowering stage

are collected by a UAV. After performing image preprocessing, a dataset is

established, and two types of objects in the images, namely, flower clusters

and flushes, are manually labelled. Second, by comparing the pretraining

and testing results obtained when setting different training parameters for

the YOLOv4 model, the optimal parameter combination is determined. The

YOLOv4 model trained with the optimal combination of parameters tests best

on the test set, at which time the mean average precision (mAP) is 87.87%.

The detection time required for a single image is 0.043 s. Finally, aiming at

the two kinds of targets (flower clusters and flushes) on 8 litchi trees in a real

orchard, a model for estimating the numbers of flower clusters and flushes

on a single litchi tree is constructed by matching the identified number of

targets with the actual number of targets via equation fitting. Then, the data

obtained from the manual counting process and the estimation model for the

other five litchi trees in the real orchard are statistically analysed. The average

error rate for the number of flower clusters is 4.20%, the average error rate for
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the number of flushes is 2.85%, and the average error for the flowering rate is

1.135%. The experimental results show that the proposed method is effective

for estimating the litchi flowering rate and can provide guidance regarding the

management of the flowering periods of litchi orchards.

KEYWORDS

litchi flowering rate, convolutional neural network, object detection, UAV images,
image analysis

Introduction

Litchi fruit is full of bright, tender and juicy flesh and is
one of the four famous types of fruits of south China. In the
growth and production of litchi trees, fruit yield is affected
by various factors, such as the climate, fertilizer and irrigation
(Yang et al., 2015; Zhu, 2020). Many studies have shown that
together with the external factors above, the number of litchi
flowers, an internal factor, directly impacts litchi fruit yields as
well as fruit colour and weight; too many or too few flowers is
not conducive to the growth of litchi trees (Lin J. et al., 2022).
Therefore, regulating the number of litchi flowers plays a key
role in the management of litchi florescence. Statistical litchi
flowering rate data can provide an important reference for litchi
flower regulation, and they also directly determine the quality
and yield of litchi fruit, which have important economic value
(Li et al., 2012; Qi et al., 2019).

At present, the statistical work regarding the litchi flowering
rate is still based on manual counting, which requires
considerable manpower and time (Ren et al., 2021). To
save time, farmers use past experience to estimate the litchi
flowering rate, which often leads to ineffective litchi flowering
management. Therefore, accurate litchi flowering rate statistics
are important and can not only provide guidance for the
effective management of the flowering period but also reserve
nutrition for the tree as needed to facilitate later flowering and
fruit setting. The litchi flowering rate is determined by both litchi
flower clusters and flushes, as shown in Figure 1, where the blue
boxes are the flower clusters to be counted and the red boxes are
the flushes to be counted.

In recent years, with the rapid development of artificial
intelligence, technologies such as remote sensing have provided
great potential for precision agriculture and intelligent
agriculture. The development of UAV-based remote sensing
systems has taken remote sensing to the next level. Compared
to traditional remote sensing techniques, UAVs flying at low
altitudes have resulted in ultrahigh spatial resolution images,
which has greatly improved the performance of monitoring
systems. Furthermore, UAV-based monitoring systems have
high temporal resolution, which enhances the flexibility of
the image acquisition process. Because of their high spatial

resolution, good mobility and flexibility, unmanned aerial
vehicles (UAVs) are widely used in many agricultural fields,
including plant protection, crop monitoring, and crop yield
evaluation (Mukherjee et al., 2019; Tsouros et al., 2019).

In addition, deep learning, as a new research direction in
machine learning, has also been developed. Target detection
based on deep learning has become a popular research direction
in computer vision, and many new target detection algorithms
have been proposed by various researchers (Li J. et al., 2021).
Compared with traditional target detection algorithms, deep
learning-based methods have the advantages of higher speed,
higher precision and stronger robustness in complex conditions
(Tan et al., 2021; Ren et al., 2022). At present, the commonly
used target detection algorithms based on deep learning are
mainly divided into one-stage target detection algorithms and
two-stage target detection algorithms. The main difference
between them is whether they need to generate a regional
proposal in advance.

The one-stage target detection algorithms, also known as
end-to-end learning-based target detection algorithms, have no
steps for generating candidate regions and directly obtain the
final detection results; representative one-stage target detection
algorithms include YOLO (Redmon et al., 2016; Redmon and
Farhadi, 2016, 2018; Bochkovskiy et al., 2020) and single-shot

FIGURE 1

Flower clusters and flushes during the litchi flowering stage.
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detector (SSD) (Liu et al., 2016). Two-stage target detection
algorithms are also known as target detection algorithms based
on region nomination. This kind of algorithm first generates
candidate regions that may contain objects and then further
classifies and calibrates the candidate regions to obtain the
final detection results. Representative two-stage target detection
algorithms are the region-based convolutional neural network
(R-CNN) (Girshick et al., 2013), Fast R-CNN (Girshick, 2015),
Faster R-CNN (Ren et al., 2017) and so on.

