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Modelling higher plant growth is of strategic interest for modern agriculture as

well as for the development of bioregenerative life support systems for space

applications, where crop growth is expected to play an essential role. The

capability of constraint-based metabolic models to cope the diel dynamics of

plants growth is integrated into amultilevel modelling approach including mass

and energy transfer and enzyme kinetics. Lactuca sativa is used as an exemplary

crop to validate, with experimental data, the approach presented as well as to

design a novel model-based predictive control strategy embedding metabolic

information. The proposed modelling strategy predicts with high accuracy the

dynamics of gas exchange and the distribution of fluxes in the metabolic

network whereas the control architecture presented can be useful to manage

higher plants chambers and open new ways of merging metabolome and

control algorithms.

KEYWORDS

closed ecological life support systems, higher plant chambers, functional-structural
modelling, model predictive control, FBA, Melissa
1 Introduction

Modelling crop growth has been a topic of research since the mid-twentieth century

given the relevance that agronomic-related activities have in the global economy, but the

focus on plant modelling research has evolved in the last decades moving towards new

applications (Louarn and Song, 2020). A lot of attention has been placed on developing

full-canopy models to assess climate change from different perspectives, such as its effect

on crop physiology, the higher plant adaptive strategies, or the contribution of forestry
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and agricultural systems on carbon dioxide capture, to mention

a few (Soussana et al., 2010; Peng et al., 2020). Besides

responding to the current global climate and demographic

challenges, the need for more efficient forms of horticulture to

increase productivities, improve yield, and optimize crop growth

has also contributed to the generation of mathematical models to

support agronomic activities. Still, much progress is required in

the field of biological systems modelling and this is especially

relevant in the case of higher plants due to the complexity of

their underlying growth mechanisms. Modelling complex

systems like higher plants may be an objective by itself

as before-mentioned, but they may also lead to other

interesting applications like the development of model-based

control methodologies. Particularly, space research and the

development of bio-regenerative life support systems (BLSSs),

which are the set of technologies designed to guarantee life in

long-term crewed missions (Eckart, 1995), have exploited the

use of controllers based on first principles in opposition to

surrogated and reduced order models, to improve both the

management of missions under operation as well as to

improve the design of future missions (Fulget et al., 1999).

One of the main actors on BLSS research is the Micro-

Ecological Life Support System Alternative (MELiSSA), a

European Space agency (ESA) BLSS program, which is

devoted to developing technologies accompanied by a

modelling framework to support their research and

development activities. One remaining task, which is in turn

one of the most relevant consensuses of the development of

BLSSs shared by the major space agencies, is the importance of

developing technologies and mathematical models to grow

plants on space, which are expected to be the major source of

edible biomass in BLSSs (Gitelson and Lisovsky, 2002; Poughon

et al., 2009; Dong et al., 2017).

Even though current models can cope with the evolution of

biomass, the compounds involved in photosynthesis and

respiration (O2 and CO2), and the nutrient uptake by the

roots, most of the phenomena involved in plant growth are

not addressed given their complexity and lack of knowledge.

This complexity is associated with several factors; higher plants

are multicellular, compartmentalized organisms undergoing

strong metabolic changes associated with the cyclic switch

between light and dark phases of the day. They are also

characterised by having a complex substrate partitioning

strategy with different parts being coordinated to uptake and

distribute specific compounds. This has contributed to the

preference of empirical at the expense of mechanistic models

due to the usually satisfactory information provided by the

former, especially in nominal conditions (Boscheri et al., 2012;

Amitrano et al., 2020). Empirical models cover a limited range of

operating conditions though; thus, the scope of their use is

narrow and cannot contemplate all scenarios that plant culture

may undergo. As an alternative, mechanistic approaches have

also been deployed to understand the first principles behind
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higher plant growth, surpassing the Farquhar model (Farquhar

et al., 1980) to calculate photosynthesis rates based on the

enzyme kinetics of principal metabolic pathways. However,

out of the photosynthesis process, many key mechanisms like

respiration, substrate accumulation and management, tissue

morphology, or multi-tissue interactions have not completely

been mathematically characterised yet. To treat such a complex

system, the use of metabolome information has attracted the

attention of plant modellers as an alternative to gather multiple

biological reactions formalized as a constraint-based metabolic

model (Gomes et al., 2015). It should be highlighted that

constraint-based metabolic models have been demonstrated to

successfully address the plant diel cycle with a light phase with

resource accumulation and a dark phase with resource depletion

(Cheung et al., 2014), a critical phenomenon in higher plant

metabolism very difficult to deal through first-principle

approaches thus far. Several efforts have been recently placed

on integrating available mechanistic information and omics data

in a common multiscale modelling framework that could

potentially be used by the plant computational biology

research community to feed data in a single converging

platform (Marshall-Colon et al., 2017; Xiao et al., 2017).

In this study, the modelling of higher plants is approached

through the design of a multilevel organization of the

mechanistic processes that take place during crop growth. To

present the results, L. sativa has been used as an exemplary

higher plant. The higher level in the hierarchy copes with the

mechanistic phenomena corresponding to a higher

characteristic length (i.e., crop chamber scale), whereas the

lower the level the smaller the characteristic length of the

modelled phenomena (i.e., enzyme rate). Information follows a

top-bottom flow, and it is eventually used to calculate the

metabolic flux distribution by applying a flux balance analysis

(FBA). This multilevel modelling approach is firstly validated

with experimental data and secondly integrated in a model-

based predictive control, representing, to the best of the authors,

the first attempt to incorporate cell metabolism in an advanced

control strategy.

Overall, the modelling and control methodology presented

in this study may pave the way for a more efficient and

sustainable agriculture either for intensive cultivation systems

or as a part of BLSSs in space exploration.
2 Model proposal

2.1 Multilevel mechanistic model

The model developed here is organized following a

multilevel approach, considering the different levels of the

plant, from canopy to metabolic level, and uses the output of

the higher levels as the input to the lower levels. In this section,

the models used in the different levels are explained. A graphical
frontiersin.org
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description of the model organization is presented in Figure 1

and detailed in the following paragraphs. For the sake of clarity,

model parameters are described in Table 1 and constant

parameters in Table 2.
2.1.1 Level 3: Modelling canopy growth
When dealing with whole-leaf or canopy modelling, it is

necessary to consider the effect of shading among leaves, which

is not accounted in single-leaf models (Poulet, 2018). The

common practice is to use the leaf area index (LAI) as an

indicative parameter of the leaf area density over ground

surface. The photon flux density inside the canopy I declines

along the canopy exponentially and is a function of the leaf area

index:

I = Iue
(−kLAI) (1)

Parameter Iu represents the photon flux density at the top of

the canopy, and k represents the extinction coefficient.

