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Cell wall integrity is tightly regulated and maintained given that non-
physiological modification of cell walls could render plants vulnerable to
biotic and/or abiotic stresses. Expansins are plant cell wall-modifying proteins
active during many developmental and physiological processes, but they can
also be produced by bacteria and fungi during interaction with plant hosts.
Cell wall alteration brought about by ectopic expression, overexpression, or
exogenous addition of expansins from either eukaryote or prokaryote origin
can in some instances provide resistance to pathogens, while in other cases
plants become more susceptible to infection. In these circumstances altered
cell wall mechanical properties might be directly responsible for pathogen
resistance or susceptibility outcomes. Simultaneously, through membrane
receptors for enzymatically released cell wall fragments or by sensing
modified cell wall barrier properties, plants trigger intracellular signaling
cascades inducing defense responses and reinforcement of the cell wall,
contributing to various infection phenotypes, in which expansins might also
be involved. Here, we review the plant immune response activated by cell
wall surveillance mechanisms, cell wall fragments identified as responsible
for immune responses, and expansin’s roles in resistance and susceptibility
of plants to pathogen attack.

expansin, cell wall oligosaccharides, microbial pathogen, defense response,
resistance/susceptibility
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Introduction

Throughout their lifetime plants interact with the
microbiota that lives on and inside their tissues, including
opportunistic or pathogenic microorganisms, which are
controlled by plant physical barriers and multi-layered
inducible defense responses (Lemanceau et al., 2017; Choi K.
et al., 2021). The first barrier is the cuticle, mostly composed
by cutin and epicuticular and intracuticular waxes localized
on the aerial parts of the plants (Serrano et al, 2014). The
secondary physical barrier is the cell wall, a dynamic and
complex structure mainly composed of microfibrils of cellulose
in the form of $-1,4-linked glucan chains, interconnected
with xyloglucan and embedded in a hydrated matrix of pectin
(Wang et al, 2015; Cosgrove, 2018, 2022). Physicochemical
characteristics of the cuticle and the cell wall impact on the
composition of the plant microbiome for microbial selection
and establishment (Bulgarelli et al., 2013; Aragon et al., 2017;
Molina et al., 2021). To interact with their hosts, pathogens
require specific activity levels of plant cell wall degrading
enzymes such as pectate lyases, cellulases, xylanases, and
proteases to digest the cell wall polysaccharides and structural
proteins (Bellincampi et al., 2014; Mitsumasu et al., 2015).
Digestion fragments play multiple roles in the development
and pathogenesis of microbes, but they also trigger plant
defense responses and determine the specificity of the plant-
pathogen interaction. In particular, short polysaccharide
oligomers derived from the cell wall belong to the type of
self-recognized molecules known as
(DAMPs),
response inducers (Hou et al, 2019; Gigli-Bisceglia et al,

Damage-Associated
Molecular Patterns and are potent defense-
2020), and thus, their application could serve as a cheap
and efficient priming treatment to boost plant resistance
to prevent infection (Quintana-Rodriguez et al, 2018). For
this reason, it is important to explore the characteristics of
a range of active glycans such as their optimal activating
degree of polymerization, defense-inducing concentration
and mode of action, as well as identifying their membrane
receptors (Molina et al, 2022). Computational models have
for instance been used to determine detailed information
of the possible conformation of known interactor pairs [for
example receptor: CERKI, with ligand: 1,4-B-d-(GlcNAc)6]
with the purpose of predicting and detecting receptors and
the signaling pathways leading to resistance (del Hierro
et al, 2021). A more challenging aspect of the study of
cell wall integrity (CWI) surveillance mechanisms is the
perception of modified physical properties and its translation
into biochemical signals perceived by membrane receptors
(Wolf, 2017). Unexpected changes in cell wall stiffness,
surface tension, or barrier properties are in some instances
caused by expansin proteins, which are non-enzymatic cell
wall remodeling agents (Georgelis et al, 2014; Cosgrove,
2015, 2016). Ectopic expression, constitutive overexpression

Frontiers in Plant Science

02

10.3389/fpls.2022.969343

or exogenous addition of expansins affect plant resistance
or susceptibility to infection either by direct modification
of the cell wall or by triggering plant immune responses
(Marowa et al., 2016; Narvéez-Barragan et al., 2020). Here, we
review aspects of CWTI surveillance mechanisms focusing on
stimuli from pathogen colonization, and on cell wall digestion
fragments as inducers of defense responses and analyze how
these relate to expansin-induced changes in host susceptibility
to infection.

Plant cell wall integrity
surveillance

The plant cell wall is synthesized at different levels in a
coordinated manner (Cosgrove, 2018). Cell wall polysaccharide
content varies according to developmental status (Zablackis
et al,, 1995), but cellulose, formed at the cell surface by mobile
cellulose synthase complexes (CSC), is the most abundant
polysaccharide of the cell wall (Grones et al., 2019). In addition,
the cell wall contains complex combinations of macromolecules,
including hemicelluloses, pectin and lignin, constituting a
dynamic structure that can change its composition and
properties during plant development without compromising
its integrity (Rongpipi et al, 2019). The cell wall is also
modified in response to different types of stress (Bacete and
Hamann, 2020; Rui and Dinneny, 2020). It is well known
that alterations to the CWI activates plant defense responses
that in some cases provoke resistance to pathogens (Srivastava
et al, 2017; Engelsdorf et al, 2018; Li et al, 2019; Wolf,
2022).