The advantage of one-stage target detection algorithms is
that their detection speeds are high, but the disadvantage is
that they have difficulty extracting feature information from
small targets, which leads to poor detection effects for local
targets. The advantage of two-stage target detection algorithms
is that their detection precision is relatively high, but the
disadvantage is that their candidate region generation methods
and relatively complex network structures lead to low detection
speeds, preventing them from achieving real-time detection
(Bouguettaya et al., 2022; Ghasemi et al., 2022).

However, equipment combining unmanned aerial systems
(UASs) and computer vision technology has gradually become a
new type of equipment in modern agricultural engineering.

Some researchers have used UAVs to estimate the yields of
crops with low growth heights, such as rice, potato, and wheat
(Al-Gaadi et al., 2016; Hassan et al., 2019; Reza et al., 2019; Duan
et al., 2021). Li et al. (2017) used UAVs to take rice images from
the heading stage to the maturity stage, and the images were
used for cluster analysis and image segmentation according to
the colour characteristics of rice to obtain the number of rice
panicles; this value was input into a yield estimation formula to
estimate the rice yield. Li et al. (2020) used a UAV to acquire
RGB and hyperspectral imaging data from a potato crop canopy
at two growth stages, realizing aboveground biomass and potato
crop yield prediction. Zhou Y. et al. (2021) used UAVs to obtain
RGB images of wheat booting and flowering periods. Through
image processing, the colour and texture feature indices of the
wheat images were obtained by analysing their correlations with
wheat yield, establishing an effective yield estimation model
(Zhou Y. et al., 2021).

To accurately measure the yields of fruit trees, in recent
years, some researchers have used UAVs to take fruit images
and have combined them with deep learning methods to detect
the number of fruits (Barbosa et al., 2021; Zhou X. et al., 2021).
Apolo-Apolo et al. (2020) used images captured by a UAV to
monitor a total of 20 commercial citrus trees and then developed
an automated image processing methodology to detect, count
and estimate the sizes of citrus fruits on individual trees using
deep learning techniques. Xiong et al. (2020) used UAVs to
obtain mango images. Using the You Only Look Once version
2 (YOLOv2) model to conduct training and testing on the
mango dataset, the detection precision reached 96.1%, so this
approach could estimate the number of mango fruits. Li D.
et al. (2021) proposed a scheme based on UAV images and the

YOLOv4 model to detect and locate suitable picking points on
the fruiting branches of longan. The above studies show that
methods based on UAVs and deep learning can solve related
problems in agriculture.

In view of the advantages of UAV applications in agriculture
and the existing problems regarding litchi flowering rate
estimation, this study proposes a scheme based on UAV images
and computer vision detection technology. The scheme helps to
accurately count the numbers of litchi flower clusters and flushes
in natural environments and thus enables the quick calculation
of the litchi flowering rate. The scheme can also help to quickly
and accurately count the flowering rates of other fruit trees.
The main innovations of this study are as follows: (1) the fast
statistical litchi flowering rate data acquisition method proposed
in this study can provide an important reference for regulating
the number of litchi flowers; (2) the effects of different training
parameters on the performance of YOLOv4 for detecting flower
clusters and flushes are compared; (3) it is determined that
the use of a fitting equation to modify the statistical results of
YOLOv4 is very effective; and (4) an evaluation of flowering rate
estimation schemes is conducted through trials in real orchards.
In summary, compared with the results of manual statistics, the
average error rates of litchi flower clusters and flushes calculated
by the target detection and number estimation models are
4.20 and 2.85%, respectively; the average error between the
predicted flowering rate and the actual flowering rate is 1.135%.
These results can guide litchi management during the flowering
period while providing a reference for the fruit setting and fruit
production stages of litchi.

Materials and methods

Materials, image acquisition, image
preprocessing, image annotation and
dataset construction

Material samples
The experimental litchi orchard is located within the

Institute of Fruit Tree Research, Guangdong Academy of
Agricultural Sciences, on Wushan Road, Tianhe, Guangzhou.
The average annual temperature at this site is 24–25◦C. The
litchi variety sampled is Guiwei litchi, and its flowering period
is generally from March to April. The experimental area is
approximately 0.12 hm2. The area contains 36 trees with an
average age of 26 years. The geographic location information of
the sample is shown in Figure 2A, and the top view of the litchi
orchard where the samples are located during the flowering
period is shown in Figure 2B.