Extending (1), leaves can receive direct photon flux density (Is)

or diffuse photon flux density (Id) as stated by Thornley (2002),

which are expressed in terms of mmol m-2 leaf s-1 by using the
Frontiers in Plant Science 03
extinction coefficient k:

Is = k · fs · Iu + k · (1 − fs) · Iu · e
(−k·LAI) (2)

Id = k · (1 − fs) · Iue
(−k·LAI) (3)

Notice in (2) that the parts of the canopy under direct

irradiance also receive diffuse irradiance. The LAI term should

be differentiated between the fractions exposed to direct and

diffuse light sources (LAIs and LAId respectively), as suggested by

Thornley (2002):

LAIs = (1 − e−kLAI)=k (4)

LAId = LAI − LAIs (5)

The derivative of LAIs and LAId should be obtained and used

to integrate Is and Id to calculate the overall irradiance received

by the canopy:

dLAIs = e−kLAI   dLAI (6)

dLAId =   (   1 − e−kLAI)     dLAI (7)
FIGURE 1

Graphical scheme of the multilevel mechanistic model approach used for L. sativa prediction growth.
frontiersin.org

https://doi.org/10.3389/fpls.2022.970410
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ciurans et al. 10.3389/fpls.2022.970410
TABLE 1 Model parameters.

Symbol Description Units

Morphological module

LA Leaf area m2 leaves

L Leaf length m leaves

Mx Dry biomass g

Irradiance module

I Irradiance moles m-2 ground s-1

Iu Irradiance at LAI = 0 moles m-2 ground s-1

Is,g Direct irradiance over ground surface moles m-2 ground s-1

Id,g Diffuse irradiance over ground surface moles m-2 ground s-1

Is Direct irradiance over leaf surface moles m-2 leaves s-1

Id Diffuse irradiance over leaf surface moles m-2 leaves s-1

LAI Leaf area index m2 leaves m-2 ground

LAIs LAI exposed to direct irradiation m2 leaves m-2 ground

LAId LAI exposed to diffuse irradiation m2 leaves m-2 ground

Energy balance

Tl Leaf temperature K

kt Heat transfer coefficient m s-1

Ehs Direct irradiance energy J s-1

Ehd Diffuse irradiance energy J s-1

Er Radiation energy J s-1

Econv Convection energy J s-1

Etr Transpiration energy J s-1

Gas exchange

ExCO2
CO2 exchange rate moles m-2 leaves s-1

ExO2
O2 exchange rate moles m-2 leaves s-1

ExH2
O H2O exchange (transpiration) rate moles m-2 leaves s-1

Gz Conductance compound z moles m-2 leaves s-1

Pz
b Bulk partial pressure compound z Pa

Pz
l Leaf partial pressure compound z Pa

Biochemical module

FLETC Light electron transport chain rate moles m-2 leaves s-1

Fmax
LETC Maximum light electron transport chain rate moles m-2 leaves s-1

J Ribulose 1,5-biphosphate regeneration moles m-2 leaves s-1

Г Carbon dioxide compensation point moles m-3

Vc Carboxylation rate moles m-2 leaves s-1

Vcmax Maximum carboxylation rate moles m-2 leaves s-1

Vo Oxygenation rate moles m-2 leaves s-1

Ci Carbon dioxide leaf concentration moles m-3

Oi Oxygen leaf concentration moles m-3

Pg Gross photosynthesis rate moles m-2 leaves s-1

Pn Net photosynthesis rate moles m-2 leaves s-1

Boundary layer

gzBL Boundary layer conductance of compound z moles m-2 leavess-1

gzs Stomatal conductance of compound z moles m-2 leaves s-1

d Boundary layer thickness m

Tbl Average leaf-bulk temperature K

Dz Diffusion coefficient of compound z m2 s-1

vbulk Bulk velocity m s-1

vfree Free velocity m s-1

rl Leaf air density kg m-3
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Is,l =
Z LAI

0
IsdLAIs (8)

Id,l =
Z LAI

0
IddLAId (9)

The way light irradiates exposed and shadowed leaves

strongly affects the energy balance in the leaf surface, with the

shadowed leaves irradiated by diffused light mainly of a

wavelength of 600 nm corresponding to the green-colour

spectrum of transmitted light. Energy received by irradiance

contains the direct (Ehs) and diffuse (Ehd) terms, which are

expressed as follows:

Ehs = Is · Na · c · h · LAIs o
i=lmax

i=lmin

gi
li

(10)
Frontiers in Plant Science 05
Ehd = Id · Na · c · h · LAId
1

l600nm
(11)

Na represents the Avogadro number, c represents the

velocity of light, and g is the fraction of wavelength l that

compose the light directly irradiating the canopy. The total

energy irradiated to the leaves is the summation of both

Equations (10) and (11). The radiation energy emitted by the

plants (Er), the energy lost by convection (Econv), and the energy

lost by transpiration (Etr) are determined by the following

equations:

Er = ϵs Tleaf
4 − Tb

4� �
(12)

Econv = Cpkt
Pb
RTb

(Tleaf − Tb) (13)
TABLE 2 Model constants.

Symbol Description Value Units Reference

Irradiance module

K Extinction coefficient 0.5 MELiSSA Pilot Plant

fs Direct irradiance fraction 0.7 Thornley and Johnson (1980)

BCmol C-mole molecular weight 27 g mol-C-1 MELiSSA Pilot Plant

Energy balance

Na Avogadro number 6.02·1023 Pa

c Light velocity 3·109 Pa

h Planck constant 6.63·10-34 m2 kg s-1

ϵ Leaf emissivity 0.97 Poulet et al. (2020)

s Stefan–Boltzmann constant 5.67·10-8 J s-1 K-4 Poulet et al. (2020)

R Ideal gas constant 8.314 m3 Pa K-1 mol-1

Cp Molar air-specific heat capacity 29.3 J mol-1 K-1 Poulet et al. (2020)

lmol Water latent heat of vaporization 4.0788·104 J mol-1 Poulet et al. (2020)

Biochemical module

q Convexity coefficient 0.8 Farquhar et al. (1980)

f Energy loss for LETC 0.045 Nikolov et al. (1995)

Kc Carboxylation half-saturation constant 460 mbar Farquhar et al. (1980)

Ko Oxygenation half-saturation constant 330 mbar Farquhar et al. (1980)

Fmax25
LETC Fmax

LETC at 25°C 100 mmol m-2 s-1 Nikolov et al. (1995)

Vcmax25 Vcmax at 25°C 31.31 mmol m-2 s-1 Nikolov et al. (1995)

E Activation energy of reaction 81,993 J mol-1 K-1 Nikolov et al. (1995)

S Entropy 711.36 J mol-1 K-1 Nikolov et al. (1995)

H’ Energy of deactivation 219,814 J mol-1 K-1 Nikolov et al. (1995)

Mc C-molar molecular weight 27 g mol-C-1 MELiSSA Pilot Plant

DM Dry biomass fraction 0.045 g/g MELiSSA Pilot Plant

Boundary layer

h Air kinematic viscosity 1.8·10-5 m2 s-1 Poulet et al. (2020)

a Leaf angle in relation to the vertical axis 0.1 ° Poulet et al. (2020)

g Gravity force 9.8 m s-2

rb Bulk air density 1.186 kg m-3
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Etr = lmolExH2O (14)

In (12), ϵ and s represent the leaf emissivity and the Stefan–

Boltzmann constant, respectively. In (13), Cp and kt represent the

molar specific heat capacity at constant pressure and 298.15 K and

the heat transfer coefficient, respectively, the latter being a function

of the diffusion coefficient and the boundary layer thickness, as

follows (see Supplementary S1 for details on Dt calculation and for

an extended description of the boundary layer model):

kt =
Dt

d
(15)

In (14), lmol is the water latent heat of vaporization and

ExH2
O the transpiration rate defined in the following section.

