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Accurate and timely surveys of rice diseases and pests are important to 

control them and prevent the reduction of rice yields. The current manual 

survey method of rice diseases and pests is time-consuming, laborious, 

highly subjective and difficult to trace historical data. To address these issues, 

we developed an intelligent monitoring system for detecting and identifying 

the disease and pest lesions on the rice canopy. The system mainly includes 

a network camera, an intelligent detection model of diseases and pests on 

rice canopy, a web client and a server. Each camera of the system can collect 

rice images in about 310 m2 of paddy fields. An improved model YOLO-

Diseases and Pests Detection (YOLO-DPD) was proposed to detect three 

lesions of Cnaphalocrocis medinalis, Chilo suppressalis, and Ustilaginoidea 

virens on rice canopy. The residual feature augmentation method was used 

to narrow the semantic gap between different scale features of rice disease 

and pest images. The convolution block attention module was added into 

the backbone network to enhance the regional disease and pest features for 

suppressing the background noises. Our experiments demonstrated that the 

improved model YOLO-DPD could detect three species of disease and pest 

lesions on rice canopy at different image scales with an average precision of 

92.24, 87.35 and 90.74%, respectively, and a mean average precision of 90.11%. 

Compared to RetinaNet, Faster R-CNN and Yolov4 models, the mean average 

precision of YOLO-DPD increased by 18.20, 6.98, 6.10%, respectively. The 

average detection time of each image is 47 ms. Our system has the advantages 

of unattended operation, high detection precision, objective results, and data 

traceability.
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Introduction

Rice is one of the most important food crops in the world. Every year, rice diseases and 
pests cause huge losses of yields which are a threat to global food security (Ali et al., 2019; 
Jiang et  al., 2020; Liu et  al., 2020). Therefore, real-time and accurate monitoring and 
forecasting of diseases and pests are very important to effectively control them and 
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prevented yield reduction. At present, the monitoring method of 
diseases and pests on rice canopy in a small-scale region still relies 
on the manual survey in paddy fields. Agricultural technicians 
investigate the disease and pest lesions on rice leaves and stems in 
paddy fields, then determine the damage grade through visual 
measurement (Sethy et al., 2020). So the manual survey method 
has high labor intensity and low work efficiency. Its accuracy 
depends on the surveyors’ experiences. It is difficult to meet the 
real-time monitoring of diseases and pests on rice canopy.

In recent years, with the development of unmanned aerial 
vehicles (UAV), low-altitude remote sensing technology has been 
applied in monitoring agricultural diseases and pests because of 
UAV’s high automation and flexibility. The UAVs carry 
multispectral cameras or visible light cameras to collect rice 
images. Some image processing methods and models were 
proposed to identify and estimate diseases and pests (Huang et al., 
2018; Zhang et al., 2018, 2019; Yang et al., 2019; Abd El-Ghany 
et al., 2020; Aboutalebi et al., 2020; Gao et al., 2020; Morsy, 2020; 
Lin et al., 2020a). However, the rotating rotors of UAVs easily 
cause downdrafts, which sway the rice leaves. The camera in the 
UAV can hardly collect high-quality images of disease and pest 
lesions on the rice canopy. In addition, using UAVs to collect 
lesion images still needs professional UAV pilots and high costs, 
which affects the promotion and application of UAVs in 
monitoring rice diseases and pests. So more efficient and 
convenient monitoring methods should be studied.