Image acquisition equipment
In this study, a DJI Mavic 2 Pro UAV is used for image data

acquisition. This UAV has an omnidirectional sensing system,
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FIGURE 2

Geographical location of the material samples and the top view of the litchi orchard during the flowering period. (A) Geographical location of
material samples. (B) Top view the of litchi orchard during the flowering period.

its maximum flight time is 31 min, and the maximum remote
control signal distance is 10 km. The sensor is a Hasselblad L1D-
20c camera with a focal length of 28 mm, and the aperture value
is f/2.8–f/11 (Elkhrachy, 2021).

Image acquisition
The image data are acquired during two time periods, 8:00–

10:00 a.m. and 15:00–17:00 p.m., on clear days from March
15 to April 15, 2021. The image acquisition method is shown
in Figure 3. During the image acquisition process, the UgCS
software of the UAV ground station is used to plan the flight
mission and then it transmits the mission to the UAV, receives
the image transmission data returned by the UAV, and completes
the image acquisition procedure for the selected litchi tree area.
When planning the flight mission, the imaging angle is −90◦

[that is, the camera lens is perpendicular to the ground (top
view)], the flight height is 5.9 m, the flight speed is 1 m/s, the
horizontal overlap rate is 70%, and the longitudinal overlap rate
is 80%. The UAV acquires 280 images during the litchi flowering
period with a resolution of 5472 × 3648, the image format is
JPG, and the collected image data are shown in Figure 4A.

Image preprocessing
The image preprocessing phase mainly includes two

aspects: image cropping and data enhancement. To meet the
computational requirements of the model and reduce the
computational volume and the computing time of the training
model, the images with a resolution of 5472 × 3648 are
compressed to 5120 × 3600, and then image cropping is
carried out. One image is cropped into 4 × 5 = 20 images,
and the resolution of each cropped image is 1280 × 720. The
image cropping process is shown in Figure 4B. To ensure the
effectiveness of the training model and obtain enough training
samples, first, the images that are not clear, such as those
that are overexposed and blurred, are screened, and finally,
300 images are selected as the original images of the dataset.

Then, the original images are enhanced with three types of data
enhancement: horizontal flipping, vertical flipping and 180◦

rotation. This process increases the generalization ability of the
network and reduces the probability of overfitting. The dataset
contains 1,200 images after data enhancement. The process of
data enhancement is shown in Figure 4C.

Image annotation and dataset construction
As this paper uses a supervised deep learning model

for target detection, before target detection, the positive and
negative samples need to be labelled, that is, the regions of
interest (ROIs) in the images need to be manually annotated.
In this study, LabelImg software is used to label the samples in
the images, and the samples are labelled with two items, flowers
(flower clusters) and flushes (flushes). The labelling boxes
are rectangles surrounding the ROIs. The image annotation
information of the flower clusters and flushes is saved in VOC
format, and the corresponding XML files are generated after
the labelling procedure (Li et al., 2022; Lin Y. et al., 2022).
The XML file contains the image storage information, image
name, annotation name and coordinate information of each
labelled rectangle box. The data annotation process is shown in
Figure 4D.

In Table 1, the numbers of images and pieces of sample
information contained in the dataset are counted. The 1,200
images in the dataset are divided into a training set, validation
set, and test set at a ratio of 3:1:1. The total number of samples is
47,192, including 38,362 litchi flower cluster samples and 8,830
flush samples.

Calculation method for the litchi
flowering rate

The flowering rate of a single litchi tree is determined by
the numbers of flower clusters and flushes it possesses and is
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FIGURE 3

Image acquisition method.

calculated as follows:

Flowering rate of litchi

=
The number of flower clusters per litchi

The number of flower clusters
and the number of flushes per litchi

× 100%

(1)

In the formula, the number of flower clusters per litchi is the
total number of flower clusters on a single litchi tree; the number
of flushes of a single litchi tree is the total number of single litchi
without flower clusters. Flower clusters are branches that have
the ability to head and have more than one flower bud; flushes
are branches that do not have the ability to head.