Finally, Tleaf is the leaf surface temperature, Tb is the bulk

temperature, and R is the ideal gas constant.

2.1.2 Level 2: Modelling gas exchange rates
This level is dedicated to calculating the uptake and release

rates between the atmosphere and the leaves concerning the

exchange gases (ExCO2
, ExO2

, and ExH2
O ). The approach to

modelling gas exchanges between the leaves and the atmosphere

follows Fick’s law, with the concentration gradient being the

driver of the molecular transport:

ExCO2
=
GCO2

Pb
(PCO2

b − PCO2
l ) (16)

ExO2
=
GO2

Pb
(PO2

b − PO2
l ) (17)

ExH2O =
GH2O

Pb
(PH2O

b − PH2O
l ) (18)

In (16)–(18), the atmospheric partial pressure is calculated

assuming gases behave following the general gas equation,

whereas the conductance for the different gases (GCO2 , GO2 ,

and GH2O ) and the internal (i.e., leaf) partial pressure (PCO2
l , PO2

l ,

PH2O
l ) as well as the leaf area (LA) are calculated according to

Poulet et al. (2018) and explained in Supplementary S1.

2.1.3 Level 1: Modelling enzyme kinetics
The gross photosynthesis rate (Pg) is calculated using the

Farquhar model (Farquhar et al., 1980), which has been widely

used to model photosynthesis phenomena (Harley et al., 1992;

Morgan and Robles, 2002; Arnold and Nikoloski, 2011). In this

model, Pg is determined through finding the limiting rate of the

photosynthesis, which is caused by either the regeneration of

ribulose 1,5-biphosphate (J), substrate of the ribulose-1,5-

biphosphate carboxylase (RuBisCo), or the RuBisCO

carboxylation rate itself (Vc).

On the one hand, the regeneration of ribulose 1,5-

biphosphate depends on the potential rate of the light electron

transport chain (FLETC) and its capacity to generate reducing
Frontiers in Plant Science 06
power. Thus, it is necessary to define an expression for FLETC,

which can be approximated by a quadratic equation (Nikolov

et al., 1995):

FLETC =
(Fmax

LETC + jIu) −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Fmax

LETC + jIu)2 − 4jqIuFmax
LETC

q
2q

(19)

j =
(1 − f )

2
(20)

In (19), the maximum FLETC is represented by Fmax
LETC (see

Supplementary S1 for calculation details). The photosynthetic

photon flux density used is represented by Iu and q is a convexity
coefficient. The efficiency of energy conversion is represented by

j, which is a function of the fraction of absorbed photon flux

unavailable for photosynthesis (f). As previously demonstrated,

it is necessary to consider the direct and diffuse irradiances when

considering the whole canopy. Therefore, combining with (4)

and (5):

FLETC(Is ,Id) =
Z LAI

0

FLETC(Is)   dLAIs
2

+
Z LAI

0

FLETC(Id)   dLAId
2

(21)

Considering that two electrons are necessary per molecule of

NADPH generated, the light electron transport chain rate

resulting from (21) is divided by 2. This is necessary to

provide information to the FBA with consistent units

considering the stoichiometry matrix used (see S2 for a full list

of reactions and stoichiometry matrix).

Asmentioned before, in Farquhar et al.’s (1980) approach, it is

necessary to convert FLETC defined in (21) to a flow of ribulose 1,5-

biphosphate (Ru5P) regeneration (J), through the following

expression derived from the stoichiometry of the light electron

transport chain and the Calvin cycle (Farquhar et al., 1980):

J =
FLETC

2(2 + 2∅ )
(22)

The RuBisCo carboxylation (Vc) kinetics is of Michaelis–

Menten type and is a function of the leaf internal oxygen (Oi)

and carbon dioxide (Ci) concentrations:

Vc = Vcmax
(Ci − G )

Ci + Kc(1 +
Oi
Ko
)

(23)

In (23), Vcmax represents the maximum carboxylation

velocity of RuBisCo, Kc and Ko are the Michaelis–

Menten half-saturation constants for the carboxylation and

oxygenation activities of RuBisCo, respectively, and Г

represents the carbon dioxide compensation point. Details

about the calculation of the internal carbon and oxygen

concentrations are found in Supplementary S1, based on the

boundary layer approach defined by Poulet et al. (2018; 2020).
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Vc can be directly used to feed the FBA as an upper bound

(see Figure 1).

Finally, the gross photosynthesis rate (Pg) is determined by

finding the minimum between the Ru5P regeneration rate (J),

the RuBisCo carboxylation rate (Vc), and the gas exchange rate

(ExCO2
) and the net photosynthesis rate (Pn) is determined by

retrieving the RuBisCo oxygenation (Vo) to Pg as follows:

Pg = min(Vc, ExCO2
, J) · LA (24)

Vo = Vc ·
Vomax

Vcmax
·
Ol
Ko

Cl
Kc

(25)

Pn = Pg − Vo · LA (26)

Notice that Equation (24) can be formalized due to the

conversion applied in Equation (22) considering that J

represents the regeneration rate of Ru5P and Vc represents its

carboxylation rate. Parameter A indicates the surface of the crop

growing area. In this study, the use of a metabolic matrix makes

the conversion from light electron transport flux (FLETC) to

RuBP regeneration (J) unnecessary, because this information is

already included in the stoichiometric matrix. Similarly, the

discontinuity introduced by Farquhar et al. (1980) in (24) can

be prevented with an FBA formulation as addressed in the

following section.
Frontiers in Plant Science 07
2.1.4 Level 0: Stoichiometry matrix
In this level, a simplified network model of the

photosynthetic leaves’ metabolism of L. sativa is described.

The stoichiometry matrix is based on the work of Sasidharan

(2012), which contains the distinguishing characteristics of L.

sativa, such as the reduced starch content to store carbon and the

definition of the elemental composition that makes up the

macromolecules of the biomass. This model though has been

extended to include relevant reactions like the pentose

phosphate pathway or the photorespiration cycle, originally

missing. In the model used, the cellular organelles are

described as different compartments. The model also describes

dark and light phases of the day by duplicating each one of the

reactions. Hence, a diel model is achieved where both light and

dark phases of the day account for separate pools of metabolites

and organelle compartments. Here, only those metabolites that

have been reported to be accumulated in one phase and

consumed in the other are connected by exchange reactions

that simulate the transference of nutrients between phases. For

example, sugars that are synthesised in the light phase can be

used in the dark phase due to the addition of exchange reactions

among day phases. In Figure 2, the metabolic model is presented

in a simplified way including the cellular compartmentalization,

the pathways involved, and the connections between them as

well as the exchange reactions with the atmosphere and between

day periods.
FIGURE 2

Structure of the diel model presented. Four compartments (chloroplast, mitochondria, peroxisomes, and cytoplasm) and the two phases of the
day (light and dark) are considered with exchange reactions including metabolites diffused through leaves (CO2, O2, H2O, light photons) and
through the roots (HNO3 and H2SO4). PG represents 2-phospho-glycolate.
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The diel model is composed by different organelles including

chloroplasts, mitochondria, peroxisomes, and cytoplasm. The

proposed model also features plants’ simultaneity of metabolic

pathways (i.e., glycolysis in chloroplast and cytoplasm or the

folate metabolism in chloroplasts, cytoplasm, and mitochondria)

as well as the aforementioned coordination between day

phases. A summary of the metabolic model is found in

Supplementary S3, and the model in SBML format is accessed

in Supplementary S4.

