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Identification lodging degree of
wheat using point cloud data
and convolutional neural
network
Yunlong Li, Baohua Yang*, Shuaijun Zhou and Qiang Cui

School of Information and Computer, Anhui Agricultural University, Hefei, China

Wheat is one of the important food crops, and it is often subjected to different

stresses during its growth. Lodging is a common disaster in filling and maturity

for wheat, which not only affects the quality of wheat grains, but also causes

severe yield reduction. Assessing the degree of wheat lodging is of great

significance for yield estimation, wheat harvesting and agricultural insurance

claims. In particular, point cloud data extracted from unmanned aerial vehicle

(UAV) images have provided technical support for accurately assessing the

degree of wheat lodging. However, it is difficult to process point cloud data

due to the cluttered distribution, which limits the wide application of point

cloud data. Therefore, a classification method of wheat lodging degree based

on dimensionality reduction images from point cloud data was proposed.

Firstly, 2D images were obtained from the 3D point cloud data of the UAV

images of wheat field, which were generated by dimensionality reduction

based on Hotelling transform and point cloud interpolation method. Then

three convolutional neural network (CNN) models were used to realize the

classification of different lodging degrees of wheat, including AlexNet, VGG16,

and MobileNetV2. Finally, the self-built wheat lodging dataset was used to

evaluate the classification model, aiming to improve the universality and

scalability of the lodging discrimination method. The results showed that

based on MobileNetV2, the dimensionality reduction image from point cloud

obtained by the method proposed in this paper has achieved good results

in identifying the lodging degree of wheat. The F1-Score of the classification

model was 96.7% for filling, and 94.6% for maturity. In conclusion, the point

cloud dimensionality reduction method proposed in this study could meet the

accurate identification of wheat lodging degree at the field scale.
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Introduction

Wheat is one of the three major food crops in the world,
and its output directly affects food security. Among them,
wheat growth is a key factor affecting wheat yield (Hu et al.,
2020). The height of wheat is one of the common phenotypic
parameters used to assess its growing status. On the one hand,
the height changes of wheat in different periods, especially the
height changes caused by wheat lodging in the middle and
late stages, provide reference data for wheat health assessment
and yield estimation (Piñera-Chavez et al., 2020). On the
other hand, monitoring and diagnosis of wheat lodging degree
is an important basis for field risk assessment and precise
management. Therefore, large-scale and accurate judgment of
the degree of wheat lodging is of great significance for field
management, yield estimation, and damage assessment.

In recent years, the development of remote sensing
technology provides technical support for the rapid and accurate
acquisition of image information and spatial information of
large-scale farmland. unmanned aerial vehicle (UAV) remote
sensing technology provides a new solution for the acquisition
and analysis of high-throughput phenotypic information of field
crops due to its powerful flexibility, efficiency, and simplicity
(Gracia-Romero et al., 2019; Zeybek and Şanlıoǧlu, 2019). In
particular, the height of field crops, which can be acquired by
carrying different imaging sensors, as an indicator of phenotypic
traits, is one of the key steps to improve the accuracy and
efficiency of crop growth monitoring (Malachy et al., 2022).
Among them, the efficient, non-destructive, and high-precision
UAV-LiDAR can achieve real-time and comprehensive data
collection (Zhao et al., 2021). Studies have shown that UAV-
LiDAR was used to obtain 3D point cloud information of
ground objects, which generates a digital elevation model to
obtain plant height of crops. This method has been applied
to various crops, such as vegetable wheat (Guo et al., 2019),
corn (Zheng et al., 2015), rice (Tilly et al., 2014; Phan and
Takahashi, 2021), soybean (Luo et al., 2021), etc. The above
results could better realize the analysis of crop phenotype
indicators. However, complicated processing procedures and
expensive instruments limited the development of UAV-LiDAR
remote sensing monitoring. Therefore, it is of great research
value for lodging identification and crop growth assessment
how to use remote sensing technology to quickly and accurately
obtain crop growth information.

