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Development of the maize 5.5K
loci panel for genomic
prediction through genotyping
by target sequencing

Juan Ma*, Yanyong Cao, Yanzhao Wang and Yong Ding

Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
Genotyping platforms are important for genetic research and molecular breeding.

In this study, a low-density genotyping platform containing 5.5K SNP markers was

successfully developed in maize using genotyping by target sequencing (GBTS)

technology with capture-in-solution. Two maize populations (Pop1 and Pop2)

were used to validate the GBTS panel for genetic and molecular breeding studies.

Pop1 comprised 942 hybrids derived from 250 inbred lines and four testers, and

Pop2 contained 540 hybrids which were generated from 123 new-developed

inbred lines and eight testers. The genetic analyses showed that the average

polymorphic information content and genetic diversity values ranged from 0.27 to

0.38 in both populations using all filtered genotyping data. The mean missing rate

was 1.23% across populations. The Structure and UPGMA tree analyses revealed

similar genetic divergences (76-89%) in both populations. Genomic prediction

analyses showed that the prediction accuracy of reproducing kernel Hilbert space

(RKHS) was slightly lower than that of genomic best linear unbiased prediction

(GBLUP) and three Bayesian methods for general combining ability of grain yield

per plant and three yield-related traits in both populations, whereas RKHS with

additive effects showed superior advantages over the other four methods in Pop1.

In Pop1, the GBLUP and three Bayesian methods with additive-dominance model

improved the prediction accuracies by 4.89-134.52% for the four traits in

comparison to the additive model. In Pop2, the inclusion of dominance did not

improve the accuracy in most cases. In general, low accuracies (0.33-0.43) were

achieved for general combing ability of the four traits in Pop1, whereas moderate-

to-high accuracies (0.52-0.65) were observed in Pop2. For hybrid performance

prediction, the accuracies were moderate to high (0.51-0.75) for the four traits in

both populations using the additive-dominance model. This study suggests a

reliable genotyping platform that can be implemented in genomic selection-

assisted breeding to accelerate maize new cultivar development

and improvement.
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maize, genotyping by target sequencing, genomic prediction, hybrid prediction,
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Introduction

Genotyping platforms are prerequisite for genomic research,

genetic analysis, and marker-assisted breeding in animals and

plants. Compared with other marker types, single nucleotide

polymorphisms (SNPs), as the most extensive and stable

genomic variations of multiple species, are ideal markers for

genotyping because of their advantages in ultra-high-throughput

detection and easy integration of genotypic data (Zhang

et al., 2020a).

Array-based and sequencing-based technologies (next-

generation sequencing) are the major genotyping platforms

which are available for the screening of SNP markers. In the

former technology, the fixed nature of SNPs on an array is

helpful for cross-project comparisons because the same markers

are used (Rasheed et al., 2017). However, when new SNPs are

required, the array-based genotyping platform can be expensive

because the array must be redesigned (Rasheed et al., 2017).

Sequencing-based technologies contain three strategies to obtain

SNP markers. Whole genome resequencing, identifying all

sequence variability, is still high-cost for genotyping large

populations with the aim to perform genetic and breeding

studies. Reduced-representation genome sequencing

(restriction-site associated DNA and genotyping-by-

sequencing), a partial or selective sequencing, is simple, quick,

and low-cost (Davey et al., 2011; Andrews et al., 2016). The two

strategies may not allow comparisons across projects because

different sequencing technologies and analysis pipelines affect

the selection of SNPs detected (Torkamaneh et al., 2016;

Burridge et al., 2018).

Genotyping by target sequencing (GBTS), a newly developed

sequencing-based genotyping platform, involves the capture of

target genomic loci by probes (Guo et al., 2021). GBTS integrates

the advantages of array-based and partial sequencing, and

possesses the characteristics of customized flexibility, high

throughout, and low cost (Guo et al., 2019). The technology

also allows cross-project comparisons due to the target genomic

loci. GBTS mainly contains multiplex PCR-based (GenoPlexs)

(Zhang et al., 2020a) and probe-in-solution-based target

sequencing (GenoBaits) (Guo et al., 2019). Recently, Guo et al.