The metabolic network model is mathematically formalized

as a constraint-based model, and the fluxes are calculated by

applying a flux balance analysis (Cheung et al., 2014):

max

v
(vbiomass d½ �)

subject :
lb ≤ Sv ≤ ub

Cv = F

(27)

In the FBA formulation in (27), the objective function refers

only to the daily biomass production. It is well known for other

crop species like Arabidopsis thaliana that biomass growth also

takes place during the dark phases of the day (Gomes et al.,

2015). However, night metabolism of non-starchy crops like

lettuce is still not clear so in the current approach maintenance-

associated reactions are limited to night metabolism whereas

metabolism associated with light periods of the day concentrates,

on top of maintenance, also biosynthetic reactions. Letter υ
Frontiers in Plant Science 08
represents the array of fluxes for each of the reactions of the

model. The lower and upper bounds (lb and ub) are fixed only

for those fluxes indicated in Table 3. Matrix C contains

information regarding the flux ratios specified in Table 3, and

matrix F represents the resulting flux. The inequality constraints

represented in Table 3 are generated in levels 3 and 2 of the

model and are used to feed the FBA. ATPmaintenance and NAD(P)

Hmaintenance includes the reactions that contribute to the

consumption of ATP and the reducing agent for respiration

purposes. As suggested in Cheung et al. (2013), this can be

achieved including generic ATPase and NAD(P)H oxidase

reactions. Finally, the enzyme rates included are those related

to constrain the reducing power supply in the cytoplasm. At

night , p las t id ic NADP-malate dehydrogenase and

glyceraldehyde 3-phosphate dehydrogenase are downregulated

(Miginiac-Maslow and Lancelin, 2002; Mekhalfi et al., 2014).

Finally, minimums and maximums for a set of reactions are

defined given the presence of thermodynamically infeasible

loops when no restrictions are applied. These reactions include

the following: PYK, pyruvate kinase; PGM: phosphoglycerate

mutase; ENO: enolase; EB1: inorganic pyrophosphatase; EB2:

inorganic pyrophosphatase; ACS: acetyl-CoA synthetase;

Ser_bio_cl: phosphorylated serine pathway; GOGAT:

g lu t amate s yn thase ; Pro t32 : 3 -mercap topyruva t e

sulfurtransferase/cytoplasmic aspartate aminotransferase;

OASTL: cysteine synthase; GS: glutamine synthetase. The FBA

presented is implemented both in Matlab ® 2021 using the
TABLE 3 Flux balance analysis equality, inequality, and flow ratio restrictions. [d] and [n] indicate day and night phase period respectively.

Inequality constraints Type Description

nExCO2 lb Gas exchange

nExO2 ub Gas exchange

nExH2O lb Gas exchange

nFLETC ub Light ETC

nVc
ub Carboxylation

nVo
lb Oxygenation

Flux ratios Value

nExO2[d] : nExCO2[d] 1.22:-1 Photosynthesis rate (MELiSSA Pilot Plant)

nATPmaintenance[d/n]: nNADPHmaintenance[d/n] 3:1 Maintenance (Cheung et al., 2014)

nExCO2[d] : nExCO2[n] -1:0.25 Respiration (MELiSSA Pilot Plant)

nATPmaintenance[d]:nATPmaintenance[n] 1 Respiration (MELiSSA Pilot Plant); (Liu and van Iersel, 2021)

nNADPHmaintenance[d]:nNADPHmaintenance[d] 1 Respiration (MELiSSA Pilot Plant); (Liu and van Iersel, 2021)

nOPPP[c,m,cl]
[d/n]+nICDH[c,m]

[d/n]+nME[c,m]
[d/n]:nNADPHmaintenance[d/n] 1:1 (Corpas and Barroso, 2014)

nSGT[p]
[d/n] : nGT[p]

[d/n] 1:1 (Yu et al., 1984)

Enzyme rates Value

nGAPN[c]
ub: 0.33 (Shameer et al., 2019)

nGAPDH[c]
lb: -93 (Shameer et al., 2019)

nMDH[c]
lb: -0.75 (Shameer et al., 2019)
*NADPH oxidation and ATP hydrolysis associated with maintenance reactions include plastidic, cytoplasmic, and mitochondrial locations.
Subscripts c, m, cl, and p indicate cytoplasmic, mitochondrial, plastidic, and peroxisomal location. lb and ub represent lower and upper bounds, respectively. List of enzyme abbreviations:
GAPN, cytosolic non-phosphorylating NADP-glyceraldehyde-3-phosphate dehydrogenase; GAPDH, cytosolic glyceraldehyde 3-phosphate dehydrogenase; MDH, cytosolic malate
dehydrogenase; OPPP, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase; ICDH, isocitrate dehydrogenase; MDH, malate dehydrogenase; SGT, serine-
glyoxylate aminotransferase; GT, glutamate-glyoxylate aminotransferase.
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Cobra Toolbox (Becker et al., 2007) and in python 3.0 using

Cobrapy (Ebrahim et al., 2013) and can be found in

Supplementary S5.

2.1.5 Dynamic model
The evolution of the different states of interest through time

for either dry biomass, leaf temperature, or gas compositions can

be obtained integrating their rates of generation or consumption

over time. For dry biomass, this can be done straightforward

from Pn, considering that all carbon molecules captured by the

plant are fixed into structural biomass:

Mx =
Z t=  tf

t=t0
Pn · BCmol · dt (28)

For the evolution of leaf temperature, it is necessary to solve

an energy balance between the leaf temperature and the

environment and to convert energy units to temperature

degrees:

Tl =
Z t=  tf

t=t0

(Ehs + Ehd)A − (Er + Econv + Etr)LA

Cp
Mx
DM

· dt (29)

Finally, the oxygen concentration can be obtained by solving

a mass balance within the growing crop chamber:

O2 =
Z t=  tf

t=t0

u · (Oin
2 − O2) + vExO2

V
· dt (30)

In (30), gas flow is represented by u, oxygen concentration in

the input flow by Oin
2 , and the chamber volume is V.
2.2 Integration of the multilevel
mechanistic model with advanced
control architectures

Once having defined the modelling strategy for higher crops,

the second scope of this study is to integrate the use of metabolic

models into an advanced control strategy. In different complex

systems ranging from microgrids (Vasquez et al., 2010), life

support (Ciurans et al., 2021), or water distribution systems

(Ocampo-Martinez et al., 2012) to chemical plants (Scattolini,

2009; Marchetti et al., 2014), the use of advanced control

architectures has been proven to be efficient in terms of optimal

management and control. Advanced control architectures are

characterized by hierarchically distributing management and

control functions in different levels. In this study, an adaptation

of a common control architecture used in process plants is

adapted to control oxygen in a crop-growing chamber. The top

layer called steady-state target optimization (SSTO) aims at

finding reference values for the controlled and manipulated

variables given a specific setpoint through solving a mass

balance problem at steady state. The output of SSTO are the

controlled and manipulated variables that give the closest
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estimation of the controlled variables to the setpoint at steady

state. This output becomes the input of the following control step

in the hierarchy, which is a model-based predictive control

(MPC). MPC uses a discretized model of the process to be

controlled and aims at finding the sequence of control

commands along a prediction horizon that brings the predicted

controlled variables the closest to the reference given a set of hard

and soft constraints. MPC works based on a rolling-horizon

approach, which essentially solves the minimization problem

along the defined prediction horizon but sends solely the

control command corresponding to the first step. This process

is repeated every time the controller is executed (Pannocchia and

Bemporad, 2007). In Figure 3, a schematic representation of the

advanced control architecture with details on the communication

among its levels is presented. In the presented study, the

controlled variable is the oxygen concentration in the chamber

whereas the manipulated variable is the gas flow.