With the development of sensors, digital cameras have
promoted the convenience and practicability of UAV high-
throughput phenotyping platforms due to their low cost,
lightness, and high resolution. For crop height monitoring, two
common types of data are extracted from overlapping aerial
images acquired by consumer digital camera, including digital
orthophoto map (DOM) and digital surface model (DSM). Such
as the height of wheat (Villareal et al., 2020), rice (Liu H.
et al., 2018), maize, cotton and sorghum (Wu et al., 2017),

and potatoes (Li et al., 2020). In addition, crop surface models
(CSMs) are models formed by digitizing the morphology of
plants. Therefore, it contains information about the overall
shape of the plant and is often used to estimate the height
of the plant. For example, Bendig et al. (2015) used CSMs
to estimate the height of barley, and Volpato et al. (2021)
used CSMs to extract the height information of wheat. The
height and growth information of crops can also be obtained
by using the digital elevation model (DEM) of the terrain of
the experimental area. For example, the DEM model has been
successfully used to estimate the height of cotton (Feng et al.,
2019), and sugarcane (Sumesh et al., 2021). Currently, there is no
generally accepted consensus on which method of DSM, CSM,
or DEM model works better. Therefore, the extraction of crop
height information still faces many challenges.

In fact, the point cloud data can obtain the information of
the horizontal and vertical dimensions of the lodging crops at
the same time, which can effectively reflect the height changes of
the crops, especially the lodging degree of the crops. Although
those Hu et al. (2021) used deep learning to process point
cloud data successfully achieved quantitative analysis of lodging
degree. However, disorder and irregularity make 3D point cloud
data difficult to process (Guo Y. et al., 2021). Many scholars have
proposed some deep learning methods to directly process point
clouds. For example, PointNet point cloud learning network
(Qi et al., 2017a), PointNet++ (Qi et al., 2017b), MV3D (Chen
et al., 2017), 3D-BoNet (Yang et al., 2021a). However, the models
mentioned above still have some issues such as low accuracy
and poor robustness. Therefore, it is necessary to study methods
about point cloud data processing.

Due to the sparse and unstructured characteristics of point
cloud data, indirect processing of 3D scattered data will reduce
the difficulty and complexity of point cloud processing (Liu
and Bai, 2018). Studies have shown there have been many
attempts to transform point cloud data into other forms. For
example, Su et al. (2015) proposed to map point clouds to
2D images, and convolutional neural network (CNNs) were
used to classify images. Zhou and Tuzel (2018) proposed to
rasterize point clouds into voxels, and the 3D CNN was used
to extract the local features of the voxel grid. Although point
cloud homogenization has been achieved in the above research.
However, to homogenize the point cloud data, it is necessary not
only to reduce the dimensionality of the point cloud data, but
also to apply spatial interpolation and spatial fitting methods to
predict the data values of some blank locations. Of course, the
Hotelling transform has the potential to solve the above issues
(Chen and Chung, 2010). Therefore, the Hotelling transform
method was used to reduce the dimensionality of the 3D point
cloud data into a 2D image in this study, which provided a new
idea for point cloud data processing.

CNN, as one of the commonly used deep learning
methods, has excellent performance in a variety of image
processing tasks, due to its local connection, and weight sharing
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(Yang et al., 2021b). Therefore, a classification method of wheat
lodging degree based on CNN was proposed using images
obtained by dimensionality reduction from point cloud data
in this study. The self-built wheat lodging dataset was used to
evaluate the performance of the method, aiming to improve the
robustness of the lodging classification method. The purpose
of this research is to (1) propose a point cloud dimensionality
reduction method, which realized the conversion of 3D point
cloud data into 2D image based on Hotelling transform and
interpolation method, aiming to reduce the complexity of point
cloud data processing, (2) propose a method for wheat lodging
identification with point cloud data extracted from UAV images,
aiming to improve the accuracy of identification, and (3) identify
different lodging degrees of wheat using different CNN models,
aiming to verify the robustness of the proposed method.

Materials and methods

Data collection

Acquisition wheat lodging angle and lodging
area

Data was collected on May 7 and May 17, 2021
in the National Modern Agriculture Demonstration Zone
(31◦29′26′′N, 117◦13′46′′E) in Guohe Town, Lujiang County,
Anhui Province. On April 30, 2021, Lujiang County experienced
hail, heavy rainfall, and strong winds of magnitude 4–5, resulting
in varying degrees of wheat lodging in the study area. Field
surveys and UAV monitoring were carried out on the wheat
fields (filling stage, maturity stage) in the study area. Filling and
maturity are the key periods to determine the grain weight of
wheat, which directly affect the yield of wheat at harvest.

The wheat field was defined as a 3.8 m × 7.8 m plot, and
the lodging area and lodging angle were measured for each
wheat plot. The length and width of each wheat plot were
measured and used to calculate the total lodging area of all the
plots. To calculate the lodging angle, the sloping and vertical
heights of the lodging wheat in the plot were measured using
a tape measure, and 3–5 samples were measured in the same
observation plot, and the average value of the lodging angles of
the multiple samples were calculated as the lodging angle of the
observation plot. A total of 360 wheat plots were measured.