With the rapid development of artificial intelligence, many deep 
learning models have been widely used in crop plant growth (Yasrab 
et al., 2021), health analysis (Joshi et al., 2021) and yield estimation 
(Khaki et al., 2021) and so on in recent years. Especially, the YOLO 
model greatly improves the detection speed while satisfying higher 
precision and can realize real-time target detection. Some improved 
YOLO models were used to automatically detect agricultural 
disease and pest lesions and achieved good detection results. Tian 
et al. (2019) proposed an improved YOLOv3 model for real-timely 
detecting anthracnose lesions on apple surfaces in orchards. The 
model achieved an accuracy of 95.57%. Liu and Wang (2020a) 
proposed an early recognition method of tomato leaf spots based 
on MobileNetv2-YOLOv3 model to achieve a good balance 
between the accuracy and real-time detection of tomato gray leaf 
spot. Liu and Wang (2020b) used the image pyramid method to 
optimize the feature layer of the YOLOv3 model, which had a good 
effect on detecting tomato diseases and pests in natural environment.

The automatic detection and identification methods of rice 
disease and pest lesions have made big progress. Lu et al. (2017) 
developed a small hand-crafted CNN network model to classify 
an image into one of 10 common rice diseases, but could not 
detect the location and quantity of rice diseases and pests. Zhou 
et al. (2019) proposed a method of fusing Faster R-CNN with 
FCM-Km for detecting rice diseases which solved various 
problems of rice disease images, such as noise, blurred image 
edges, complex background interference and low detection 
accuracy. Li et al. (2020) proposed a video detection architecture 
based on deep learning and custom backbone, which was used for 

detecting rice diseases and pests in videos. Bari et al. (2021) added 
the RPN structure into the Faster R-CNN algorithm to accurately 
locate the target position for generating candidate regions, which 
had a good detection effect on three diseases on rice leaves of one 
plant. Daniya and Vigneshwari (2021) proposed a deep neural 
network model to detect rice diseases. First, the background noise 
of the rice disease images was removed. Then the SegNet network 
was used for segmentation. CNN, texture and statistical features 
were extracted for detection. However, these methods have not 
been widely used in detecting and identifying diseases and pests 
in paddy fields. There are mainly the following problems: (1) Some 
images were collected in lab conditions rather than in paddy fields. 
In fact, the lesions of disease and pest appear different image 
features under complex field environments. The models obtained 
in the lab could not achieve a good identification effect under 
fields. (2) Some studies only identified the lesions of disease and 
pest on one leaf. These results are unable to directly apply to 
identifying multi-lesions from many rice plants in one image. (3) 
Most image acquisition devices still needed the manual operation. 
In order to solve the above problems and further improve the 
monitoring intelligence of pests and diseases on rice canopy in 
paddy fields, we developed an intelligent monitoring system for 
detecting and identifying lesions of disease and pest on rice canopy.

Materials and methods

Intelligent monitoring system 
architecture

The intelligent monitoring system of rice diseases and pests 
consists of an image acquisition device (Figure 1A), a cloud server 
(Figure 1B) and client software (Figure 1C).

Image acquisition device
The image acquisition device is composed of a high-definition 

network camera (IDS-2DC7823IX-A/T3, HIKVISION, China),  
a 4G wireless industrial router (R300A, Oray, China) and an 
equipment box (Figure 2). The network camera was fixed on a pole 
with a height of 2.7 m in the middle of the paddy field. The 4G 
wireless industrial router, power supply and other equipment are 
placed in the equipment box. The camera has 1/1.8″ progressive scan 
CMOS, 3840 × 2,160 image resolution, 6 mm to 138 mm focal length, 
30 frame per second, 23× optical zoom, 300 preset positions and 
timing snapshots. It supports 360° horizontal rotation and vertical 
rotation from −5° to −90°. The effective recognition range of rice 
canopy images captured by each camera is a paddy field of about 
310 m2, the area of a circle with 20 m diameter. Each uncompressed 
image is sent to the server and consumes about 3 MB of data traffic.

Cloud server
The cloud server is responsible for storing data, controlling 

devices, running detection models. The system was designed with 
the front-end and back-end separation architecture mode. The 
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back-end design of the system adopted the Spring + SpringMVC 
+ MyBatis (SSM) architecture. The database used the relational 
database MySQL.