The SSTO solves the following system of equations using the

output of FBA, considering oxygen exchange rate (vExO2 ) as the

generation rate in a steady-state mass balance:

us(O
in
2 − xs) + vExO2 = 0 (31)

xs + d = ys (32)

ys = yref (33)

s.t.

yL ≤ ys ≤ yU (34)

uL ≤ us ≤ uU (35)

As indicated in Figure 3, the output of the SSTO is provided

as a reference to the MPC, which in this case is the concentration

of oxygen in the chamber (xs) and the external gas flow (us) both

at steady state. The internal model at steady state is defined in

(3), with the generation term (vExO2 ) being the output of the

FBA, Oin
2 the input oxygen concentration, and the internal model

prediction defined by xs. A disturbance (d) is incorporated in

(32) to take into account any possible plant-model mismatch or

a measured perturbation and must be taken into account for the

new reference generation. Hence, the final prediction value (ys)

at steady state considering the presence of any given disturbance

will match the process measurement guaranteeing offset-free

control (Pannocchia and Bomperad, 2007). The expression to

obtain the disturbance is defined in the MPC development

hereafter. The technical upper and lower bounds of controlled

and manipulated variables are summarised in (34)–(35) and

thus do not need to be defined in the MPC. It is then possible to

violate constraints on controlled and measured variables during

transition states but not at steady state (Marchetti et al., 2014).

The MPC solves a rolling-horizon non-linear optimization

problem, taking the output of the SSTO as the reference to track:
frontiersin.org

https://doi.org/10.3389/fpls.2022.970410
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ciurans et al. 10.3389/fpls.2022.970410
J = m in  
U

l1o
i=Np

i=k

x̂ ijkð Þ − xsj j2
Dx

+ l2o
i=Nc

i=k

u(ijk) − usj j2
Du

+ l3o
i=Nc

i=k

u(ij jk) − u(i − 1 k)j j2
Du

(36)

s.t.

x̂ (i + 1 k) = x̂ (ij jk) + U(i k) Oin
2 − x̂ (ijk)� � Ts

V
+ vExO2

Ts

V

���� (37)

ŷ (i k) = x̂ (ij jk) + dði k)j (38)

dði k) = yp − x̂ (2
�� ��k − 1) (39)

dði + 1 k) = dðij jk) (40)

U =

U(i ∣ k)

⋮

U(Nc ∣ k)

2
664

3
775 (41)

The cost function in (36) includes penalization terms to the

deviation of the internal prediction (x̂ ) and the control command

(u) from the concentration (xs) and the gas flow (us) references

generated in the SSTO. A third penalization term to the rate of

change of the manipulated variable is also included in (36) aimed to

adjust the speed of the controller response. All three penalization

terms are normalized using the range of possible maximum and
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minimum values for both controlled and manipulated variables

(defined by Dx and Du) and are subject to a scaling factor (l).
Prediction and control horizons are represented by Np and Nc,

respectively. Constraints in (37) reflect the dynamics of the growing

crop chamber with Ts as the sample time of the MPC. The internal

model is initialized with the current process measurement (yp). In

(39), the disturbance is integrated to the internal model prediction

as similarly done in the SSTO in (32). This disturbance is estimated

at each sampling time and is defined as the difference between the

process measurement (yp) and the first step prediction of the

previous MPC execution (ŷ (2jk − 1)) as stated in Tatjewski

(2017). It is assumed in (40) the disturbance to be constant

through the whole prediction horizon. The output matrix of gas

flows (U) is expressed in (41), and only the control action for the

first step of the control horizon is sent to the control actuators until

the next SSTO and MPC execution. This control strategy is

implemented in Matlab® 2021 using the Optimization Toolbox

for solving non-linear programming problems and Cobra Toolbox

2022 for the FBA resolution (Becker et al., 2007).
2.3 Simulation scenarios

Two simulation packages are presented: first, the results of

the multilevel model presented in Section 2.1 and their

validation with experimental data, and second, a dynamic

simulation presenting the response of the control architecture

presented in Section 2.2 under different perturbations.
FIGURE 3

Scheme of the advanced control architecture proposed to integrate metabolic models.
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2.3.1 Simulation conditions for multilevel
model validation

CO2-response curves were generated using the fixed light

intensity indicated in Table 4 and the following range of internal

CO2 values in mmol CO2/mol: 100, 225, 300, 450, 600, 850, 1,000,

1,100. Light-response curves were generated using the fixed

internal carbon dioxide concentration indicated in Table 4 and

the following range of light intensity values in mmol/m2/s: 100,

200, 350, 500, 600, 800, 1,000, 1,200. Considering the conditions

listed in Table 4 and the model Equations (1)–(26), it is possible

to retrieve the inequality constraints described in Table 3 and

thus the FBA can be resolved. Results are represented in Section

3.1. The distribution of fluxes is analysed for both light and dark

metabolism using atmospheric conditions for CO2 which are

400 ppm and a light intensity of 400 μmole/m2/s. Results are

graphically represented in Section 3.2.

2.3.2 Advanced control architecture
configuration

In Table 5, the controller specifications and parameter values

are indicated. On top of the control objective defined in Section

2.2, atmospheric CO2 is controlled at 800 ppm with external

addition of pure CO2.

Worthy of note is that the scaling factors are used to promote

the control of the system close to the setpoint but at the expense of

having a more aggressive control. Prediction and control horizons

are important tuning parameters of the controller increasing its

sensitivity but also the computational cost of the calculation. Finally,

the sampling time also affects the control performance. For slow

systems like a plant cultivar, sample times should not be too short

because the prediction would not have enough perspective to take

correct decisions. Tuning model-based predictive controllers is

critical to achieving a good process operation and represents a

trade-off between the expected performance and the controller and

system capabilities. The metabolic-based control architecture

represented in Figure 3 is tested in a 24-h dynamic simulation

using the operating conditions listed in Table 4.
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3 Results

This section is divided into two parts: the first dedicated to

present the output of the multilevel model and its validation with

experimental data and the second related to the integration of

that modelling approach containing metabolic information into

an advanced control architecture.
3.1 Validating photosynthesis rates

The results of the model introduced in Section 2.1 are

represented in Figure 4, where modelled and experimental

results for mature leaves (28 days after transplanting)

are compared.