Osmo- and mechano-sensing

Reduction of cellulose biosynthesis alters CWI inducing
cell wall damage that is sensed through diverse mechanisms,
including osmo- and mechano-perception, which activate
signaling pathways impacting defense responses (Molina et al.,
2022). The identity of the components acting upstream of
the osmo- and mechano-receptors is practically unknown,
and indeed there is little experimental evidence to relate
them to responses to pathogens (Bacete and Hamann, 2020).
Several microorganisms cause cell wall damage, and it is
important to identify cell wall components that alert the
cell of microbial invasion. The best characterized osmo-
receptors in plants are the Arabidopsis thaliana histidine protein
kinases (HPKs) (Pham et al., 2012). The A. thaliana genome
contains eleven HPKs, of which five have been recognized
as ethylene receptors, three as cytokinin receptors and the
remaining three have no known activity as hormone receptors,
although they participate in other signaling processes including
responses to biotic and abiotic stresses (Pham et al, 2012;
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Hofmann et al,, 2020). An additional mechanism to cope with
physical forces is mediated by mechano-sensitive ion channels
(MSIC) and mechano-sensitive like channels (MSL) located
at the inner chloroplast envelope (Haswell and Meyerowitz,
20065 Bacete and Hamann, 2020). Based on structural homology
with an MSIC originally described in E. coli, MSICs have been
identified across all kingdoms. In A. thaliana, ten homologs
exist (MSL for MscS-Like) located in the plasma, inner
chloroplast envelope and inner mitochondrial membrane, and
have functions related to osmoregulation and two processes
clearly related to pathogen responses: cell death and the redox
state (Guerringue et al, 2018; Bacete and Hamann, 2020;
Schlegel and Haswell, 2020). Functional characterization of
plant HPKs and MscS-Like channels is incipient and further
research is needed.

Leucine-rich repeat receptor-like
protein kinases

Although diverse response pathways to perceived stimuli
exist, most described cell wall-derived elicitor signaling
pathways operate through receptor-like kinase (RLKs), which
constitute one of the largest gene families in plants, with
more than 600 members in A. thaliana (Jose et al., 2020).
The basic structure of an RLK includes a variable extracellular
domain (ECD), a transmembrane region and a cytosolic
domain with kinase activity, for phosphorylation of various
proteins during downstream signaling (Dievart et al., 2020).
The largest subfamily of RLKs, which includes members
essential for plant development and immune responses, is one
for which the ECD is made up of leucine-rich repeats (LRR-
RLK) (Haswell and Meyerowitz, 2006). This class of receptors
generally heterodimerize with members of the subfamily
SOMATIC EMBRYOGENESIS RECEPTOR KINASEs (SERKSs),
forming a receptor with two kinase domains that are self
and hetero-phosphorylated at multiple residues (Zhou et al.,
2019). Once activated, heteromeric complexes phosphorylate
other components of the pathway forming a signaling cascade
that includes Receptor-Like Cytoplasmic Kinases (RLCKs),
Mitogen-Activated Protein Kinases (MAPKs) and/or calcium-
dependent protein kinases (CDPKs), ultimately targeting
transcription factors to drive gene expression changes in
response to a particular ligand (Zhang et al., 2018). Regulation
of these pathways includes the activity of pseudokinases and
phosphatases, modulation of component abundance and
ubiquitination and post-translational modifications, such as
glycosylation, acetylation, etc. (Yuan et al, 2021). Thus, the
diversity of responses controlled in this manner is enormous,
difficult to study and harder to elucidate. Interestingly,
other RLK subgroups contain extracellular domains with
carbohydrate-binding motifs, being interesting candidates
for sensing cell wall-related signals that potentially derive
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from interactions with pathogenic microorganisms (Zhu
et al, 2021). The LRR-RLK family constitutes the largest
plant-specific clade of the eukaryotic kinase superfamily
and several of its members have essential roles in many
aspects of plant development and immunity (Yang et al,
20165 Jose et al, 2020). Despite their importance in defense
mechanisms, functional characterization of LRR-RLKs is
incomplete, mainly due to high functional redundancy. Even
so, some receptors have been extensively studied, generating
important information about their role in plant immunity.
Such is the case of BRASSINOSTEROID INSENSITIVEI
(BRI1) originally identified as the receptor for plant hormone
brassinosteroid and more recently observed as being involved
in plant immunity signaling (Lozano-Elena and Caio-
Delgado, 2019; Choi J. H. et al, 2021). Heterodimerization
of BRIl with coreceptor BRI1-ASSOCIATED RECEPTOR
KINASE1 (BAK1/SERK3) directs the transphosphorylation
for Ca’*-dependent proteolytic cleavage of BAKI that is
critical for its location at the membrane and its activity to
phosphorylate BOTRYTIS-INDUCED KINASE1 (BIK1), an
essential control point in plant immunity (Lozano-Elena
and Cano-Delgado, 2019; Zhou et al., 2019; Choi J. H.
et al, 2021). BAK1 can form a co-receptor complex with
MIK2 (LRR-RK MALE DISCOVERER 1-INTERACTING
RECEPTOR LIKE KINASE2), reported as the receptor
for SERINE RICH ENDOGENOUS PEPTIDE (SCOOP),
which is required for resistance to Fusarium oxysporum, a
root invading fungus causing vascular wilt disease through
xylem colonization (Edel-Hermann and Lecomte, 2018).
oxysporum proteome includes SCOOP-
like sequences that seem to trigger plant immunity (Van
der Does et al., 2017; Hou et al., 2021; Rhodes et al.,
2021).