When the server receives the image acquisition information 
from the client, the server sends a control signal to the image 
acquisition device. After the network camera finished the 

acquisition of rice canopy images, the images are sent to the cloud 
server. After receiving the images, the server immediately calls the 
rice diseases and pests detection model and saves the detection 
results to the database.

Client software
The client software was designed based on the Vue framework 

and JavaScript language for front-end and back-end data 
interaction and processing. The web page rendering was completed 
using HTML and CSS. The client-end sent data to the back-end 
through Axios network request based on HTTP protocol. The data 
resources include the login interface, detection interface of history 
and so on. The response data is generated in JSON format and 
returned to the client-end. After the client-end parses the response 
data, it renders the response data to the browser interface. The 
client software realizes the dynamic display of the monitoring 
results of rice disease and pest lesions. When using this system for 
the first time, users only need to manually set multiple preset 
positions with different lens angles and focal lengths in the client 
software. Then the system can automatically work.

Image acquisition

Rice canopy images of paddy fields in Hangzhou City, 
Zhejiang Province, China (38° 53′ 25.06″ N, 119° 56′ 6.25″ E) were 
collected through our image acquisition device. The size of images 
is 3,840 × 2,160 pixels. Because rice diseases and pests may appear 

A

B

C

FIGURE 1

An intelligent monitoring system for rice diseases and pests.

FIGURE 2

Image acquisition in paddy field.
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in the whole rice growth period, we collect the rice canopy images 
in different weathers and time from 8 a.m. to 6 p.m. every day from 
May 2021 to October 2021. In order to get more image features of 
disease and pest lesions, the rice canopy was photographed at 
multiple scales with the network camera fixed on the pole. 
We collected over 18,000 rice canopy images.

In this work, two pest damage lesions (Cnaphalocrocis 
medinalis and Chilo suppressalis) and one disease lesion 
(Ustilaginoidea virens) were studied. The three lesions on the rice 
canopy can be captured by the camera. The lesions of C. medinalis 
present rolled leaves and white lesions on rice leaves (Figure 3A). 
The lesions of C. suppressalis appear dead heart, dead booting, or 
white panicle of rice plant (Figure  3B). The disease lesions of 
U. virens show yellow or dark green on rice spikes infected by 
chlamydospores (Figure 3C).

Data preprocessing

Rice disease and pest lesions in each image were recognized 
by three technicians at the same time. If they disagreed on the 
species of one lesion, we adopted the same result recognized by 
two technicians or abandoned the result. The 4,725 images 
containing disease or pest lesions among 18,000 images were 
selected and the lesion regions of each image are annotated by 
technicians using the LabelImg tool.1 Each lesion corresponds to 
a unique category and a bounding box coordinate. Each image 
may contain multiple lesions. An annotation file containing 
bounding boxes and the categories of each lesion was generated 
for each image. We annotated 22,919 lesions on these images. The 
lesion number of each disease or pest is listed in Table 1.

All images were divided into a training set, a validation set and 
a test set in the ratio of 7:2:1. To overcome the overfitting problem 
in the training stage of CNNs, data augmentation techniques are 
often operated on the training set. Because our images were 

1 https://github.com/tzutalin/labelImg

collected in different weather and time, they show different 
brightness and sharpness. Four augmentation techniques of 
brightness enhancement, brightness attenuation, contrast 
enhancement and contrast attenuation (Casado-Garcia et  al., 
2019) were performed on the training set.