Figure 4A represents the RuBisCo saturation curve showing

a fast rate of change in the smaller range of internal carbon

dioxide concentrations, a pattern which is reproduced in

Figure 4B which shows the light electron transport chain

saturation curve. The maximum net photosynthesis rate

achieved in the light-response curve is lower than the

maximum achieved in the CO2-response curve because in the

former, the internal CO2 concentration used for the simulation

is 400 mmol CO2/mol reaching the expected photosynthesis rates

if compared to Figure 4A. Finally, the output of the model is

comparable to the reported experimental results by Zhou et al.

(2020) under the same operating conditions. Overall, the error

observed in the modelled results in relation to the experimental

values is higher at low internal carbon concentrations and at low

light intensities.
3.2 Distribution of metabolic fluxes using
a metabolic diel model

In this section, the flux distribution of day and night

metabolites obtained after the resolution of the FBA
TABLE 4 List of operating parameters used in FBA simulation.

Parameter Value Units

Leaf area (LA) 25 m2 leaf

Leaf area index (LAI) 5 m2 leaf/m2 ground

Growing area (A) 5 m2 ground

Chamber height (H) 1 m

Bulk temperature (Tb) 25 °C

Bulk pressure (Pb) 101,300 Pa

Relative humidity (RH) 70 %

Light intensity (Iu) 800 mmol/m2/s

Internal CO2 concentration (Ci) 400 mmol/mol

Forced velocity (vforced) 0.3 m s-1
frontiersin.org

https://doi.org/10.3389/fpls.2022.970410
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ciurans et al. 10.3389/fpls.2022.970410
introduced in (27) are presented. The parameters used for the

simulation are those provided in Table 3.

3.2.1 Day flux distribution
The day flux distribution is presented in Figure 5. The

central carbon metabolism of plants in light conditions is well

represented in this model with the main fluxes located in the

Calvin cycle-associated reactions. The results indicate that, as

has been extensively studied and published (Michelet et al., 2013;

Tan and Cheung, 2020), the flow through the Calvin cycle

generates triose phosphate (g3p) from ribulose 1,5-

biphosphate (RuBP), consuming part of the reducing power

and ATP molecules synthesized during the light electron

transport chain. Triose phosphate is used to feed the rest of

the Calvin cycle machinery aimed at restoring the ribulose 1,5-

biphosphate while it is also partially used to generate

photosynthetic end products (McClain and Sharkey, 2019).
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As previously stated, higher plants store carbon during the

light phase of the day, to be used during night respiration and

fuel maintenance processes. For non-starchy crops, even

though they can still generate starch, most of the carbon

fixed during the light phase is stored as soluble sugars or

organic acids. In this study, the sugar molecules stored and

mobilized between light and dark periods of the day have not

been restricted and, as Figure 5 suggests, sucrose, fructose,

citrate, malate, and fumarate are the metabolites used for

carbon exchange. This modelled result fits well with the

reported experimental concentrations of sugars in lettuce at

harvest, with glucose, sucrose, and fructose being the main

carbohydrates found for carbon exchange between phases of

the day (Chen et al., 2019) and also predicting with accuracy

the role of malate accumulation during the light phase of the

day in vacuoles for its use in the dark (Lee et al., 2021). Not all

carbon compounds mobilized from light to night metabolism
A

B

FIGURE 4

Model validation through the comparison of the photosynthesis rate expressed as net carbon assimilation (Pn) as a function of internal carbon
concentration and light irradiance. In (A), a fixed light intensity of 800 mmol/m2/s is set; in (B), a fixed internal carbon concentration of 400
mmol/m2/s is set. Experimental data are based on Zhou et al. (2020).
TABLE 5 Controller specifications including SSTO and MPC algorithms.

Parameter Value Units

Input oxygen concentration (Oin
2 ) 0 %

Oxygen setpoint (yref) 21 %

Carbon dioxide setpoint 800 ppm

Lower and upper bounds oxygen concentration (yL – yU) 18-24 %

Lower and upper bound flow ((uL – uU)) 0-1 m3/h

Scaling factor (l1,l2,l3) 10,1,1

Prediction horizon (Np) 4

Control horizon (Nc) 3

Sample time (Ts) s
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are consumed during the latter. Therefore, some carbon

intermediates need to be exported from night to light

metabolism too. Specifically, citrate imported from dark

periods is used in the light phase of the day to generate

oxoglutarate which is important for the nitrogen assimilation

mechanism and for the synthesis of nitrogen-rich amino acids.

The citrate cycle and its interactions with amino acid

biosynthesis are well covered by the presented model, both

suffering a flux reduction when nitrate uptake is limited

(Morcuende et al., 1998; Weiwei Zhou et al., 2021).
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One of the critical phenomena of plant photosynthetic cell

metabolism is the coordination of photosynthesis and

respiration, which essentially determines how and where

energy carrier molecules (ATP and NAD(P)H) are produced.

Most of the ATP and NAD(P)H used for catabolic reactions are

produced in the light electron transport chain in chloroplasts for

amino acid and lipid production. Part of the ATP synthesized in

chloroplasts is exported to the cytosol through the 3PG-G3P

shuttle, satisfying the ATP demand together with ATP exported

from mitochondria (Gakière et al., 2018; Shameer et al., 2019).
FIGURE 5

Flow distribution of the central carbon metabolism during L. sativa grown during the light photoperiod. List of abbreviated enzymes or enzyme
reactions. In chloroplast: FLETC, flow of light electron transport chain; G6Pase, glucose-6-phosphatase; PGI, glucose-6-phosphate isomerase; MDH,
malate dehydrogenase; FBPase, fructose-1,6-biphosphatase; PFK, phosphofruktokinase-1; ALD, aldolase; TKT, transketolase; TKT2, transketolase 2;
FBA, fructose-1,6-biphosphate aldolase; TPI, triose-phosphate isomerase; RPI, ribose-5-phosphate isomerase; RPE, ribulose-phosphate 3-epimerase;
GAPDHy, NADP-glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PRK, phosphoribulokinase; Vc, RuBisCo carboxylation;
Vo, RuBisCo oxgygenation; Glyk, D-glycerate 3-kinase; PGP, phosphoglycolate phosphatase. In peroxisome: GOXp, glycolate oxidase; SGTp, serine-
glyoxylate transaminase; GTp, glycine transaminase; HPRp, hydroxypyruvate reductase; MDHp, malate dehydrogenase. In cytoplasm: PGMc,
phosphoglycerate mutase; ENOc, enolase; PYKc, pyruvate kinase; PGKc, phosphoglycerate kinase; GAPDHc, NAD-glycerate-3-phosphate
dehydrogenase; MDHc, NADH malate dehydrogenase; ICDHyc, NADP-based isocitrate dehydrogenase; ALDc, aldolase; PFK, phosphofructokinase;
TALc, transaldolase. In mitochondria: ACONTm, aconitase; MDHm, malate dehydrogenase; GCSm, glycine cleavage system; SHMTm, serine
hydroxymethyltransferase; CSm, citrate synthase; PCm, pyruvate carboxylase; MP2, mitochondrial phosphorylation 2. Carbohydrate reactions
represent a set of lumped reactions related to carbohydrate metabolism.
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The resulting metabolic network shows the mechanisms of