Determination of wheat lodging degree
To evaluate the lodging degree, the lodging index (LI) was

used to evaluate the lodging degree of wheat. The value of the
lodging index is between [0, 1]. Among them, “0” represents
normal growing wheat, “1” represents complete lodging, and the
calculation formula is shown in the formula (1)-(2).

LI = LA× LR (1)

FIGURE 1

Diagram of angle of lodging.

LA =
2θ

π
=

π− arcsin h2
h1
×

π
90

π
(2)

Among them, h1 represents the actual height of wheat in the
experimental plot and h2 represents the canopy height of the
experimental plot. The larger the value of the lodging angle, the
more serious the lodging of the wheat. θ represents the lodging
angle, as shown in Figure 1.

Lodging ratio (LR) (0–100%) is the proportion of the
lodging area in the total area of the wheat plot. LR can reflect
the change of the lodging area in the horizontal direction.
The larger the value of lodging rate, the more serious the
lodging of wheat. The lodging degree of the wheat field was
determined according to the lodging rate of the plot based
on the double-threshold strategy of normal statistical theory.
The specific steps are as follows: calculate the mean (µ) and
standard deviation (α) of the lodging index of the wheat plot,
and then divide the lodging index into four parts, namely
[0, µ–α], [µ–α, µ], [µ, µ+α], and [µ+α, 1], corresponding
to non-lodging, slight lodging, moderate lodging, and severe
lodging, respectively. The mean value (µ) of lodging index of
360 wheat plots was calculated to be 0.40 and the standard
deviation (α) was 0.274. Therefore, the lodging indices of
different lodging degrees were determined as: non-lodging [0,
0.126], slight lodging [0.11, 0.40], moderate lodging [0.40,
0.674], severe lodging [0.674, 1]. Thus, the ground truth of
different lodging degrees of wheat in different growth periods
were obtained.

Acquisition and normalization of point cloud
data

To obtain the original point cloud of the wheat field,
Agisoft PhotoScan software was used to process the RGB
image of the UAV. Specifically, the generation of the original
point cloud in the study area is based on the structure from
motion algorithm, which is used to process the input UAV
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images with the corresponding position and orientation system
(POS), and feature point information. The purpose is to
restore the spatial location information of the corresponding
image feature points. However, affected by the undulation
of terrain, the original point cloud of wheat field obtained
after processing by Agisoft PhotoScan software still has the
problem of elevation deviation. Therefore, it is necessary to
normalize the acquired original point cloud of the research
area to obtain normalized point cloud data, which provides
a data basis for dimensionality reduction of wheat point
cloud, and aims to improve the accuracy of wheat lodging
degree judgment.

The specific steps include point cloud acquisition and
point cloud normalization, as shown in Figure 2. Firstly,
the stitched images of wheat fields are obtained from 98
UAV images, and the density point clouds are extracted
from the stitched images, as shown in Figures 2a1–a3.
Secondly, the Excess Green Index (ExG) was used to obtain
the ground point cloud from the density point cloud,
digital elevation model (DEM) was generated by interpolation
fitting. Finally, the normalized point cloud is obtained by
subtracting the original point cloud and DEM, as shown
in Figures 2b2–b5. And the front views for point cloud
and point cloud normalization were provided, as shown
in Figures 2a4,b1.

In addition, to obtain the normalized point cloud of each
wheat plot, the normalized point cloud was used to realize
field cutting in MeshLab software, and the experimental wheat
field size 3.8 m × 78 m was cut into 180-point clouds of 3.8
m × 7.8 m, which were numbered separately and exported
in TXT format to provide data for the Hotelling transform of
the point cloud.

Materials and methods

Acquisition of dimensionality reduction
image from point cloud

The initial point cloud dataset is a set of 3D data, represented
by x, y, z coordinates. Therefore, it is more troublesome
to process such data. On the one hand, there are many
dimensions and the complexity of the data is large. On the
other hand, the point cloud is scattered in space, and there
is no obvious three-dimensional topology. To this end, the
idea of point cloud homogenization is used to reduce the
dimension of the three-dimensional point cloud, and the
point cloud data after dimension reduction becomes a two-
dimensional form.

Firstly, Hotelling transformation was used to realize the
transformation of the point cloud coordinate system (dimension
unchanged), so as to find a set of optimal orthogonal vector
bases to represent the original sample data. Then, the inverse

distance weighted interpolation method is used to assign the
grid eigenvalues, and finally, the numerical values of the grid
eigenvalues are color-rendered, so as to realize the cloud
dimension reduction map of the wheat sample sites.