Detection model for disease and pest 
lesions of rice canopy

To achieve the real-time monitoring and high detection 
accuracy of rice diseases and pests in paddy fields, YOLOv4 
(Bochkovskiy et  al., 2020) was selected as the basic detection 
network. However, the shapes of the three lesions are narrow and 
long. Some lesions have a small proportion in rectangular box 
annotation and complex surrounding background. The original 
YOLOv4 shows a low detection accuracy. Many lesions are missed 
or falsely detected. So we proposed an improved model YOLO-
Disease and Pest Detection (YOLO-DPD). The residual feature 
augmentation method and the attention mechanism were combined 
to improve the basic detection network of YOLOv4. The detailed 
design methods of the residual feature augmentation method and 
attention mechanism are given below. The overall block diagram of 
the YOLO-DPD detection model of rice disease and pest lesions is 
shown in Figure  4. The Conv2D_BN_Mish (CBM) block is 
composed of Conv, BN and Mish activation function. This block 
uses the Mish activation function to avoid the gradient 
disappearance in model training. The Conv2D_BN_Leaky_ReLU 
(CBL) block is composed of Conv, BN and Leaky_Relu activation 
functions. The model adopts the Leaky_Relu activation function to 
improve the calculation speed. The Res Unit block enables the 
network to be  built deeper. The CSPResblock (CSP- n ) block 
consists of CBM components and n  the Res Unit blocks.

Firstly, the input image is resized to 608 × 608 pixels, and input 
into the CSPDarkent53 network to extract features. Secondly, 
these features are enhanced through the residual feature 
augmentation and attention mechanism, and the weights of 
feature channels are assigned according to their importance. 

A B C

FIGURE 3

Lesions of three species of diseases and pests on rice canopy. (A) Lesions of Cnaphalocrocis medinalis. (B) Lesions of Chilo suppressalis. 
(C) Lesions of Ustilaginoidea virens.
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Finally, multiple-scale features are fused to obtain a fusion feature 
map, which is used to predict the location of the disease and pest 
lesions in the rice canopy image.

Residual feature augmentation method
In the deep neural network, features of different layers are 

extracted from the original images. The lower feature layers 
have higher resolution and retain more features in the original 
image, which is helpful to locate the lesions. The higher the 
feature layer, the smaller the size of the feature map and the 
richer the semantic information. It is helpful to identify the 
lesion category, but it is easy to lose the feature information of 
some small targets. In the original YOLOv4 network structure, 
the features at the highest level are propagated in a top-down 
path and gradually fused with the features at lower levels. The 
features at lower levels also adjust the number of channels by 
1 × 1 convolution and down-sampling operation. And then 

features at lower levels are fused with the features at higher 
levels. The feature maps at lower levels are enhanced by the 
semantic information at higher levels, which gives them diverse 
contextual information. Meanwhile, the target location 
information of lower layers also enhances that of higher layers. 
Although the Spatial pyramid pooling (SPP) operation in 
YOLOv4 greatly increases the receptive field, it also loses 
detailed information after max pooling (Msonda et al., 2020).

In this paper, the three species of rice disease and pest lesions 
are mostly small in aspect ratio. The max-pooling operation will 
lead to the loss of lesion edge information. Before fusing features, 
if the features of different levels independently perform 1 × 1 
convolution to reduce the number of channels, it will result in the 
loss of some information, the features only contain the context 
information of a single scale. This information does not consider 
the huge semantic gap between these features. Directly fusing 
these features will reduce the ability of multi-scale feature 
representation, which is not fully compatible with the features at 
other levels.

Based on the YOLOv4, the residual feature augmentation 
(RFA) module (Guo et al., 2020; Figure 5) is used to replace the 
SPP in the original YOLOv4, and the residual branch is used to 
inject different spatial context information into the original 
branch. It improves the feature representation reduces the 

TABLE 1 Number of annotated lesions of three diseases and pests.

Disease 
or pest

Cnaphalocrocis 
medinalis

Chilo 
suppressalis

Ustilaginoidea 
virens

Lesion 

number

9,739 8,957 4,223

FIGURE 4

The network structure of YOLO-DPD model.
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information loss at a high level and improves the performance of 
the generated feature pyramid.