Target detection model and its training
process

To detect litchi flower clusters and flushes accurately and
in real time, the YOLOv4 model, a one-stage target detection
algorithm based on deep learning, is used as the detection
algorithm in this paper. First, the ROIs are labelled for 1,200

images in the dataset; then, the labelled images are used for
pretraining, and the optimal model parameters of the YOLOv4
model are selected by comparing the obtained precision values;
finally, the YOLOv4 model is trained and tested with the
selected parameters. The whole training process is shown in
Figure 4E.

The YOLOv4 model consists of four parts: the input,
backbone, neck, and head. In this paper, the network structure
of the YOLOv4 model is drawn with a 640 × 640 image
size as the input size, as shown in Figure 5. Its backbone
network is CSPDarknet53, SPP is used as an additional
module for the neck, PANet is used as a feature fusion
module for the neck, and the head follows the head of
YOLOv3. Cross-stage partial (CSP) networks can enhance the
learning ability of CNNs, which can maintain precision, reduce
computational bottlenecks, and lower memory costs while
achieving lightweight computing. CSPDarknet53 adds CSP to
each residual block of Darknet53, which increases the depth
of the convolution kernel and improves the feature extraction
ability of the model for Flower_cluster and Flush. The main
role of the SPP network is to increase the perceptual field
of the network. PANet adds the DownSample operation after
UpSample to improve the effect when feature stitching. In
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FIGURE 4

Materials, image acquisition, image preprocessing, image annotation, and model training. (A) Image data collected by UAV. (B) Image cropping
process. (C) Data enhancement process. (D) Data annotation process. (E) Whole training process.

conclusion, the network structure of YOLOv4 further improves
the ability to detect Flower_cluster and Flush in orchard
scenes.

Experiments and results

Model performance evaluation indices

At present, many performance evaluation indices are
available for target detection based on deep learning. Because

this study focuses on whether litchi flower clusters and flushes
can be accurately identified, the numbers of correct and
incorrect recognition results can be used to evaluate the
performance of the model. The precision (P), recall (R), F1-score
(F1), average precision (AP), mean AP (mAP), and speed are
used in this study. Among them, precision is a statistic from the
perspective of prediction results, and it refers to how many of the
predicted positive samples are actually positive samples; recall is
a statistic from the perspective of the real dataset, and it refers
to how many positive samples the model identified out of the
total positive samples. F1 is the harmonic average of precision
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TABLE 1 Numbers of images and pieces of sample information
contained in the dataset.

Dataset Images Flower_cluster
bounding boxes

Flush bounding
boxes

Training dataset 720 22908 3579

Validation dataset 240 7863 1841

Testing dataset 240 7591 1638

Complete dataset 1200 38362 8830

and recall; in this paper, the score threshold is 0.5. The precision,
recall and F1 are calculated as follows:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 =
2∗P∗R
P + R

(4)

where TP means that positive samples are correctly identified as
positive samples, FP means that negative samples are wrongly
identified as positive samples, and FN means that positive
samples are wrongly identified as negative samples. The TP, FP,
and FN samples of flower clusters and flushes are shown in
Figure 6.

AP is the area enclosed by the PR curve and the coordinates
of a single category. This index can comprehensively weigh the
precision and recall of the target, and it is a more comprehensive
index of the single-category recognition effect of the model.
mAP is the average of the AP values obtained for all categories,
which reflects the overall detection precision of the model and
is the most important performance evaluation index for target
detection algorithms.

Optimization of the model parameters

In the same model training process, parameters such as
the size of the input image, the batch size and the number
of iterations have great impacts on the detection performance
of the utilized model. To obtain the best model performance,
the model is pretrained and tested to select the best model
parameters. The hardware platform configuration used for the
model training and testing experiments includes an Intel (R)
Core (TM) i9-10980XE CPU @ 3.00 GHz processor, a 48-GB
NVIDIA RTX A6000 graphics card, 32 GB of memory, a 1-TB
solid-state drive and a 16-TB hard disk drive. The computer
system runs on Ubuntu 18.04, the programming language is
Python, and the deep learning framework is PyTorch.

Input image size
The input image size has a great impact on the performance

of the model. Increasing the input image size is conducive

FIGURE 5

Network model structure diagram of YOLOv4.
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FIGURE 6

TP, FP, and FN samples of flower clusters and flushes.

TABLE 2 mAPs and speeds obtained with different input image sizes.