FEI1 and FEI2 are another pair of RLKs involved
in CWI signaling; both interact with an arabinogalactan

Interestingly, F.

protein (SOS5/FLA4) involved in salinity tolerance and
cellulose biosynthesis, as well as with at least two isoforms
of AMINOCYCLOPROPANE 1-CARBOXYLIC ACID (ACC)
SYNTHASE (ACS), thus relating CWI signaling directly with
ethylene and indirectly with other growth regulators (ABA and
auxins) (Engelsdorf et al., 2018; Seifert, 2021). Regarding the
relationship of FEI proteins with defense responses, Botrytis
cinerea [a necrotrophic fungus causative of the gray mold
disease (Dean et al,, 2012)] produces multiple siRNAs that
interfere with the immune response, one of which (Bc-siR37)
affects FEI2 transcription. In agreement with this observation,
At-FEI2 mutant is hypersensitive to B. cinerea infection (Wang
et al., 2017). Because of a possible requirement of THEI for
B. cinerea resistance, FEI1 and THE1 could operate in the same
signaling pathway (Qu et al., 2017). However, these results were
obtained with the hypermorphic allele thel-4, which could lead
to misinterpretation of THE1 in resistance to pathogens (Merz
etal., 2017).
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Catharanthus roseus receptor-like
kinase 1-like