In RFA module, multiple context features of different scales are 
firstly generated by CSPDarknet53. By performing ratio-invariant 
adaptive pooling on C5 whose scale is S (19, 19, 1,024),  
multiple contexts feature with different scales (α1× S , α2 × S ,  
…,αn S× ) are generated. Then, the number of feature channels is 
adjusted to 256 by a 1 × 1 convolution. Finally, it is up-sampled to 
a scale by bilinear interpolation for subsequent fusion. Considering 
the aliasing effect caused by interpolation, these contextual features 
are adaptively combined with Adaptive Spatial Fusion (ASF) 
instead of simple summation (Guo et  al., 2020). The detailed 
structure of the ASF is shown in Figure 6.

ASF takes the up-sampling features as input. First, through the 
Concat processing, the context features of different scales are 
stacked. Then the number of channels is adjusted by using a 1 × 1 
convolution and the features are further extracted through a 3 × 3 
convolution. Finally, the spatial weight maps of each feature are 
generated through the Sigmoid activation function. The weights 
aggregate the contextual features into C6 and gave it multi-scale 

contextual information. After ASF outputs C6, it continues to 
be fused with other low-level features.

Attention mechanism
In the process of multi-scale feature fusion, the feature map 

obtained by up-sampling and the other feature map extracted by 
the CSPDarknet53 backbone network is directly channel spliced. 
It results in a feature map with a large gap in the fusion information 
of each channel. Different channel fusion features have different 
importance for different scale detection and identification. In 
order to make the model pay more attention to the characteristics 
of the rice disease and pest lesions, a lightweight attention 
mechanism, convolution block attention module (CBAM; Woo 
et al., 2018) is added to the feature fusion process (Figure 4). The 
structure of CBAM is shown in Figure 7.

The CBAM has two sequential sub-modules: a channel 
attention module (CAM) and a spatial attention module (SAM). 
The CBAM sequentially infers attention maps along two separate 
dimensions, channel and spatial. Then the attention maps are 
multiplied by the input feature map for adaptive feature refinement.

In CAM, the average pooling and max pooling operations are 
simultaneously used to aggregate channel and spatial information. 
The average-pooled features and max-pooled features are forwarded 
to a shared network which was composed of a multi-layer perceptron 
(MLP). The output feature vectors are merged by element-wise 
summation and the channel attention map Mc is produced.

In SAM, the average pooling and max pooling operations are 
applied along the channel axis to generate two 2D maps. Then the 
average-pooled features and max-pooled features are concatenated 
and convolved by a standard convolution layer. Finally, a spatial 
attention map Ms is generated.

Because CBAM is a lightweight and general module, it can 
be integrated into any CNN architecture seamlessly with negligible 
overheads, and it is end-to-end trainable along with base CNNs. 
We add CBAM after the CSPDarknet53 module in YOLO-DPD to 
further narrow the semantic gap between different feature layers 
and improve the saliency of diseases and pests on rice canopy.

Comparison with different detection 
model

To compare the detection performance of different models, 
we fine-tuned the pre-trained RetinaNet (Lin et al., 2020b), Faster 
R-CNN (Ren et al., 2017), YOLOv4 (Bochkovskiy et al., 2020a), 
YOLOv4-RFA (The RFA Method was added to YOLOv4) and 
YOLO-DPD.

Model training

The experiments were conducted on a deep learning server, 
which the configuration parameters are shown in Table 2. The 
software environments include Ubuntu 16.04, python, OpenCV, 

FIGURE 5

Structure diagram of Residual Feature Augmentation module.
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CUDA, PyTorch, etc. In addition, the PyTorch deep learning 
framework was used to implement the YOLO-DPD model, which 
was convenient for the development of comparative experiments 
due to its Python interfaces.

We trained all models with the same hyperparameters. The 
optimizer was the stochastic gradient descent (SGD) method, the 
batch size was set to 32, the number of iterations was 1,000, the 
initial learning rate was 0.001, the gamma was 0.1, the momentum 
was 0.9 and the weight decay rate was 0.0005.