Hotelling transform

The Hotelling transform is a transformation based on
statistical properties, which transforms the original data set
into the principal component space by finding subsets of the
principal components of the data set of arbitrary statistical
distribution, minimizing the cross-correlation of a single data
sample. The process steps are as follows:

(1) Suppose a set of point cloud data Pn is represented as
an 3× n dimensional matrix, each column represents a point
(xk, yk, zk) in the space, k = 1, 2, 3...n, n represents the number
of point cloud.

Pn =

 x1 x2 ... xn
y1 y2 ... yn
z1 z2 ... zn

 (3)

m =
1
n

n∑
k=1

Pk (4)

C =
1
n

n∑
k=1

PkPTk −mmT (5)

Where, m represents the center of gravity of the data Pn, and
C represents the covariance of the data Pn.

(2) The eigenvalue decomposition is performed on the
obtained covariance C, and the eigenvector matrix V and the
eigenvalue matrix D are obtained:

C × V = D× V (6)

(3) Finally, the eigenvector V is in descending order
according to the corresponding eigenvalues, and a local
coordinate system is established with the local neighborhood
gravity center m as the coordinate origin and the three
components of the eigenvector V as the three coordinate axes.
The point cloud data Pn is converted into a new coordinate
system, and its coordinate Pn in the new coordinate system is
obtained by formula (8) calculation:

P′n = V × (Pn −m) (7)

V represents the feature vector, P′n represents the new
coordinate system.

Grid division

To solve the problem that the point cloud is scattered
and distributed, which makes it difficult to describe the
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FIGURE 2

The acquisition process of normalized point cloud. (A) point cloud acquisition, (B) point cloud normalization.

characteristics, the regularization of the point cloud is realized
based on the division of the grid. The size of the grid is
determined according to the length range and width range of
the points of the wheat field. The grid is divided according to
formula (8):

rows =
1x
d
, cols =

1y
d

(8)

where cols and rows represent the number of grid lengths and
grid widths, respectively, 1y and 1x are the length range and
width range of the point cloud data, respectively, and d is
the grid spacing.

In this study, the length and width of the wheat site cloud
were 7.8 and 3.8 m, respectively, and the grid spacing was set to
0.01 m. Therefore, a regular rectangular pixel grid of 780 × 380
was used to interpolate the wheat site cloud.

Spatial interpolation of point cloud

Inverse distance weighting (IDW) is one of the most
commonly used spatial interpolation methods. It is an
interpolation method with the distance between the point to be
interpolated and the actual observed sample point as the weight.
The sample points that are closer to the point to be interpolated
are given more weight, and their weight contribution is
inversely proportional to the distance. The calculation

formula is:

Z =
m∑
i=1

KiZi (9)

Ki =
d−2
i∑m

i=1 d
−2
i

(10)

di =
√
(x− xi)2 +

(
y− yi

)2 (11)

In the formula, Z represents the estimated value of the point
to be interpolated, Zi is the measured value of the i-th sample
point; m is the number of measured sample points; Ki is the
contribution weight of the i-th sample point to the estimated
value, and di is the distance between the i-th sample point

(
xi, yi

)
and the point

(
x, y

)
to be interpolated.

Therefore, color rendering is performed based on
the attribute values of the grid points. In this way, the
dimensionality reduction of point cloud after Hotelling
transform is realized. To effectively evaluate the effect of
interpolation. In this study, the following indicators were used
for evaluation, including the mean absolute error (MAE), the
standard deviation (SD), and the median (Median).

MAE =
1
n

n∑
i=1

|wi| (12)
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SD =

√√√√ 1
n

n∑
i=1

w2
i (13)

Median = Median
(
w1,w2,w3 . . .wn

)
(14)

Here, wi is the error of the normal offset of point (xi, yi, zi).

Classification for lodging degree

Technology roadmap
To reduce the difficulty and complexity of point cloud

processing, and at the same time retain the information in
the horizontal and vertical dimensions of the point cloud, a
classification method of wheat lodging degree based on the
dimensionality reduction image from point cloud was proposed.
The specific process is shown in Figure 3.