Resolution of each
input image (pixels)

mAP (%) Speed of detection
per image (s)

320× 320 84.32 0.036

480× 480 87.09 0.039

640× 640 87.87 0.043

800× 800 87.78 0.052

960× 960 87.61 0.069

1280× 720 85.61 0.073

to improving the precision of the model because a reduction
in the resolution of the feature map easily leads to a lack of
semantic information for small targets; thus, increasing the
input resolution will improve the semantic information of the
small targets, which is conducive to improving the detection
precision for these small targets. However, when the input image
size is increased to a certain extent, the detection precision is
reduced if the size continues to increase. Because the network
structure does not change, the receptive field of the network is
also certain. Therefore, if the input image size is increased, the
proportion of the receptive field in the image decreases, leading
to the local information extracted by the network being unable
to effectively predict the targets at all scales and thus causing the
detection precision to decrease.

During the pretraining process, the other model parameters
are maintained: during the freezing stage, the learning rate
is 0.001, the number of epochs is 500, and the number of
iterations is 90,000; in the unfreezing stage, the learning rate
is 0.0001, the number of epochs is 500, and the number of
iterations is 180,000. After changing only the input image size
of the YOLOv4 model, information regarding the precision and
detection speed of the model performed on the test dataset is
shown in Table 2.

As seen from Table 2, when the input image size increases
from 320 × 320 to 480 × 480, mAP increases by 2.77%,

TABLE 3 Information regarding the mAPs obtained with
different batch sizes.

Batch_size mAP (%)

Freezing Unfreezing

2 2 87.26

4 2 87.87

8 2 87.81

4 4 86.15

8 4 86.03

16 8 84.39

and when the input image size increases from 480 × 480 to
640 × 640, mAP increases by 0.78%. In these two stages, with
the increase in the input image size, the semantic information
regarding flower clusters and flushes is constantly enriched,
and the detection precision of the model improves. When the
input image size increases from 640 × 640 to 800 × 800 and
from 800 × 800 to 960 × 960, mAP decreases by 0.09 and
0.17%, respectively. In particular, the original images are used
for training and testing, and the mAP values are not the best
because the receptive field of the network is limited; beyond a
certain extent, the network is unable to predict flower clusters
and flush targets at all scales. Overall, when the input image
size is 640 × 640 pixels, the detection precision of the model
is optimal. Although the detection speed is not the best, it can
meet the requirements of real-time operation. A comprehensive
measurement of 640 × 640 pixels is chosen as the input image
size of the YOLOv4 model in this study.

Batch size
The batch size has a significant impact on the convergence

speed of model training and random gradient noise. Increasing
the batch size within a reasonable range can improve the
utilization of memory, require fewer iterations to run an epoch,
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FIGURE 7

Line chart of the mAP of detection with different numbers of
epochs.

conduct processing faster than a smaller batch size, and cause
fewer training shocks. However, blindly increasing the batch
size can lead to insufficient memory capacity. In addition,
due to the reduced number of iterations required to run an
epoch, the precision of the model is lower than that obtained
with a small batch size. Masters and Luschi (2018) tested the
performance of models with different batch sizes, and increasing
the batch size led to a decline in test performance; the use of a
small batch yielded the best training stability and generalization
performance; when the batch size was 2 or 4, the performance
was optimal (Masters and Luschi, 2018).

The training process of the YOLOv4 model is divided into
a freezing stage and an unfreezing stage. During the freezing
stage, the backbone of the model is frozen, and the feature
extraction network does not change and occupies less video
memory. In the unfreezing stage, the backbone of the model is
not frozen, the feature extraction network and all parameters
of the network change, and the occupied memory is large.
Normally, the batch size in the unfreezing stage is larger than
that in the freezing stage. At the same time, to meet the memory
and computing requirements of the GPU, the batch size can only
be set to a power of 2.

This study compares the model precision values obtained
with different batch sizes, and the results are shown in Table 3.
As seen from Table 3, when the batch size for the unfreezing
state of the model is fixed to 2, mAP increases by 0.61% and
decreases by 0.06% from 2 to 4 and from 4 to 8 for the freezing
state, respectively. When the freezing and unfreezing states of
the model are increased from (2, 2) to (4, 2), mAP increases
by 0.51%, and when they are increased from (4, 2) to (8, 4)
and from (8, 4) to (16, 8), mAP decreases by 1.84 and 1.64%,
respectively. This is because increasing the batch size within a
reasonable range results in fewer iterations and is beneficial to
the stability of training; however, if the batch size is too large,
the memory capacity of the computer is insufficient, and all the
characteristics of the flower clusters and flushes in each iteration
cannot be detected. In summary, when the batch size is 4 in T
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TABLE 5 Quantitative information for the manual counts and the YOLOv4 model detection results.