The most studied RLK subfamily in relation to cell wall
signaling, frequently associated with attack by pathogens, is the
Catharanthus roseus Receptor-Like Kinase 1-Like (CrRLKIL)
(Franck et al., 2018; Ge et al,, 2019; Zhu et al, 2021). In
A. thaliana, this subfamily consists of 17 members, of which
seven have been functionally described (Ge et al., 2019). The
CWI CrRLKI1L sensor THESEUSI1 (THEL), originally identified
as a suppressor of the dwarfism phenotype that characterizes
the cesa6prcl-1 mutant affected in cellulose synthase, provokes
responses that share similarities to those activated by pathogen
infections (Hématy et al, 2007; Merz et al, 2017). Cell
signaling through THEL results in the induction of callose
and lignin synthesis and enrichment of homogalacturonan,
as a compensatory mechanism for the cell wall weakening in
A. thaliana (His et al., 2001; Cafo-Delgado et al., 2003; Hématy
et al., 2007; Bacete et al., 2018; Engelsdorf et al., 2018; Rui and
Dinneny, 2020) involving jasmonate, ethylene and salicylic
acid, which are hormones often related to plant immunity
(Cafio-Delgado et al., 2003; Herndndez-Blanco et al., 2007;
Hématy et al., 2007; Hamann et al.,, 2009; Shigenaga et al.,
2017; Bacete et al.,, 2018; Engelsdorf et al., 2018). Particularly,
in A. thaliana, impairment of cellulose synthesis enhance
resistance to Ralstonia solanacearum [a wilt-causing, xylem
invading bacteria (Peeters et al, 2013)], Plectosphaerella
cucumerina [a root associated necrotrophic fungus (Carlucci
et al,, 2012)] and B. cinerea (Herndndez-Blanco et al., 2007;
Bacete et al., 2018; Engelsdorf et al., 2018). However, it seems
that THE1-mediated defense responses are more related to the
monitoring of CWI during plant cell growth and mechanical
or hypo-osmotic stress, than to pattern-triggered immunity
responses (Hématy et al.,, 2007; Engelsdorf et al,, 2018). Cell
wall damage induces oxidative bursts that can be misinterpreted
as pathogen attack (Bacete et al., 2018). An ubiquitous family
of secreted peptides known as RALFs (rapid alkalinization
factors, which block proton channels, increase extracellular
pH and stop cell growth) are ligands for different RLKs
(Murphy and De Smet, 2014). Peptide RALF34 is perceived
by THEL, which affects cell growth in response to cell wall
damage (Gonneau et al, 2018). Interestingly, the RALFs
represent a point of convergence/divergence between various
signaling pathways potentially involved in the immune response
(Zhang et al.,, 2020b). Several of these peptides are ligands of
RLKs, being FERONIA (FER) undoubtedly the most widely
studied (Ji et al., 2020) due to its involvement in processes
such as gametophyte recognition during sexual reproduction,
developmental processes, cell expansion, signaling of different
hormones, tolerance to abiotic stress, and plant-pathogen
interactions (Ji et al., 2020). In the last case, FER acts as a
sensor of CWI upon necrotrophic pathogen cell wall digestive
enzymes activity. Particularly, defects in the biosynthesis and
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modifications of pectin are sensed by FER, activating the
ROP6 GTPase pathway that controls the formation of the
puzzle-shaped pavement cells in A. thaliana (De Lorenzo
et al,, 2019; Lin et al, 2022). FER also has a function as
a scaffold protein, recruiting a complex that includes the
ELONGATION FACTOR THERMO UNSTABLE RECEPTOR
(EFR), FLAGELLIN SENSING?2 (FLS2), and BAKI1 to initiate
immune signaling (Stegmann et al, 2017). This scaffold
function of FER depends on its interaction with RALF23. In
A. thaliana the precursor of RALF23 can be processed by
SITE-1 PROTEASE (S1P), preventing complex formation and
compromising the immune response (Ji et al., 2020). To regulate
immune responses, FER associates in a complex with LORELEI-
LIKE GLYCOSYLPHOSPHATIDYLINOSITOLANCHORED
PROTEINI and 2 (LLG1 and LLG2) and RALF23 (Xiao et al,,
2019). A. thaliana fer mutants are resistant to Golovinomyces
(syn. Erysiphe) orontii [fungal pathogen that causes powdery
mildew (Braun et al,, 2019)], suggesting that FER negatively
regulates plant immunity to biotrophic pathogens (Kessler et al.,
2010). Plant resistance seems to involve ET- and JA-mediated
defense pathways since gene marker PDFI.2 (a plant defensin
gene induced by both phytohormones) is highly expressed in fer
mutants. However, because PRI (a responsive marker gene for
salicylic acid) is expressed at normal levels and the ROS burst is
suppressed after the pathogen challenge, it has been postulated
that powdery mildew resistance is independent of salicylic acid
and ROS in fer mutants (Kessler et al.,, 2010). FER-mediated
resistance mechanisms cannot be generalized, as fer mutants
are susceptible to infections by Hyaloperonospora arabidopsidis,
a biotrophic oomycete that provokes downy mildew (Coates
and Beynon, 2010) and Colletotrichum higginsianum, a
hemibiotrophic fungus causative of anthracnose disease
(Kessler et al., 2010; Yan et al,, 2018). Interestingly, during
infection with F. oxysporum, FER is targeted by a RALF
mimic secreted by the fungus (F-RALF) (Masachis et al., 2016;
Thynne et al, 2017), provoking phosphorylation of H*-
ADENOSINE TRIPHOSPHATASE 2 (AHA2) and activating a
fungal activated mitogen-protein kinase (FmkI -indispensable
for fungal pathogenicity), causing an increase of extracellular
pH and defense-response inhibition (Segorbe et al, 2017;
Nunez-Rodriguez et al., 2020). Similar RALFs are present in
26 species of phytopathogenic fungi, opening the possibility
that RALF mimics-mediated inactivation of FER and/or other
RLKs is employed by phytopathogens to override plant defense
mechanisms (Masachis et al., 2016). Interestingly, in response
to Pseudomonas syringae [a bacterial phytopathogen (Xin
et al,, 2018)], FER-induced immune signaling is independent
of its kinase activity (Song et al, 2021), also Meloidogyne
incognita [an endoparasitic nematode of the root vascular
cylinder (Tapia-Vazquez et al., 2022) produces RALF mimics
(MiRALF1/3) that directly bind the extracellular domain of
FER, facilitating parasitism (Zhang et al., 2020a). Additionally,
proteins ANX1 and ANX2, which are structurally related to
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FER, form a receptor-coreceptor complex with others RLKs,
namely Buddha’s Paper Seal 1/2 (BUPS1/2), and LLG2/3, which
perceives RALF signals to promote ROS production. This
complex has already been related to the dynamics of pollen
tube growth (Boisson-Dernier et al., 2009; Miyazaki et al,
2009), but ROS, in addition to their well-documented role as a
wall-modifying agent, also act as a molecular signal that impacts
both cell growth and immune responses. Interestingly ANX1
was re-identified in a genetic screen searching for components
controlling plant immunity (Mang et al., 2017; Ge et al,, 2019).
In summary, FER functions can be associated to a positive or
negative regulation of immune responses by binding to RALFs
or modulating the assembly and activity of RLKs. Despite the
many studies on the matter, much research remains to be done
to identify FER interactors and the contribution of each one of
them to the host-pathogen interaction.

Wall-associated kinases

Other types of kinases have been implicated in surveillance
of the CWI, such is the case of wall-associated kinases (WAKs)
that are distinguished from other receptors by the presence
of unique epidermal growth factor (EGF) repeats in the
extracellular domain. Up to now they are the only reported
receptors with the ability to bind both native cell wall pectin
during cell expansion and oligogalacturonides derived from
mechanical and pathogen-provoked damage to the cell wall
(Kohorn and Kohorn, 2012; Kohorn, 2016). The A. thaliana
genome encodes five WAKs, 21 WAK-like genes (WAKL), and
genes for truncated proteins or with EGF variations (Verica
et al, 2003). WAKL genes have also been identified in several
angiosperms including wheat, maize, rice, and tomato, and in
the first three cases, they are involved in immune responses (Li
et al,, 2009; Yang et al.,, 2014; Zuo et al., 2015; Wu et al., 2020).
Interestingly, other components of the WAK signaling pathway,
the MAPK6 and the transcription factors EDS1 (ENHANCED
DISEASE SUSCEPTIBILITY1) and PAD4, (PHYTOALEXIN
DEFICIENT4), all of which are involved in the response to
pathogens, seem to converge on this pathway (Joglekar et al,
2018; Dongus and Parker, 2021).