It can be seen from Figure 3 that the specific steps include
the following. Firstly, the UAV images are acquired. Secondly,
point cloud data acquisition and preprocessing, including point
cloud data normalization and cutting, etc. Then, the point cloud
dimension reduction map is generated, including Hotelling
transform, grid division, and spatial interpolation of point
cloud. Finally, the classification model is constructed, and
the CNN is used to classify the lodging degree of wheat,
including AlexNet, VGG16, MobileNetV2, which are trained
and validated with training set, and tested using the test set.

Classification model
In this study, AlexNet, VGG16, MobileNetV2 were used as

classification models to identify the lodging degree of wheat.
AlexNet is the winning network of the ISLVRC 2012 (ImageNet
large scale visual recognition) competition (Krizhevsky et al.,
2012). In this experiment, the target categories for predicting
the lodging degree of wheat are 4 categories. Visual geometry
group network (VGG) is a deep CNN proposed in 2014,
which mainly uses small convolutional filters to build the
network structure (Simonyan and Zisserman, 2014). The
VGG16 network structure contains 16 layers, namely 13
convolutional layers, 5 pooling layers, and 3 fully connected
layers. The MobileNetV2 network is an improvement based on
the MobileNetV1 network (Howard et al., 2017). It follows the
depthwise separable convolution (DSC) in the MobileNetV1
network, and introduces an inverted residual module containing
a linear bottleneck, which can effectively improve the accuracy
of image classification and detection. In addition, all models
are trained and validated using a dataset consisting of bird’s-eye
views which is from the point cloud data transformation. The
basic parameters of the three models are compared in Table 1.

Classification functions
To adapt to the four classification tasks (non-lodging, slight

lodging, moderate lodging, and severe lodging) of wheat lodging

in this study, the classifier Softmax of the above three CNN
models is changed to four targets. The Softmax classifier is
suitable for the processing of multi-classification target tasks,
and converts each type of output into a value between [0, 1],
making the sum of all classification probabilities to be 1.

Taking the output of the i-th node of the neural network as
an example, the mathematical formula definition of the Softmax
function is given:

Soft max(zi) =
ez

i∑C
c=1 ezC

(15)

where zi — the output value of the i-th node, c, count variable,
C, the number of output nodes, that is, the number of categories
of classification.

After the above function transformation, the output value
of the multi-classification can be converted into a probability
distribution ranging from 0 to 1.

Evaluation index
To effectively evaluate the classification effect of wheat

lodging degree, Accuracy and F1− score are used as evaluation
indicators.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(16)

Precision=
TP

TP+ FP
(17)

Recall =
TP

TP+ FN
(18)

F1-score =
2×Precision×Recall
Precision+ Recall

(19)

Among them, TP represents the number of positive samples
predicted to be Ture, FN represents the number of samples that
are predicted to be False; TN represents the number of negative
samples that are predicted to be True, FP represents the number
of samples that were predicted to be False.

Results and analysis

Generation of normalized point cloud

Figure 4 showed point cloud extraction and normalization
of the wheat field of and maturity stages of wheat. Among them,
through many experiments, ExG was set to 0.0729 to separate
the ground and non-ground in the image, and the results were
shown in Figures 4A,B. Figure 4C was the point cloud of the
research area before normalization, and Figure 4D was the point
cloud of the research area after normalization.

It could be seen from Figure 4 that the point clouds of
different periods were different. For the original point cloud in
Figure 4C, the west side of the wheat field grew better, and the
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FIGURE 3

Flow chart of technical route. (A) UAV images acquisition, (B) point cloud data acquisition, preprocessing, (C) dimensionality reduction images
generation, (D) construction and evaluation of classification models.
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TABLE 1 Comparison of model parameters.

Modle name Input_size Number of parameters

AlexNet 224× 224× 3 16630440

VGG 16 224× 224× 3 138357544

MobileNetV2 224× 224× 3 3504872

lodging area of the wheat field was less. The eastern part of the
wheat field was affected by the heavy rain, resulting in a large
area of lodging of the wheat field. For the normalized point cloud
in Figure 4D, which could better show the growth state of wheat.
The height of the wheat field in the maturity stage was obviously
lower than that in the grain filling stage, and most of them
were below 0.9 m. Moreover, the area of lodging has increased
significantly, and the degree of lodging has also become heavier.

Analysis of dimensionality reduction
results in different periods

Figures 5, 6 showed dimensionality reduction images from
point cloud of wheat fields at grain filling and maturity
stages, respectively, which were obtained by an inverse
distance weighted interpolation method. For the filling stage,
Figures 5A,B were the RGB images and point cloud images
of the wheat plots with the four different lodging degrees,
respectively, and Figures 5C,D are the plots of 3D image, 2D
image using distance-weighted interpolation. For the maturity
stage, Figures 6A–D represented the RGB image, point cloud
image, 3D images of point cloud, and 2D image of the wheat
plot with the four lodging degrees, respectively.