Evaluation protocol

To objectively evaluate the detection and identification effect 
of our YOLO-DPD model, the average precision (AP) and the 
mean average precision (mAP) were calculated by the following 
formulas. The precision (P) and recall (R) rate, the calculation 
formulas are such as formulas (1), (2), (3), (4).

 
P TP

TP FP
=

+  
(1)

 
R TP

TP FN
=

+  
(2)

 
AP P R dR= ( )∫0

1

 

(3)

 
mAP

AP
N
i
N

i
= =∑ 1

 
(4)

where P denotes the precision and R denotes the recall. TP 
(true positive) represents the number of lesions correctly detected 
by the model. FP (false positive) represents the number of lesions 
falsely detected by the model, and FN (false negative) represents 
the number of lesions that are not detected. N represents the 
number of lesion species. mAP is calculated by the mean of three 
AP values.

Result

Model evaluation

Detection results of YOLO-DPD
The 472 images of rice canopy disease and pest lesions were 

tested by our YOLO-DPD model. There are 2,201 lesions on these 
images, which includes 947 lesions of C. medinalis, 851 lesions of 
C. suppressalis and 403 lesions of U. virens.

Table 3 shows the precision, recall and average precision of 
three lesions. We find that YOLO-DPD can achieve good detection 
results of three lesions, which proves that YOLO-DPD has a strong 
ability to identify rice diseases and pests from rice canopy images 
collected in the paddy fields. The detection of C. medinalis lesions 
achieves the highest average precision of 92.24% because 
C. medinalis lesion has white color and often appears on rice 
leaves. Although the average precision of C. suppressalis lesions is 
the lowest, it is still over 85%, which means most of them detected 
by our model are correct. The lesions of C. suppressalis often 
appear in the dead heart of rice plants. The symptoms are similar 
to the withered leaves in the later stage of rice growth, which easily 
causes false detection.

FIGURE 6

Adaptive Spatial Fusion Module.
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Figure  8 gives three examples of three species of lesions 
detected by YOLO-DPD. The blue, orange, red boxes contain 
lesions of C. medinalis, C. suppressalis and U. virens, respectively. 
In Figure 8, we find most of lesions are correctly detected. Two or 
three species of lesions may appear in one image.

Performance comparison of different models
The test results of the five models are shown in Table 4. It can 

be seen that the YOLO-DPD has higher detection precision than 
other models for three lesions of diseases and pests on rice canopy. 
The results prove that YOLO-DPD has the strong generalization 
ability and robustness. Compared with the original YOLOv4 
network, the mAP of YOLO-DPD is increased by 6.1%. So the 
residual feature augmentation method and attention mechanism 
of YOLO-DPD improve the detection precision. Compared to 
RetinaNet, Faster R-CNN and Yolov4 models, the mean average 
precision of YOLO-DPD increased by 18.20, 6.98, 6.10%, 
respectively.

The average detection time for one image by YOLO-DPD is 
only 47 ms, which can meet the real-time requirements and have 
a good detection effect. From the experimental results, it can 
be concluded that after adding the residual feature augmentation 
method and attention mechanism to the original YOLOv4 

FIGURE 7

Convolution block attention module.

TABLE 2 Configuration parameters of experimental hardware 
environment.

Hardware name Model Number

Main board Gigabyte X299-WU8 1

CPU Intel I7-9800X 1

Memory Kingston 16G DDR4 4

Graphics card GeForce GTX1080Ti 4

Solid state drives Kingston 1 T 1

Hard disk Western digital 4 T 2

https://doi.org/10.3389/fpls.2022.972286
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.972286

Frontiers in Plant Science 09 frontiersin.org

network, the mAP of the three lesions of rice disease and pest on 
the test set was improved.