Number Actual number of
flower_clusters (clusters)

Identified number of
flower_clusters (clusters)

Actual number
of flushes (pcs)

Identified number of
flushes (pcs)

1 237 174 10 6

2 215 132 4 3

3 302 229 13 9

4 486 379 48 29

5 285 203 19 12

6 396 285 17 11

7 363 271 46 35

8 511 348 23 17

FIGURE 8

Fitting results for the numbers of flower clusters and flushes on eight litchi trees.

the freezing and unfreezing stages and the batch size is 2 in the
unfreezing state, the mAP of the model is 87.87%.

Training epochs
An epoch represents the process of training all training

samples once. It is not sufficient to transfer the complete dataset
once in the neural network; the complete dataset in the same
neural network must be transferred many times. However, with
the increase in the number of epochs, the times required for
updating the weights in the neural network also increase, and
the curve changes from underfitting to overfitting. Thus, an
appropriate number of epochs is very important for maximizing
the precision of the model. As shown in Figure 7, the mAP of
the model increases as the number of epochs increases while
keeping the other parameters constant because at this time,
the network model is gradually optimized and enters the best
fitness state. However, when the number of epochs is 1,200, mAP
decreases by 0.25% compared with that obtained with 1,000
epochs because the network model enters the overfitting state,
which leads to a reduction in network model precision. When
the number of epochs is 1,000, the mAP of the model is optimal.

Through the pretraining process and the selection of the
YOLOv4 model parameters, when the input image size is
640 × 640, in the freezing state, the batch size is 4, and the

learning rate is 0.001; in the unfreezing stage, the batch size
is 2, and the learning rate is 0.0001. The number of epochs is
1,000, and mAP is 87.87%. The YOLOv4 model has the best
detection precision for flower clusters and flushes on the test
dataset. Utilizing the abovementioned experimental hardware
platform for testing, the average detection speed is 0.043 s per
image, so the proposed approach is able to quickly count the
numbers of litchi flower clusters and flushes, thus improving the
efficiency of estimating the litchi flowering rate.

Comparison of model feature
extraction capabilities

To further evaluate the feature extraction ability of the
YOLOv4 model after preferential parameter selection, the Faster
R-CNN, YOLOv4-tiny, CenterNet, and SSD models are trained
and tested on the same dataset, and the model performance
evaluation indices are analysed and compared with those of
the YOLOv4 model. As shown in Table 4, compared with
those of other models, the higher R and P values of YOLOv4
show that YOLOv4 not only has fewer missed detections but
also fewer false detections, which is a good indication that
YOLOv4 has good feature extraction ability. At this time, the
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AP values of both flower clusters and flushes are higher, and
the AP value of flower clusters can reach more than 90%; the
overall mAP is also higher. However, Faster-RCNN has the
highest R and the lowest P, which indicates that the Faster-
RCNN model missed the least detections and misidentified the
most detections; CenterNet has the lowest R and the highest
P, which indicates that CenterNet missed the most detections
and misidentified the least detections. Compared with other
models, the YOLO series model has a higher detection speed,
and the SSD is also faster than Faster-RCNN, indicating that
the one-stage target detection algorithm is more advantageous
than the two-stage target detection algorithm. The YOLOv4-
tiny model detects each image 0.007 s faster than the YOLOv4
model, which also proves that YOLOv4 still has room for speed
improvement. The above results show that after preferential
parameter selection for the YOLOv4 model, which is relatively
good, this model can be applied to litchi flower rate estimation
in real orchards.

Models for estimating the numbers of
flower clusters and flushes on a single
litchi tree

To obtain an accurate flowering rate for a single litchi tree,
the numbers of flower clusters and flushes detected by the
model need to be corrected. First, eight litchi trees are randomly
selected from the standard orchard, and the actual numbers
of flower clusters and flushes on each litchi tree are calculated
manually. Then, the images of each litchi tree are captured from
the top of the UAV, and the model trained in the previous section
is used to detect the numbers of flower clusters and flushes
on each litchi tree. Finally, the numbers produced by manual
statistics and the numbers detected by the model are fitted
with separate equations to construct a model for estimating the
numbers of flower clusters and flushes on a single litchi tree.

When using YOLOv4 to detect the number of flower clusters
and flushes on each litchi tree, as the images are obtained from a
top view by the UAV, the edge parts of litchi trees appear to shade
each other in the images. Therefore, combined with the manual
statistics of the specific area of a single litchi tree. Photoshop is
used to crop the target litchi images from the original images.
To further improve the detection precision of YOLOv4, first,
the original images are cropped by 4 × 5, and then the cropped
images are detected so that the numbers of flower clusters and
flushes on each tree can be obtained more accurately.