From Figures 5B, 6B, it could be seen intuitively that no
matter which period it is, the point cloud data of wheat fields
had a large amount of data and are irregularly arranged. It
could be seen from Figures 5C, 6C that the three-dimensional
angle image of wheat field obtained by inverse distance weighted
interpolation could better reflect the canopy height distribution
of wheat plots with different lodging degrees. The height
distribution of wheat plots with different lodging degrees was
also different. Among them, the z-axis value of the non-lodging
wheat plot is above 0.9 m; 0.7–0.9 m for the slightly lodging
wheat plot, 0.5–0.7 m for the moderately lodging wheat plot, and
below 0.5 m for the severely lodged wheat plots.

It could be seen from Figures 5D, 6D that the two-
dimensional images of wheat plots with different lodging
degrees after inverse distance weighted interpolation were
properly smoothed, and the grid point data was relatively
complete, which could reflect the distribution of wheat lodging.
In particular, it was easy to compare the location and height
distribution of different lodging degrees in the wheat plots
from the dimensionality-reduced images. Therefore, the images
obtained by point cloud dimensionality reduction could better
reflect the differences in the lodging degree of wheat, and
provide a data basis for judging the lodging degree of wheat.

Classification results of lodging degree
based on point cloud

Construction of dataset from point cloud
A total of 180 wheat plots were monitored in this study,

and 360 original dimensionality-reduced images were obtained

FIGURE 4

Normalized point cloud of wheat field in different periods. (A) ground point, (B) non-ground point, (C) original point cloud, and (D) normalized
point cloud.
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FIGURE 5

The result of point cloud dimensionality reduction of wheat field at filling stage. (A) RGB image, (B) point cloud image, (C) 3D image, and
(D) 2D image.

for the two periods of wheat. To improve the generalization
ability of the network, random multi-angle rotations, such as
90◦, 270◦, horizontal flip, mirror flip, etc., which are used to
augment the data of the dimensionality-reduced image of wheat
from the point cloud, and 640 images are obtained. There are
a total of 1,000 dimensionality reduction images from point
cloud for wheat as the dataset for this experiment, which is
divided into training set, validation set, and test set according
to 16:4:5. Therefore, the training set is 640, the validation
set is 160, and the test set is 200. In addition, there are 50
images of each lodging degree for test set. The dataset is shown
in Figure 7.

Hyperparameter settings
The software environment for image processing and analysis

experiments is based on the Windows 10 operating system,
the PyTorch deep learning framework, using Python as the
programming language, and using PyCharm to build models.
The test hardware environment is 16 GB memory, NVIDIA
GeForce RTX2080 graphics card, equipped with Intel(R) Core
(TM) i7-8700 @3.20 GHz CPU processor.

In this study, the initial learning rate of all CNN
classification models was set to 0.001, the Batch Size of training

samples is set to 4, and the number of iterations (epoch) was
set to 400. The optimization algorithm is Adam, and the loss
function is the Cross Entropy Loss. During the training process,
early stopping is set to prevent the model from overfitting. If the
performance of the model does not improve after 30 epochs, the
training will stop.

Classification results of wheat lodging degree
based on MobileNetV2

Figure 8 showed the recognition results of wheat lodging
degrees at filling and maturity stages of wheat using the
MobileNetV2 model. The point cloud dimensionality reduction
data set was constructed with the dimensionality reduction
images from point cloud obtained using the inverse distance
weighted interpolation method, which was used to classify the
lodging degree of wheat.

The accuracy for the filling and maturity stages of wheat
could reach 94.5 and 95.5%. Especially in the filling stage of
wheat, the classification accuracy of different lodging degrees
was more than 90%. The classification results for the moderate
lodging degree of wheat at maturity were slightly worse.
The possible reason was that the clarity of the original data
boundary of the maturity of wheat was poor, which led to
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FIGURE 6

The result of point cloud dimensionality reduction of wheat field at maturity stage. (A) RGB image, (B) point cloud image, (C) 3D image, and
(D) 2D image.

wrong judgment of the data. Overall, the classification results
based on dimensionality reduction images from point cloud
data were better.