(2021) improved the latter system and developed a multiple SNP

(mSNP) approach where mSNPs can be captured from a single

amplicon. GBTS has been successfully utilized for genotyping,

genetic diversity analysis, quantitative trait locus mapping,

genome-wide association study, and traditional marker-

assisted selection in wheat (Burridge et al., 2018), maize (Guo

et al., 2019; Guo et al., 2021), pepper (Du et al., 2019), cucumber

(Zhang et al., 2020a), faba bean (Wang et al., 2021), and broccoli

(Shen et al., 2021). However, the application of GBTS in genomic

prediction for parent and hybrid performance was

rarely reported.

Hybrid breeding plays a great role in improving maize and

many other crops. It mainly involves the development of inbred
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lines with high general combining ability (GCA) and specific

combining ability (SCA) and the identification of hybrids with

high yield potentials (Zhang et al., 2022). The estimation of GCA

and SCA needs to conduct multi-environment trials using

specific mating designs, such as the diallel cross and North

Carolina II design. Therefore, the process of hybrid breeding not

only requires a vast of field resources to evaluate the

performances of all possible combinations among many inbred

lines, but laborious work for the identification of hybrid

performance. In fact, only a small proportion of crosses can be

tested in the field and abundant crosses with potentials may not

have the chance to be evaluated.

Genomic selection, first proposed by Meuwissen et al.

(2001), aims to estimate breeding values of untested

populations only having genotyping data and select inbred

lines or hybrids with high yield potentials based on the

information of training population which is genotyped and

phenotyped. The application of GS in hybrid breeding projects

can help predict the performance of untested crosses and

conduct selections with the aid of genotyping platforms

according to the genotypic and phenotypic information of

tested populations, which can accelerate the breeding process

of developing high GCA parental lines and high-yielding

hybrids. The genomic prediction for combining ability and

hybrid performance has been reported in maize (de Oliveira

et al., 2020; Zhang et al., 2022), rice (Cui et al., 2020), wheat

(Zhao et al., 2015), sorghum (Ishimori et al., 2020), and canola

(Knoch et al., 2021) using genotypic data derived from the array-

based and partial sequencing-based genotyping platforms.

However, theses genotyping platforms are still high-cost for

GS-assisted breeding programs although moderate-to-high

prediction accuracies were revealed in those studies, which

may guarantee a reliable prediction for the performance of

unevaluated lines.

Although several SNP genotyping platforms were developed

through GBTS in maize, no GBTS system was evaluated in

genomic selection for GCA and hybrid performance. In

addition, the current GBTS platform still needed to be

specifically customized and optimized according to different

applications in genetic and molecular breeding. In the present

study, we designed a low-density GBTS panel from diverse

resources and evaluated its applications in genotyping,

population structure classification, and genomic prediction for

GCA and hybrid performance.
Materials and methods

Design of the maize GBTS-based 5.5K
loci panel

To build a reliable and genome-wide genotyping array, we

selected 5,521 target SNPs from diverse resources (Table 1). In a
frontiersin.org
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previous study (Wang et al., 2022), four inbred lines Zheng58,

Chang7-2, Zheng588, and ZhengH71 were sequenced through

the whole genome resequencing technology (Dataset I), and the

four inbred lines and their F1 hybrids (Zhengdan958,

Zhengdan1002, Zheng588/Chang7-2, and Zheng58/ZhengH71)

were sequenced through RNA-seq technology at seven seed

developmental stages (Dataset II). A total of 1,973 heterosis-

related SNPs were selected from the above data using two

following criteria: (1) SNPs were retained when the

corresponding genes were significantly differentially expressed

between F1 hybrids and one of their corresponding parents in at

least one F1 hybrid and one developmental stage using edgeR

(log2|fold change| > 1, FDR< 0.05), and these differentially

expressed genes were significantly correlated with the mid-

parent heterosis of hundred-kernel weight (HKW) and fresh

HKW in at least one developmental stage using weighted gene

co-expression network analysis (Supplementary Figure 1), and

(2) SNPs showed allele-specific expression in at least one F1
hybrid were selected according to the method of a previous study