redox power balancing in the different organelles of

photosynthetic leaves enabled by the metabolite shuttles

represented by the malate/oxalacetate and the triose

phosphate/3-phosphoglycerate shuttle in Figure 5 (and the

glutamate/2-oxoglutarate and the malate/aspartate shuttle, not

represented) (Taniguchi and Miyake, 2012). Around half the

NAD(P)H generated in mitochondria comes from the glycine

decarboxylation, which in turn generates the serine used in the

serine-glyoxylate aminotransferase (SGT) in the peroxisome. It

has been reported that malate dehydrogenase seems to regulate

the reducing power in mitochondria based on the reduction state

of the cells, removing and restoring NAD(P)H at low- and high-

light conditions responding to changes in the photosynthesis

rate (Bykova et al., 2014; Schertl and Braun, 2014). This is

validated in the presented fluxome, where mitochondrial malate

dehydrogenase (MDHm) removes excess NAD(P)H produced

through the glycine cleavage system (GCS, also known as glycine

decarboxylase system), the main contributor of redox power in

the mitochondria. The metabolic flux distribution represented in

Figure 5 also shows that the TCA cycle is not complete during
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light photoperiods. This is mainly because most TCA

intermediates are dedicated to anabolic reactions and pyruvate

dehydrogenase (PDH) is photo-inhibited (Schertl and

Braun, 2014).

3.2.2 Night flux distribution
During the dark phase of the day in Figure 6, ATP can only

be produced in mitochondria with NAD(P)H being the electron

donor and thus completely modifying the flow distribution

within the cell. Autotrophic organisms like plants use the

sugars generated and stored during the day to feed TCA,

which is cyclic in dark conditions. In lettuce and other non-

starchy vegetables, instead of mobilizing starch, glucose, sucrose,

or fructose is broken down to pyruvate at very similar

proportions (Chen et al., 2019) even though in this study the

proportion of soluble sugar utilization has not been constrained.

The pyruvate produced in the glycolysis is then transferred to the

mitochondria to regenerate the reducing power needed to fuel

the mitochondrial respiration. In dark conditions, the exchange

rates are completely opposite to those observed in light

conditions, with carbon dioxide and water being released and
FIGURE 6

Flow distribution of the central carbon metabolism during L. sativa dark phase. List of abbreviated enzymes or enzyme reactions. In cytoplasm:
MDHc, malate dehydrogenase; ICDHyc, NADPH isocitrate dehydrogenase; ACONT, aconitase; MEc, malic enzyme; CP1, glucose isomerase;
CP2, sucrose-6-phosphate synthase. In mitochondria: ACONTm, aconitase; PDHm, pyruvate dehydrogenase; PCm, pyruvate carboxylase; CSm,
citrate synthase; ICDHm, isocitrate dehydrogenase; AKGDm, a-oxoglutarate dehydrogenase; SUCOASm, succinyl-CoA synthetase; SUCD1m,
succinate dehydrogenase complex; MDHm, malate dehydrogenase; MP1/2, mitochondrial phosphorylation 1/2.
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oxygen consumed. In a way, respiration and photosynthesis are

opposite processes, but complementary as demonstrated during

crop growth. The governing rule of night metabolism is

represented in Table 3 in the ratio of consumed CO2 during

the day phase over produced CO2 due to night respiration

(ExCO2[d]:ExCO2[n]) which sets the night carbon conversion.

3.2.3 Sensitivity analysis
FBA is a powerful tool but strongly affected by its

mathematical formalization and particularly by the flux

boundary choice (Raposo et al., 2020; Nobile et al., 2021). A

sensitivity analysis on the selected boundaries is very useful for

detecting those constraints (either hard or soft constraints) that

generate the highest impact on the flux distribution and thus

requires a thorough parameter identification. However,

sensitivity analysis can also be used to detect those fluxes with

the highest variability in relation to a given boundary, metabolic

model shortcomings, or fluxes that are invariable to the

boundaries. A local sensitivity analysis is presented, with a

focus on the flux ratios defined in Table 3, which are either

defined empirically or based on literature and may be prone to

uncertainty. The sensitivity analysis has also been explored for

the light irradiance. Details on the ranges of flux ratios explored

for this analysis are presented in Table 6. The sensitivity analysis

has been based on the variability of the fluxes along the range of

flux ratios allowed. Such variability is expressed as the

normalized summation of the slopes in each of the steps of the

range of flux ratios explored:

FVj,z =  o
i=6

i=1

ni+1,j,z−ni,j,z
Drz
Dvj,z

(42)

Dvj,z =  max (nj,z) −min (nj,z) (43)

In (42), the i index refers to the discrete steps in which the

range of flux ratios has been divided (a total of six steps for each

flux ratio) whereas index j and z refer to the reaction and the flux

ratio, respectively. The parameter Drz is the increment in the flux

ratio expressed as a fraction and equivalent to 0.1 for all cases.

The denominator Dvj,z is used to normalize the summation of

slopes, and it represents the range of values for a given reaction j.

The sensitivity analysis has been carried for light and night
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metabolism and is represented in Figure 7 considering an

atmospheric concentration of CO2 of 1,000 ppm in order not

to limit by carbon substrate and a nominal light intensity of 400

μmol/m2/s.

Considering the light metabolism sensitivity analysis

(Figure 7A), the light phase of day-time mitochondrial

respiration is never active. In the predicted fluxome for all

ranges of flux ratios applied, the ATP production comes

mainly from chloroplast activity. The main mitochondrial

NADH producer in light conditions is the GDC system, being

consumed mainly by the malate dehydrogenase activity and not

by the electron transport chain (Bykova et al., 2014). The lack of

the electron transport chain in day metabolism is due to the lack

of maintenance reactions during the light period. When light is

increased, the reactions associated with the regeneration of

RuBP are activated. This is the case of phosphoribulokinase

(PRK), which restores the ribulose 1,5-biphosphate. An increase

in the triose phosphate export activity (G3P_trans) is also

detected responding to the increase in the carbon fixation. The

mitochondrial malate dehydrogenase (MDHm) is also

augmented in the first place to respond to the increased

anabolic demands and in the second place given the increased

flux through photorespiration that triggers the GCS and the

consequent increased consumption of NADH through MDHm

to keep the redox balance in mitochondria (Schertl and Braun,

2014). The sensitivity analysis of the day metabolism also

highlights that, when the night respiration flux in relation to

the daily carbon fixation is increased relative to the nominal

value of 0.25, the associated photosynthetic reactions (PRK and

G3P_trans) are reduced.

Regarding night metabolism (Figure 7B), the variability of

the represented reactions is higher than in day metabolism.

When light intensity (Iu) is increased, night mitochondrial

activity (MP1_n and MP2_n) is also increased to respond to

the maintenance reaction demands (Frantz and Bugbee, 2005).