Client software

To visually present the detection results of YOLO-DPD, a 
client software was developed for automatically monitoring 
diseases and pests on the rice canopy. Figure  9A shows the 

captured rice canopy image by one camera. The multiple positions, 
zoom sizes and captured time of images can be preset through the 
client software. The system automatically captures rice canopy 
images, detects and identifies the disease and pest lesions on 
images according to the preset parameters. Users can view the 
detection results on the rice canopy images in real-time through 
the Web page, which realizes the traceability of data. Figure 9B 
shows the detected image list.

Comparison of different monitoring 
methods

To verify the advantages of our system, we compared some 
characteristics of three different monitoring methods including 
manual, computer vision-based and our methods in Table  5. 
Compared with the other two monitoring methods, our method 
does not require any manual operations during the monitoring of 
rice diseases and pests. It takes the shortest time to monitor and 
identify the disease and pest lesions in the same area of paddy fields. 
The monitoring process is not affected by time and weather. And it 
will not disturbance with rice’s normal growth. Users can easily 
trace historical data on the client. In conclusion, our system has the 
remarkable characteristics of automatic photography at multiple 
locations and times, high efficiency, labor-saving and 
non-destructive monitoring of diseases and pests on the rice canopy.

Conclusion and future work

This study aims to solve the time-consuming, laborious and 
subjective problems caused by the manual field survey of three 
lesions on the rice canopy. We developed an intelligent monitoring 
system for monitoring the diseases and pests on the rice canopy. The 
system can automatically collect rice canopy images at the preset 
multiple locations and times. To accurately detect and identify three 
lesions of diseases and pests on the rice canopy, we proposed a 
YOLO-DPD model with the residual feature augmentation method 
and attention mechanism module based on the YOLOv4 model. The 
improved YOLO-DPD makes the network pay more attention to the 
features of rice disease and pest lesions. The results show that 
YOLO-DPD can obtain the mean average precision of 90.11% on the 
test set and adapt to the complex paddy fields. The users can view the 
detection results on the client software interface.

The system reduces the workload of technicians and saves the 
disease and pest images in paddy fields. The system provides 
reliable data for early warning and real-time effective control of 
rice diseases and pests.

Although some progress of disease and pest lesion detection 
on the rice canopy had been made in this paper, we  need to 
furtherly study the accuracy detection of occluded lesions, similar 
symptoms of healthy leaves and very small lesions. Some occluded 
lesions in the rice tillering stage may cause some missing 
detection. Normal physiological yellow leaves may cause some 

TABLE 3 Detection results of rice canopy diseases and pests.

Lesion 
categories

Precision (%) Recall (%) Average 
precision (%)

Cnaphalocrocis 

medinalis

93.05 89.62 92.24

Chilo suppressalis 90.61 85.63 87.35

Ustilaginoidea virens 91.75 90.04 90.74

A

B

C

FIGURE 8

The detection results of three lesions by YOLO-DPD model. Most 
of (A) detected lesions of C. medinalis; (B) detected lesions of C. 
suppressalis; (C) detected lesions of U. virens.
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error detection. We will collect more images for improving the 
detection precision. The warning model of diseases and pests on 
the rice canopy should be developed according to our detection 

results for deciding the controlling measures of rice diseases and 
pests. In the future, we will focus on solving these problems for 
automatically and accurately monitoring rice diseases and pests.

TABLE 4 Detection results of 5 different models.

Model Average precision of different lesions (%) Average detection 
time of each 
image (ms)

Mean average 
precision mAP 

(%)Cnaphalocrocis medinalis Chilo suppressalis Ustilaginoidea virens

RetinaNet 75.84 68.53 71.36 241 71.91

Faster R-CNN 85.15 79.29 84.95 486 83.13

YOLOv4 84.18 81.85 86.01 39 84.01

YOLOv4 + RFA 90.62 86.39 89.78 43 88.93

YOLO-DPD 92.24 87.35 90.74 47 90.11

A

B

FIGURE 9

The intelligent monitoring system of diseases and pests on rice canopy. (A) Client software interface; (B) list of detection results.
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