Table 5 provides information regarding the numbers
produced by manual counting and YOLOv4 model detection.
For the eight litchi trees, the actual range of the number of
flower clusters is 215–511, and the actual range of the number
of flushes is 4–48. This is because the eight trees are randomly
selected and vary in their tree shapes and ages. In addition, the
flowering rates of litchi trees are affected by external conditions,
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FIGURE 9

Results of the YOLOv4 model detection results obtained under different lighting conditions.

such as the available nutrients and light conditions; as a result,
the flowering rates of each tree are different. Exponential
fitting, linear fitting, logarithmic fitting, binomial fitting and
power fitting are used to fit the corresponding flower cluster
and flush data in Table 5. According to the comprehensive
analysis and comparison results, as shown in Figure 8, the best
fitting method for flower clusters is binomial fitting, the fitting
equation is y 0.0006x2

+ 0.9458x + 66.315, and the coefficient
of determination R2 is 0.9639; the best fitting method for flushes
is linear fitting, the fitting equation is y 1.4139x + 0.9382,
and the coefficient of determination R2 is 0.9652. A strong
correlation is observed between the two types of samples.

Analysis of the test results obtained for
a real orchard

Test results obtained with different lighting
conditions

Different lighting conditions can affect the detection effect
of the YOLOv4 model. The image brightness obtained with
front lighting is stronger than that obtained with back lighting.
In this study, 48 images are collected from the real orchard
scene and divided into two situations, front lighting and back
lighting, with 24 images in each; this is done to analyse the
influence of different lighting conditions on the detection results
of the YOLOv4 model.

Table 6 shows the precision information of the YOLOv4
model detection process under different lighting conditions.

From the data in Table 6, compared with those under front
lighting conditions, the AP of flower_cluster, the AP of flushes,
and the mAP of the YOLOv4 model under back lighting
conditions are 2.92, 1.57, and 2.24% higher, respectively.
From the YOLOv4 model detection results obtained under
different lighting conditions (shown in Figure 9), the YOLOv4
model has better detection results for both types of targets
in the back lighting scenario because the brightness of front
lighting is too strong, which leads to image overexposure.
In particular, overexposure of flower clusters diminishes the
colour component differences between them and the litchi
leaves, resulting in less distinct differences between the edges
of the flower clusters and the litchi leaves; the YOLOv4 model
has difficulty recognizing the flower clusters in such cases. In
contrast, although the image brightness of back lighting is much
weaker, the colour components of the flower clusters and litchi
flushes are more obvious and easier to distinguish as the images
are taken in sunny weather. Therefore, for future sample data
collection or research, trials in clear weather should be avoided,
and cloudy or overcast days should be chosen whenever possible.

Test results obtained with different sparseness
levels

The heading sparseness of litchi varies in different areas
of the same tree depending on their different nutritional and
lighting conditions, especially at the top of the canopy, where
the heading ability of litchi tends to be stronger. In this study, 48
images are collected and divided into sparse and dense groups
according to the sparseness of the flower clusters and flushes in
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real orchard scenes, with 24 images in each group. The influence
of different sparseness levels on the detection results of the
YOLOv4 model is analysed.

Table 7 shows the precision information of the YOLOv4
model detection results obtained under different density
conditions. According to the data in Table 7, compared with that
of dense condition, the overall effect of the sparse condition is
better, and mAP of model detection for sparse images is 9.68%
higher than that for dense images. From the YOLOv4 model
detection results obtained under different sparseness conditions
(shown in Figure 10), the results for two types of targets are
better in sparse scenes. This is mainly due to the occlusion and
overlap of dense images, which lead to false model detection,
thus reducing the precision of the model. In contrast, for sparse
images, most of the samples can be separated clearly without
being covered by other samples. In addition, the backgrounds
of sparse images are relatively simple and their edge features
are good; thus, the model has good performance for sparse
images.

Error analysis of the flowering rate
To further validate the estimation model in section “Models

for estimating the numbers of flower clusters and flushes on
a single litchi tree,” five additional varieties of litchi trees,
including Guiwei, Huaizhi, and Nuomici, are randomly selected
from the real orchard, and the actual numbers of flower clusters
and flushes of each tree are obtained by manual counting.
A UAV is used to collect the images, and the YOLOv4 model
is used to calculate the numbers of flower clusters and flushes
on each tree. According to the numbers of flower clusters and
flushes calculated by the YOLOv4 model, the predicted numbers
of clusters and flushes are obtained via correction by using the
fitting equations in section “Models for estimating the numbers
of flower clusters and flushes on a single litchi tree.” Then,
the flowering rate of each litchi tree is calculated according to
the actual number and the predicted number, and the error is
analysed. The error in this study is the absolute value of the
actual number minus the predicted number, and the error rate
is equal to the percentage ratio of this error divided by the actual
number.