The activity of glyceraldehyde 3-phosphate dehydrogenase

(GAPDc_n) responds to the increased flux towards glycolytic

pathways to process the carbon compounds converted during

night metabolic activities (Schneider et al., 2018; Gaude et al.,

2018). In the dark phase, with the cyclic TCA cycle re-stored, the

excess TCA intermediates and soluble sugars not used to fuel

dark metabolism are stored and reused in light metabolism for
TABLE 6 Range of values explored in sensitivity analysis.

Flux ratios Nominal ratio Range Description

ExO2[d]: ExCO2[d] 1.22:1 [-30%, +30%] Photosynthesis rate

ATPmaintenance[n]:NADPHmaintenance[n] 3:1 [-30%, +30%] Maintenance

ATPmaintenance[d] :NADPHmaintenance[d] 3:1 [-30%, +30%] Maintenance

ExCO2[n]:ExCO2[d] 0.25:1 [-30%, +30%] Respiration

Iu 400 mmol m-2 s-1 [-30%, +30%] Irradiance
The percentage is applied to the nominal ratio (i.e., for the photosynthesis rate ratio, the range explored is from 0.8:1 to 1.59:1). The whole range is split into six points.
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nitrogen assimilation and biosynthesis reactions (Popova and

Pinheiro De Carvalho, 1998; Igamberdiev and Eprintsev, 2016).

In this way, the pool of organic carbon compounds and reducing

equivalents is managed by the plants as a response to variations

in the day carbon fixation efficiency and night respiration

activities. GAPDc_n is also positively affected when the ratio

of respiratory produced over photosynthetically consumed CO2

is increased (ExCO2[n]:ExCO2[d]) with the availability of citrate

and the usage of other TCA intermediates in light photoperiods

reduced given the night metabolic increased activities as

suggested by the citrate import flux. Therefore, an increased

night CO2 release is corresponded by an increased glycolytic

activity represented by GAPDC_n, also impacting the TCA

intermediates and soluble sugar accumulation at night.
3.3 Testing the integration of multilevel
model approach to advanced control
architectures in dynamic simulations

The control strategy presented based on a new approach

combining the prediction capacity of MPC and the integration of

constraint-based metabolic modelling has been tested in a 24-h

dynamic simulation. To do that, different perturbations have

been included at different points of the simulation to test the

resiliency of the proposed control approach its capacity to

overcome common control challenges and to analyse

its versatility:
Fron
• At 5 h of simulation time, a plant-model mismatch has

been introduced by adding a perturbation in the form of

a multiplication factor to the gas flows in (31):
tiers in Plant Science 16
2us(O
in
2 − xs) + vExO2 = 0 (44)

x̂ (i + 1 k) = x̂ (ij jk)

+ 2U(i k) Oin
2 − x̂ (ijk)� � Ts

V
+ vExO2

Ts

V

���� (45)

• At 10 h of simulation time, a perturbation in the process

output has been introduced by adding a sudden decrease in

the oxygen concentration from the measurement to 20.8%.

• At 16 h of simulation time, a change in the oxygen

setpoint from 21% to 21.2% has been included.
The results of this simulation schedule are presented in

Figure 8. It is observed that when a plant-model mismatch is

deliberately included, the controller can keep minimising the

offset of the O2 measurement in relation to the reference

(Figure 8A). Similarly, when an abrupt perturbation is added

at 10 h of simulation, the gas flow is stopped to restore the

oxygen concentration rapidly. Finally, when the reference is

modified from 21% to 21.2%, the gas flow is also reduced in

order to accumulate oxygen in the growing chamber and reduce

the tracking error (Figure 8B). The control of CO2 is achieved by

externally injection of pure CO2 (Figure 8C).

The controller is thus demonstrated to be resilient and

smooth to overcome any of the perturbations applied as well

as on the nominal operation. This performance is due to the

reliable metabolic-based model introduced in the MPC and

largely due to the integration of a disturbance specially to

achieve offset-free control. In Figure 9, the comparison of the

controller performance with and without disturbance

integration is represented. It can be observed that under
A B

FIGURE 7

Normalized sensitivity analysis result of a selection of day (A) and night (B) metabolic fluxes (B) according to a given range of ratios and
constraints explored.
frontiersin.org

https://doi.org/10.3389/fpls.2022.970410
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ciurans et al. 10.3389/fpls.2022.970410
different perturbations, when disturbance is integrated in the

internal model of both the SSTO and the MPC, offset is reduced

and thus the reference tracking is improved. Nevertheless, not all

disturbances can be rejected using a constant state disturbance

prediction as defined in (32), especially in scenarios where plant-

model mismatches are bigger, that is, when models are less

reliable than the one presented in this study. In the case of higher

model disagreement, disturbance integration approaches should

be considered like integrating the error in the multistep model

prediction (Tian et al., 2007) or integrating a moving horizon

estimation (MHE) and MPC to estimate uncertainty parameters

and to include them in the MPC algorithm (Huang et al., 2010).

Disturbance rejection especially in the situation of plant-model

mismatch has been highly analysed within MPC development,

and certainly, the future metabolic-based controllers will need to

deal with a wide diversity of model typologies from simplified
Frontiers in Plant Science 17
and surrogated mode l s to complex genome-sca le

metabolic models.
4 Conclusions

Modelling higher plants has major challenges to deal with.

These challenges include huge metabolic changes associated

with the light and night photoperiods, substrate partitioning

given the heterogenic requirements of the different tissues

present in higher plants, organelle coordination, complex

morphologies that condition the interaction with the

environment, and many other phenomena still not fully

understood. In this study, a multilevel model has been

designed with the main mechanistic phenomena that drive

crop growth distributed into different levels in decreasing
A

B

C

FIGURE 8

Dynamic control performance under introducing different perturbations at 5, 10, and 16 hours as described in the text. (A) Tracking of the Oxygen
concentration; (B) Evolution of the gas flow as a manipulated variable; (C) Dynamics of concentration and external addition of Carbon dioxide.
FIGURE 9

Comparison of the controller performance in terms of reference tracking between controllers including or not disturbance rejection in the
internal SSTO and MPC models.
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order of scale length. The output of the mechanistic multilevel

model has been connected to a constraint-based metabolic

model providing information of high interest about cell

metabolism. The presented multilevel model offers the

advantage to merge all the available information related to

plant growth in a structured way ensuring the solution found

to be feasible for all the phenomena described in the different

layers in the model hierarchy, from light reception and

biochemical conversion down to specific metabolic pathways, a

feasibility that cannot be granted in only mechanistic or

metabolic-based models using stand-alone modelling

strategies. This method has been validated with experimental

data, integrated, and tested in a novel advanced control strategy

with promising results. Computational capabilities are no longer

a major constraint, making it possible to contemplate the design

of control strategies that can integrate more information about

the system under operation than currently done. In this study,

the focus has been placed in the use of metabolic information

embedded in a model-predictive control providing promising

results in a dynamic simulation of a growing crop chamber with

a range of applications going from agriculture to life support

systems. It is in the framework of the MELiSSA project and by

extension to the field of fully regenerative life support systems

where structural multilevel models, integrating from physical to

metabolic information, emerges as an opportunity to design

model-based predictive controller techniques. These advanced

control strategies should be further explored with different levels

of metabolic complexity, in different control formulations, and

applied to different biobased processes as they may contribute to

improving the overall performance through exploiting the

increasingly available metabolic information.
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