Discussion

Comparison results of different
interpolation methods

To compare the effects of different interpolation methods
on the lodging degree of wheat fields, the dimensionality
reduction of point cloud data in wheat fields based on different
interpolation methods was carried out, including local linear
embedding, bitonal spline interpolation, and inverse distance
weighted interpolation. From each of the four lodging degrees
of wheat fields, 10 wheat plots were selected for point cloud
interpolation method, and three error indexes of MAE, SD and
Median were used to evaluate different interpolation methods.
The average value of the error was taken as the interpolation
error of different interpolation methods in different periods as
the evaluation result, and the results were shown in the Table 2.

FIGURE 7

The dataset for classification of wheat lodging. (A) non-lodging,
(B) slight lodging, (C) moderate lodging, and (D) severe lodging.

As could be seen from Table 2, the error of the interpolation
method of wheat field point cloud data, MAE, SD and Median
were 0.412–0.817, 0.754–1.289, and0.216–0.597 for the Filling
period, MAE, SD and Median were 0.428–0.879, 0.785–1.364,
and 0.243–0.673 for the maturity period.

It could be seen from Figure 9 that the three evaluation
indicators of the error based on the inverse distance weighted
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FIGURE 8

Recognition results of wheat lodging degree based on MobileNetV2. (A) filling stage, (B) maturity stage.

TABLE 2 Error indicators based on different interpolation methods.

Method Data MAE/mm SD/mm Median/mm

Local linear
embedding

Filling 0.817 1.289 0.597

Maturity 0.879 1.364 0.673

Biharmonic spline
interpolation

Filling 0.572 0.863 0.331

Maturity 0.624 0.928 0.374

Inverse distance
weighted
interpolation

Filling 0.412 0.754 0.216

Maturity 0.428 0.785 0.243

interpolation method, such as MAE, SD, and Median, were
smaller than those of other interpolation methods, no matter
it was the grouting period or the maturity period. Compared
with Biharmonic Spline Interpolation and Biharmonic Spline
Interpolation, the error based on the Inverse distance weighted
interpolation method reduced by 49.6 and 28% of MAE, 41.5,
and 12.6% of SD, 63.8 and 34.7% of Median for the filling period,
53.1 and 34% of MAE, 44.7 and 18.8%, 67.9 and 42.2% of Median
for maturity period. Experiments showed that the method based
on inverse distance weighted interpolation had lower errors
in processing wheat field lodging point cloud data in different
periods.

Studies have shown that spatial interpolation methods
have proven to be an important technique in point cloud
data preprocessing (Liu S. F. et al., 2018). In addition to the
three interpolation methods used in this study, Agüera-Vega
et al. (2020) also compared inverse distance weighting (IDW),

multiple quadratic radial basis functions (MRBF), kriging (KR)
and linear interpolation triangulation (TLI) in processing point
clouds extracted from drone images, which shows that the
interpolation method has great potential, especially the point
cloud data has been widely used. Therefore, more interpolation
methods can be tried in future research work, aiming to provide
the application efficiency of point cloud data (Agüera-Vega
et al., 2020).

Comparison of classification results
using different models

To verify the performance of wheat lodging classification
based on the point cloud dimensionality reduction method,
data sets of different growth periods were used, including
dimensionality reduction images from point cloud based on
the inverse distance weighted interpolation method of wheat
fields at the filling and maturity stages, which were used to train
and test the classification model, including AlexNet, VGG16,
MobileNetV2 models. The results were shown in Table 3. It
could be seen from Table 3 that for the training set, the F1-
Score of the MobileNetV2 model was 9.73% higher than that of
AlexNet, and 5.02% higher than that of VGG16. The precision of
the MobileNetV2 model was 9.74% higher than that of AlexNet
and 5.13% higher than that of VGG16 using the point cloud data
of the wheat filling period. For the test set, the F1-Score of the
MobileNetV2 model was 12.43% higher than that of AlexNet
and 6.9% higher than that of VGG16. The Precision of the
MobileNetV2 model was 12.04% higher than that of AlexNet,
and 6.81% higher than that of VGG16.
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FIGURE 9

Comparison of interpolation precision.

TABLE 3 Classification accuracy (%) of wheat field lodging degree
based on different methods.