Error rate =
∣∣∣∣Actual number− Predicted number

Actual number

∣∣∣∣ × 100%

(5)
The actual numbers, identified numbers and predicted

numbers of flower clusters and flushes of 5 litchi trees are
shown in Figures 11A,B, and their error rates are shown in
Figures 11C,D. As seen from the data in Figures 11A,B, the
predicted numbers are very close to the actual numbers after
the numbers of flower clusters and flushes identified by the
YOLOv4 model are fitting by the fitting equations obtained in
section “Models for estimating the numbers of flower clusters
and flushes on a single litchi tree.” According to the data in
Figure 11C, the average error rate of the flower flushes for T
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FIGURE 10

Results of YOLOv4 model detection obtained under different sparseness conditions.

FIGURE 11

Statistical information of the flower clusters and flushes of 5 litchi trees. (A) Statistical information of the flower clusters. (B) Statistical
information of the flushes. (C) Error rates of flower clusters. (D) Error rates of flushes.

the five trees is 4.20%. According to the data in Figure 11D,
the average error rate of the treetop is 2.85%. From the data
in Figures 11C,D, the error rates for both flower clusters and
flushes on five litchi trees representing three varieties are less
than 7%, which fully illustrates the wide applicability of the
YOLOv4 model for estimating the numbers of flower clusters
and flushes. The combination of flower clusters and flushes is

suitable for estimating the flowering rate of multiple varieties of
litchi trees.

According to the statistical results of section “Models for
estimating the numbers of flower clusters and flushes on a single
litchi tree” and this section, two main reasons are responsible for
the error between actual numbers and identified numbers. (1)
The mAP of the model on the test dataset is 87.87%; that is, the
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model itself has error in the identification process. (2) The actual
numbers of flower clusters and flushes are obtained by manual
counting, which is a multiangle and full-range process, while the
UAV collects images from the top, only obtaining flower clusters
and flushes from most of the area of a single litchi tree.

Table 8 shows statistics on the real flowering rates of five
randomly selected litchi trees in a real orchard and the flowering
rates yielded by the proposed method, as well as the error
values between them. The error rates between the two types
of flowering rates are all below 5%, and the average error is
1.135%. The above results fully prove that the model proposed
in this study is feasible. It can not only modify the predicted
numbers of flower clusters and flushes by fitting equations but
also improve the efficiency of flowering rate estimation in real
orchards.

Conclusion

In this study, a method based on UAV images and computer
vision technology is proposed to estimate the flowering rate of
litchi. First, a UAV is used to collect RGB images, preprocess
the images, construct a dataset, and manually label the ROIs
of the dataset images. Then, the optimal parameters, such as
the input image size, batch size and number of epochs, of the
YOLOv4 model are optimized based on the model pretraining
and testing results. Finally, the YOLOv4 model is trained
with the optimized parameter combinations and tested on the
test dataset. The results show that the YOLOv4 model can
accurately and efficiently detect flower clusters and flushes of
litchi with an mAP of 87.87% and an average detection speed
of 0.043 s per image. To accurately predict the flowering rate of
each litchi tree, a model for estimating the numbers of flower
clusters and flushes of litchi is proposed. A fitting equation is
established through the actual numbers and predicted numbers
of flower clusters and flushes for each litchi tree. The model is
verified with average error rates of 4.20% for flower clusters,
2.85% for flushes and 1.135% for the flowering rate. This
method can quickly and accurately estimate the flowering rate
of litchi, provide guidance for the management of the flowering
periods in litchi orchards, and help reduce the labour costs of
orchard management.

In this study, UAVs mainly collect images by looking down
and cannot obtain omnidirectional images of a single litchi tree
or a certain area. Therefore, errors are induced between the
collected data and the actual values. In future research, the 3D
UAV modelling method will be considered to solve this problem.
In model detection, due to the similar colors of new leaves and
old leaves, the diversity of litchi flower cluster growth and the
presence of complex backgrounds, future consideration should
be given to expanding the dataset samples and improving the
model to improve its overall detection precision. In addition,
the research object of this paper is flower clusters and flushes of
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Guiwei litchi. In the future, the research object can be extended
to different litchi varieties or even other fruit trees. The research
method of this paper can also be used for the study of fruit
setting rate and yield of fruits.
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