Other proteins associated to cell wall
integrity signaling

Cell wall leucine-rich repeat extensins (LRX) are a group
of cell wall proteins harboring N-terminal leucine-rich repeats
(LRR) predicted to bind ligands, and a highly glycosylated
C-terminal extensin domain probably involved in the cross-
linking of cell wall components, such as pectins. The presence
of LRR and extensin domains place the LRX proteins in a great
position to sense cell wall signals and transfer this information
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to downstream components. Three of the eleven LRX encoded
in the A. thaliana genome, namely AtLRX 3/4/5, bind
peptide RALF23, and interact as a complex with FER causing
internalization (Herger et al., 2019). Therefore, LRX represent a
link between the cell wall and plasma membrane signaling. The
complex AtLRX 3/4/5-RALF23-FER was described in regulation
of plant growth and salt stress tolerance but given the important
implications of FER on plant immunity (Zhao et al, 2018;
Herger et al,, 2019, 2020), it is reasonable to think that similar
complexes could operate in response to pathogens, although
this is pending confirmation. Functional characterization of two
A. thaliana xyloglucan-deficient mutants xxt1 and xxt2, affected
in xylosyltransferase genes, revealed a link between the cell wall
and transcriptional control of polar auxin transport mediated
by PINFORMEDs (PINs) and AUX1 (Park and Cosgrove,
2012). Furthermore, promotion of xyloglucan-derived hepta-
to nona-saccharides cleavage by fungal hemicellulases, regulate
auxin-induced growth mediated by expansins (McDougall and
Fry, 1990; Shavrukov and Hirai, 2016; Bacete and Hamann,
2020), through at least a cognate receptor (Claverie et al,
2018). However, auxin plays an important role in plant defense
signaling, and altered expression of several genes involved
in the immune responses, such as FEIl, FEI2, and FER
downregulation, or WAK1 upregulation, in the xxtI and xxtp2
mutants (Xiao et al, 2016), suggests that perturbations on
xyloglucan content, are involved in the signaling processes.

Because CWI signaling pathway is controlled by the activity
of different kinase types, it is valid to assume, for balanced
purposes, the need for phosphatase activity. In fact, of the
32 members of the group of impotence rescue (ipr) mutants,
identified as suppressors of the pollen tube (PT) bursting
phenotype that characterizes the double anxI anx2 mutant
plants (Boisson-Dernier et al., 2015), one of them (ipr7) encodes
for a Type One Protein Phosphatase (TOPP), named ATUNISI
(AUNT1) that, like its homolog AUN2, is a negative regulator
of the CWI maintenance required for the tip growth of the PT
(Franck et al., 2018). The possible participation of AUN1/AUN2
and other phosphatases in the CWI signaling pathways outside
the tip-growth is an interesting hypothesis to be tested over the
next few years.

The cell wall as source of
damage-associated molecular
patterns

The cell wall is a source of endogenous elicitors that warn
of external danger (Keegstra, 2010; Scheller and Ulvskov,
2010; Mota et al, 2018). When broken down by microbes,
polysaccharide fragments are detected by membrane Pattern
Recognition Receptors (PRRs), triggering the above-mentioned
signaling cascade events for the induction of responses to
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contain or eliminate the progress of invasion (Saijo et al,
2018). Both Microbe-Associated Molecular Patterns (MAMPs)
and/or Damage-Associated Molecular Patterns (DAMPs)
induce Pattern-Triggered Immunity (PTI), which can be
amplified by feedback loops of endogenous peptides (or
phytocytokines) synthesis that also activate PRRs (Gust
et al, 2017; Ranf, 2018). PRRs are transmembrane single-
pass proteins, with an RLK, or without an intracellular
kinase domain and thus known as Receptor-Like Proteins
(RLP). These receptors show specificity and high affinity
(in the nanomolar range) for their ligands, which could be
of protein origin, binding PRRs of the leucine rich repeat
category; meanwhile PRRs with LysM motifs recognize
N-acetylglucosamine and chitooligosaccharides derived from
chitin. Some oligosaccharides are strong elicitors and their size,
structure and origin have been reviewed (Zheng et al., 2020).
Despite the specificity to various activators, downstream events
include pathway crosstalk leading to a general PTI response.
In the case of DAMP oligosaccharides, once they interact with
their receptors, a fast response occurs resulting in some of the
following events: intracellular Ca?t transients, oxidative bursts,
NO accumulation, phosphorylation events by kinase signaling
cascades (MAPK) and cell wall reinforcement (Sun and Zhang,
2022). Induction of defense-related genes to produce secondary
metabolites with antimicrobial activity and enzymes to digest
the microbial wall structures (chitinases, {3-1-3 glucanases), and
activation of the ethylene, salicylic acid and jasmonate pathways
are late outcomes of the response. Several publications have
reviewed PTI responses (Ranf, 2017, 2018; Yuan et al,, 2021). In
the following paragraphs we describe the induction of the plant
defense triggered by the major cell wall-derived DAMPs.