(Shao et al., 2019). Allele-specific expression, the imbalance

between expression levels of two parental alleles in a hybrid,

has been considered as a mechanism of heterosis (Shao et al.,

2019). We found 653 SNPs were related with mid-parent

heterosis, 1,772 SNPs were considered allele-specific

expression, and 452 SNPs were passed the both selected criteria.

A great number of genes have been reported to regulate

maize development and related agronomic traits. To cover these

functional genetic loci, we included 184 synonymous SNPs or

SNPs located at exonic or UTR regions from 113 known genes

based on the Dataset II (Table 1, Supplementary Table 1). In

addition, 487 SNPs were selected from important loci associated

with grain yield and yield-related traits from published

references (Yang et al., 2014; Liu et al., 2017a; Zhang et al.,

2017; Pang et al., 2019; Liu et al., 2020; Ma et al., 2021; Ma and

Cao, 2021). To make markers as evenly distribute across the

genome as possible, 898 SNPs were selected from Dataset I, 776
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SNPs were selected from Dataset II, 836 SNPs were selected from

the RNA-seq data of Qi319, Ye478, B104, AJ525, A350, A314,

and LH209 in terms of multiple tissues containing roots, leaves,

seeds, and young ears (Dataset III), and 367 SNPs were selected

from maize GBTS-based 48K loci panel (China Golden Marker,

Beijing) after the quality control of GC content (40-60%) and the

filtration of multi-copy SNPs. The distribution of 5.5K target

markers on ten chromosomes was demonstrated in Figure 1A.
Plant materials, field trials, and
evaluation of agronomic traits

To verify the effectiveness of the low-density GBTS

genotyping platform, two populations (Pop1 and Pop2) were

used in the present study. Pop1, a genetic population, contained

254 inbred lines from China (150) and USA (104), of which 250

inbred lines and four testers (Zheng58, Chang7-2, PH6WC, and

PH4CV) produced 942 F1 hybrids using North Carolina II

mating design. Pop2, a breeding population, consisted of 123

new-developed inbred lines and eight testers (Chang7-2,

PH4CV, Nongxi531, M119, M189, 20H1419, L119A, and

S110T), which generated 540 F1 hybrids. Two hybrid

populations were evaluated in field experiments at Xinxiang

and Zhoukou, Henan, but Pop1 and Pop2 were grown in 2020

and 2021, respectively. Entries were evaluated in one-row plot

using randomized complete block design with two replicates.

The plot size was 4 m and 3.3 m in length in Xinxiang and

Zhoukou, respectively, all with 0.60 m between rows and 0.22 m

between plants. Traits determined were grain yield per plant

(GYP), ear weight (EW), HKW, and kernel number per row

(KNR) in both populations. The analysis of variance was

calculated following a linear mixed model.

y=m+E+R+GCAL+GCAT+SCA+GCAL×E+GCAT×E+SCA×E

+ϵ , where y indicates the phenotypic value of hybrids, m denotes

the overall mean, E represents environment effect, R represents

replicates. GCAL and GCAT are effects of inbred lines and testers,

respectively; SCA is the effect of the combinations of inbred lines

and testers; GCAL×E , GCAT×E , and SCA×E indicate GCAL ,

GCAT , and SCA interaction effects with environment,

respectively. The variance components and GCA effects were

calculated using R package lme4. The heritability of GCA effects

was calculated using the following formula which was modified

from Liu et al. (2021).