Data Methods F1-score Precision F1-score Precision

Training set Test set

Filling AlexNet 88.1 88.0 83.8 84.0

VGG16 92.7 92.5 89.1 89.0

MobileNetV2 97.6 97.5 95.7 95.5

Maturity AlexNet 85.8 86.0 83.1 83.0

VGG16 91.1 91.0 87.6 87.5

MobileNetV2 96.7 96.5 94.6 94.5

For the training set, the F1-Score of the MobileNetV2 model
was 11.27% higher than that of AlexNet and 5.79% higher
than that of VGG16 using the point cloud data of the wheat
maturity period. The precision of the MobileNetV2 model was
10.88% higher than that of AlexNet and 5.7% higher than that
of VGG16. For the test set, the F1-Score of the MobileNetV2
model was 12.16% higher than that of AlexNet and 7.4% higher
than that of VGG16. The precision of the MobileNetV2 model
was 12.17% higher than that of AlexNet, and 7.41% higher
than that of VGG16.

By comparing the experimental results of different models,
it was concluded that the classification of wheat lodging based
on the dimensionality reduction images from point cloud based
on the MobileNetV2 model performed well in both the filling
and the Maturity stage of wheat.

The research shows that based on the role of point cloud in
wheat height monitoring. At present, the method of acquiring
point cloud has become more and more convenient with

the development of sensors. Volpato et al. (2021) successfully
extracted the height of wheat from dense point clouds generated
by aerial images for monitoring of wheat growth. Dense point
clouds extracted from drones carrying high-resolution RGB
cameras, and Ground LiDAR were successfully used to estimate
crop height (Madec et al., 2017). In particular, point cloud
data can be obtained conveniently and quickly through UAV,
which will play an important role in promoting crop phenotype
acquisition and field management.

Dimensionality reduction result of
point cloud for wheat field

To avoid the influence of the tilt angle of the point cloud,
Hotelling transform was used to coordinate the point cloud
locally. Figure 10 shows the comparison results of point clouds
before and after Hotelling transformation. Figures 10A,B were
the three-dimensional view and the Bird’s Eye View (BEV) of
the point cloud in the standard coordinate system, respectively.
Figures 10C,D were the 3D view and the Bird’s Eye View (BEV)
of the point cloud after Hotelling transformation, respectively.
As could be seen from Figure 10, the three directions with the
largest distribution of point cloud data can be found through
Hotelling transformation, and then the point cloud was rotated
to these three directions as a whole, so that the point cloud was
regularly covered in the coordinate system.

In fact, the conversion of point clouds into 2D images
has been successfully applied in many fields. For example, Li
et al. (2022) transformed the point cloud into a bird’s-eye
view (BEV) and verified the effect of the method on public
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FIGURE 10

Comparison of point clouds before and after Hotelling transform. (A) original three-dimensional view, (B) original bird’s eye view,
(C) three-dimensional view after Hotelling transform, and (D) bird’s eye view after Hotelling transform.

datasets and unmanned motion platforms. Tsai et al. (2021)
converted the point cloud into a bird’s-eye view, which was used
as input to Faster R-CNN and YOLOv3 network architecture
for tire detection. Huang et al. (2020) achieved dimensionality
reduction transformation by converting 3D point cloud into
2D image through projection, which plays an important role in
construction monitoring. Guo R. et al. (2021) projected point
clouds onto a bird’s-eye view (BEV) for object detection. UAV-
based point cloud datasets are also often used to estimate the
height of plants. For example, Shin et al. (2018) estimated
forest canopy height from UAV-based multispectral imagery
and SfM point cloud data. There are even many studies that
have successfully used point cloud datasets extracted from drone
images to estimate the height of wheat, aiming to accurately
monitor crop growth. For example, Song and Wang (2019)
used UAV-based point cloud data to estimate the height of
wheat in different periods, indicating that point cloud data
has good potential for estimating crop height. Khanna et al.
(2015) proposed a method for early winter wheat canopy height
estimation using 3D point cloud statistical analysis. The above
research shows that the application of point cloud can help
farmers manage their farmland easily.

Conclusion

In this study, a classification method of wheat lodging
degree based on dimensionality reduction images of point
cloud data was proposed. This method not only realized
the transformation of disordered point cloud data into
2D images based on Hotelling transform and point cloud
interpolation method, but also realized the classification of
different lodging degrees of wheat using three CNN models,
including AlexNet, VGG16, and MobileNetV2. Further, the
self-built wheat point cloud data was used for testing.
The results showed that the F1-score of the classification
model of wheat field lodging degree based on MobileNetV2
reached 95.7% for filling period and 94.6% for maturity
period, which provided the technical basis for the analysis
and application of 3D point cloud data of other crops.
In addition, the research results provided a scientific basis
for farmland management, disaster assessment, and yield
estimation. Moreover, the 3D point cloud data processing
method proposed in this study will also promote the
development of new technology paths for UAVs in crop remote
sensing monitoring.
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