Pectin derivatives: Oligogalacturonides
and pectin oligosaccharides

To date, the best-characterized cell wall-derived DAMPs
are oligogalacturonides (OGs). OGs are short molecules of a-
1,4-linked galacturonosyl residues derived from digested pectin
due to microbial activity or by wounding (Ferrari et al., 2013;
Claverie et al., 2018; Voxeur et al,, 2019). Different response
outcomes to OGs depend on: the origin of the microbe
involved in the degradation of pectin; plant species; degree of
polymerization (DP); and chemical modification of the oligomer
(for instance methyl or acetyl esterification). Active OGs are in
an egg box conformation that is Ca**-dependent with optimal
DP >9, however, protoplasts have shown responses to large
pectin fragments, suggesting that the active size is restricted
to its capacity for free movement through the cell wall matrix
for reaching the plasma membrane (Ferrari et al., 2013). Most
work on OGs comes from fungal infection studies and much
less is known from bacterial-plant interactions, but a pectate
lyase from Xanthomonas campestris [a systemic xylem pathogen
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causing black rot disease (Vorholter et al,, 2012; Lowe-Power
etal., 2018)] and a endopolygalacturonase from Pectobacterium
carotovorum [soft rot disease causal agent (Mansfield et al,
2012)] produce OGs with weak inducing activity at low DP
(2-4) but which is optimal at DP >8 (Davis et al.,, 1984;
Norman et al, 1999). In A. thaliana and other species,
OGs interact with receptor WALL-ASSOCIATED KINASE 1
(WAKI1), a representative of WAK receptors containing an
EGF-like ectodomain and intracellular Ser/Thr kinase domain,
which in turn also binds Glycine Rich Protein 3 (GRP3) through
a different binding domain, with a suggested desensitizing
activity to control the response to OGs. WAKI mainly binds
non or low-methyl esterified OGs through interaction with
five positive residues (arginines and lysines), four of which are
located near to the N-terminal at the extracellular portion of
the receptor and one further apart, which in combination allow
high affinity for the ligand (Decreux et al., 2006). However,
the general responses elicited by OGs in a wide range of plant
species are accumulation of phytoalexins, callose deposition,
production of ROS and NO that lead to resistance to B. cinerea
in A. thaliana (Davis et al., 1986; Bellincampi et al., 2000; Galletti
etal., 2008; Rasul et al., 2012; Ferrari et al., 2013; Pontiggia et al.,
2020). For instance, Howlader et al. (2020) recently reported that
spraying A. thaliana with oligosaccharides derived from partial
hydrolysis of pectin (POS) confers resistance to Pseudomonas
syringae pv. tomato DC3000 with an optimal concentration of
25 mg/L 3 days before inoculation. ROS, NO, and the expression
of genes PR1, PR2, and PR5 all increased with the treatment.

Cello-oligosaccharides

Other cell wall-derived DAMPs are cello-oligosaccharides
(or cellodextrins). Fewer reports exist for the eliciting capacities
of cellulose and hemicellulose, but recent evidence has shown
that oligomers from these polymers also trigger defense
responses with some differences to those originated from
OGs. Different outcomes relative to cellulose derivative burst
have been observed in grapevine (Aziz et al., 2007), rice
(Yang et al, 2021) and A. thaliana (Souza et al, 2017).
Grapevine responded to cellodextrins with DP >7, which
were strong inducers of cytosolic Ca’" transients and of
defensive enzymatic activity [chitinase and 3-1,3 glucanase
(Aziz et al, 2007)]. In rice the cello oligosaccharides 3!-B-D-
cellobiosyl-glucose and 3!-B-D-cellotriosyl-glucose are sensed
by the CERKI-CEBiP receptor complex, inducing a burst
of ROS (Yang et al, 2021). In the case of A. thaliana, no
oxidative response was induced after cellobiose (or higher
DP cellodextrins) treatment, but phosphorylation of MPK3
and MPK6 rapidly occurred (with a peak at 10 min),
resulting in the induction of WRKY30 transcription factor and
calcium transients. Cellobiose treatment also upregulates genes
associated with phytohormone signaling: SAG101, PAD4 for
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SA; ACS7 for ET; and LOX3 and LOX4 for jasmonate but the
treatment failed to deposit callose or suberin to reinforce the
cell wall. Although perception of cellodextrins can saturate,
the responsible PRR remains unknown, and analysis of the
receptor involved in the response to cellulose indicates that
THESEUS is not required in the cellobiose pathway (Aziz et al.,
2007; Hématy et al, 2007). Compared to hepta cellodextrin
in grapevine, cellobiose response induction in A. thaliana is
weaker, but synergizes the response to chitin, flg22 and OGs
when applied simultaneously, suggesting different signaling
pathways and an auxiliary response to other danger signals
(Souza et al.,, 2017). Additionally, oxidized and native cellulose-
or cello-oligosaccharides (DP from 2 to 10), and Cl- or
C4-oxidized products oxidatively cleaved from cellulose by
the microbial enzymes lytic polysaccharide monooxygenases
(LPMOs), activate immunity in A. thaliana and tomato and
induce resistance to B. cinerea. Upon treatment, two receptors,
STRESS INDUCED FACTOR 2 and 4 (SIF2, SIF4), are induced
and might form a complex with BAK1 and THE1 that detect
these molecules (Zarattini et al., 2021).

Oligoxyloglucans

Xyloglucan is the main hemicellulose of dicot plants, and
in a report by Claverie et al. (2018) authors demonstrated that
DP 7 heptamaloxyloglucan (and in minor concentrations also
higher DPs) obtained from apple pomace is an elicitor (through
a still unknown membrane receptor) in grapevine and in
A. thaliana (Claverie et al., 2018). This oligoxyloglucan induces
a fast dose-dependent phosphorylation of MAPKs within the
first 10 min of treatment, but without a detectable oxidative
burst. Late responses to the oligoxyloglucan include defense-
related gene induction of the SA- and camalexin-pathways
in A. thaliana and PAL (phenyl ammonia lyase) and STS
(stilbene synthase) genes of the resveratrol biosynthesis pathway
in grapevine (Claverie et al,, 2018). A. thaliana mutants of
the camalexin-, SA-, ET-, and JA-pathways confirmed their
involvement to the presence of oligoxyloglucan as they failed to
protect toward a challenge with B. cinerea (Claverie et al., 2018).
Additionally, cell wall reinforcement with callose deposition
is part of the responses induced by oligoxyloglucan (Claverie
et al, 2018; Héloir et al,, 2019). In the case of arabinoxylan,
it was reported that pentose oligosaccharides with arabinose
decorations as the pentasaccharide 3*-a-L-arabinofuranosyl-
xylotetraose (XA3XX) triggered Ca?* transients, ROS burst, and
induce MAPK3 and MAPK6 phosphorylation in A. thaliana
(Mélida et al., 2020). Chemically synthesized mixed-linked
glucans or MLGs [B-1,3/1,4-glucans; (1,3;1,4)-B-d-glucans]
also trigger immunity, with the trisaccharide MLG43 [B-
D-cellobiosyl-(1,3)-B-D-glucose] being the smallest of these
molecules to act as a potent pathogen resistance inducer
(Rebaque et al, 2021). Other species might also express
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receptors for MLG as MLG43 protected against oomycete,
bacterial and fungal pathogens in A. thaliana, tomato, and
pepper, which in this case would be detected as foreign molecule
because MLG43 is absent in their cell walls, but present in the
cell wall of some microorganisms (Barghahn et al.,, 2021).

Hyperinduction of immune responses activated by cell wall
oligosaccharides is thought to be prevented by oligosaccharide
oxidation of the (cellodextrins and oligogalacturonides) by
FAD-dependent Berberine Bridge Enzyme-like (BBE-like)
proteins with 27 members in A. thaliana, which render them
inactive in this state. Oxidizing oligosaccharides also confer
resistance to microorganisms that are unable to metabolize them
(Benedetti et al., 2018; Locci et al., 2019). However, Zarattini
etal. (2021) showed that C1-oxidized cellobionic acid is still able
to induce high expression of defense genes.

Expansins in susceptibility to
infection

Because CWI is key for its barrier functions, modification
by cell wall proteins can have distinct outcomes for pathogen
susceptibility or resistance. Expansin’s importance in plant-
microbe interactions is evidenced by a growing number
of reports of expansin involvement in different phenotypes
(Cosgrove, 2015). Expansins are a family of plant and microbial
proteins with cell wall remodeling roles through their binding
capacity to cellulose and other cell wall polysaccharides, and
hypothetical non-catalytic disruptive activity of weak bonding
between polysaccharides (McQueen-Mason and Cosgrove,
1994; Cosgrove, 2015, 2017). Different subclasses of plant
expansins act in many physiological and developmental
processes that involve controlled cell wall remodeling, and
in particular their contribution in cell wall extension is well
known (Cosgrove, 2016), yet expansins are also induced under
several stressing conditions (Feng et al, 2019; Kong et al,
2019). Additionally, due to their prevalent induction observed
in expression profiling analysis under stress, proteins classified
as expansin-like type a and type § (subfamilies EXLA and
EXLB), have been associated to cell wall modification resulting
in (mainly abiotic) stress tolerance (Abugamar et al, 2013;
Marowa et al., 2016; Guimaraes et al., 2017; Chen et al., 2019;
Muthusamy et al., 2020; Zhang et al., 2021; Morales-Quintana
etal,, 2022). Subfamily X (EXLX), includes microbial expansins,
from bacteria, fungi and oomycetes, with structural similarity to
B-expansins (Kende et al., 2004; Nikolaidis et al., 2014). Very few
reports on microbial expansin activity on the plant cell wall exist,
probably in part due to the difficulty on quantifying their effect,
although it is known that they also bind cellulose and plant
cell walls, but show only weak extension activity in comparison
to plant expansins (Kerff et al,, 2008; Georgelis et al,, 2014,
2015; Olarte-Lozano et al,, 2014). As mentioned before, signs
of cell wall modification due to microbial activity or induced
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FIGURE 1
Defense responses activated by plant cell wall modification for pathogen resistance. Cell wall integrity (CWI) surveillance receptors, DAMPs and
expansins interact with plant cell wall components and elicit defense responses leading, in some cases, to pathogen resistance. Stimuli from the
cell wall is transduced to the cell interior through different pathways (arrows), for the induction of hormone-dependent signaling, NO, ROS and
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Ca2 + transients. CW, cell wall; PM, plasma membrane, ?: unknown receptor; OGs, oligosaccharides; POS, pectin oligosaccharides; COGs,
cello-oligosaccharides; CB, cellobiose; CDs, cellodextrins; AX, arabinoxylan; MXG, heptamaloxyloglucan; AtEXLB8, Arabidopsis thaliana
expansin-like B; PbExl1, Pectobacterium brasiliense expansin-like 1 protein; PcEXL1, Phytophthora capsici expansin-like 1 protein; THEIL,
THESEUSI receptor; FER, FERONIA receptor; WAK1, WALL ASSOCIATED KINASE 1; CERK1-CEBIP, chitin-elicitor receptor kinase 1-chitin-elicitor
binding protein receptor complex; ERK1, expansin-regulating kinase 1; NO, Nitric oxide; ROS, reactive oxygen species; MAPK, mitogen-activated
protein kinases; SA, salicylic acid; JA, jasmonic acid; ET, ethylene. 2l Unknown ligand, == Cellulose, == Hemicellulose, == Pectin,

Hemicellulose derivatives, A pectin derivatives. Figure created with BioRender.com.

by abiotic stress are detected by membrane receptors alerting
the cell to mount defense and stress responses, sometimes
simultaneously. For instance, ectopic overexpression of EXLB8
from Arachis in tobacco results in tolerance to water deficit
and resistance to the white mold causative necrotrophic fungus
[Sclerotinia sclerotiorum (Hegedus and Rimmer, 2005)], and to
the nematode M. incognita, and to drought and simultaneous
nematode infection (Brasileiro et al., 2021). Different cell
wall nanomechanical properties (possibly stiffer, but more
deformable leaves), brought about by EXLB8 overexpression,
and consequently, possibly by other six endogenous EXL genes,
was suggested as responsible of the phenotype hampering a
successful infection. Various biotic and abiotic stress genes of
the jasmonate, ethylene and abscisic acid pathways were also
induced, activating a more general and unspecific priming of
the host against pathogens with important lifestyle differences
(Brasileiro et al., 2021). Contrarily, A. thaliana EXLA2 down-
regulation provides resistance to B. cinerea and oxidative stress,
although roots become sensitive to salt and cold when the
medium contains ABA (Abuqamar et al., 2013). Susceptibility
to pathogens might be a combination of a stiffer or more
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relaxed cell wall directly affecting colonization and the defense
responses resulting from these changes, although to this day the
trigger remains unknown. A clue as to the chemical nature of
a possible ligand is exemplified by treatment of celery petioles
and A. thaliana leaves with expansin Exl1 from Pectobacterium
brasiliense strain BF45, which show resistance to a challenge
of BF45 and B. cinerea 24 h after Exl1 infiltration (Narviez-
Barragan et al., 2020). Because Exl1 binds to celery cell corners
of cells surrounding xylem vessels, which is a site abundant
in pectin and due to the seeming solubilization of a phenolic-
substituted polysaccharide from isolated Swiss chard vascular
bundles in vitro, it has been suggested that pectin could be
the ligand triggering ROS bursts, and inducing genes of the
jasmonate, ethylene and salicylic acid pathways (Tabuchi et al.,
2011; Wang et al, 2016; Tovar-Herrera et al., 2018). More
recently, Pi et al. (2022) identified a G-type lectin receptor-
like kinase (ERK1, for expansin regulating kinase) that responds
to the presence of expansin EXLX1 from Phytophthora capsici
[one of the most harmful hemibiotrophic oomycetes (Pi et al.,
2022)] in tobacco leaves, providing resistance to the infection.
Although the ligand for the receptor remains to be found, this
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is a first step toward our understanding of the mechanisms
underlying perception of wall modification by expansins.

Perspectives

Cell wall modification as a response to abiotic stress or
due to pathogen activities induces defense responses resulting
in priming of the host locally and systemically, in some
cases involving common or shared pathways (Figure 1).
Several studies have explored the importance of expansin
proteins in this process, being of particular interest those that
provide resistance to pathogens, opening the possibility for
expansin treatment as a biotechnological application for crop
improvement. However, given that a positive effect is not a
general outcome, further investigation will tell which expansin
treatment would modify the cell wall properties and subsequent
defense responses in a manner that is favorable for the host.
For this purpose, we need to integrate our knowledge on
expansin activity (from both plant and microbial origins) with
the mechanisms of the cell wall surveillance and responses to
stress. Analysis of possible cell wall physical modification and
changes in mechanical properties brought about by expansins,
can be done combining traditional techniques with novel
methods of cell wall imaging using fluorescence-based probes
for different components recently developed (Michels et al.,
2020; DeVree et al,, 2021). This would shed light on whether
resistance or susceptibility are a consequence of a direct cell wall
alteration and how this affects microbial invasion, and it will tell
whether some expansin types are better than others in providing
resistance. With respect to microbial expansins many questions
remain unanswered, for instance, which expansin treatment
provides resistance (or susceptibility) and to which hosts. Most
reverse genetics experiments of bacterial expansins indicate a
requirement for proper colonization, except that of ExIx2 from
C. michiganensis (Tancos et al., 2018), suggesting that similarly
to plant expansins, microbial expansin treatment might result
in different phenotypes, and thus, each case must be studied
independently. Another important question is determining the
identity of trigger stimuli that activate defenses after expansin
acts on the cell wall. And finally, what pair of receptor-ligand
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