H2
GCA =

s 2
GCAL

+s 2
GCAT

s 2
GCAL

+s 2
GCAT

+
s2
SCA
t +

s2
GCAL�E

e +
s2
GCAT�E

e +
s2
SCA�E
te +

s2ϵ
ter

, where s2
GCAL

,

s 2
GCAT

,s 2
SCA,s2

GCAL�E
,s 2

GCAT�E
,s 2

SCA�E , and s2
ϵ represent the

GCA variance of inbred lines, the GCA variance of testers, the

variance of SCA, the interaction variance between the GCA of

inbred lines and environment, the interaction variance between

the GCA of testers and environment, the interaction variance

between SCA and environment, and residual variance,
TABLE 1 The number of target SNPs selected from different
resources.

Category# Number

Heterosis-related SNPs (Dataset I and II) 1,973

Published references 487

113 known genes (Dataset II) 184

Dataset I 898

Dataset II 776

Dataset III 836

maize GBTS-based 48K loci panel 367
# Dataset I: the whole genome resequencing data of four inbred lines Zheng58, Chang7-2,
Zheng588, and ZhengH71; Dataset II: the RNA-seq data of Zheng58, Chang7-2,
Zheng588, and ZhengH71 and their F1 hybrids (Zhengdan958, Zhengdan1002,
Zheng588/Chang7-2, and Zheng58/ZhengH71) at seven seed developmental stages;
Dataset III: the RNA-seq data of Qi319, Ye478, B104, AJ525, A350, A314, and LH209
in terms of multiple tissues containing roots, leaves, seeds, and young ears.
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respectively, and t , r , and e are the numbers of tester lines,

replicates, and environments, respectively. Heritability at per

mean level and best linear unbiased estimate (BLUE) values of

hybrid traits were calculated using QTL IciMapping v4.2

software (Meng et al., 2015).
Genotyping and analyses based on the
maize 5.5K loci panel

All parental lines of the two populations were used for

genotyping. CTAB method was adopted to extract genomic

DNA from fresh leaves. The length of each probe for the 5.5K

loci panel was 100 bp to cover the SNP regions, which can

capture approximately 250-400 bp sequence. The major

processes of GBTS based on liquid-phase probe hybridization

were as follows according to Wang et al. (2021): (1) Genomic

DNA was fragmented and added a sequencing adapter, (2) The

biotin-labelled RNA probe was combined with the DNA

fragments that had already been attached to the adapter

sequence, (3) Streptavidin-coated magnetic beads were

combined with the double stranded complex of biotin-labelled

RNA probe and DNA (probe excess), (4) Washing to obtain the

DNA of the target region to remove nonspecific hybridization

and improve the capture efficiency, and (5) The eluted DNA

products were amplified by PCR and sequenced using Illumina

NovaSeq 6000 platform (China Golden Marker, Beijing). BWA
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software was used to align the filtered reads to B73 RefGen v4

(http://www.gramene.org/). GATK v4.1.2.0 (McKenna et al.,

2010) was used to detect variants. Vcftools and PLINK

software were used to filter minDP< 11, minGQ< 20, minor

allele frequency (MAF) ≤ 0.05, missing rate > 10%, and

heterozygous rate > 1%. The polymorphic information content

(PIC) was calculated according to the following equation that

was proposed by Botstein et al. (1980).

PIC = 1 − (on
i=1P

2
i ) −on−1

i=1on
j=i+12P

2
i P

2
j , where Pi and Pj are

the population frequencies of the ith and the jth allele. Gene

diversity (GD) was estimated as:

GD = 1 − (o
n

i=1
P2
i )
Population structure analysis

All filtered genotyping data were used for population

structure analysis. Population structure was inferred using the

Bayesian Markov Chain Monte Carlo (MCMC) program in

Structure v2.3.4 (Pritchard et al., 2000). The number of

subgroups (K) was set from 1 to 8 in Pop1, whereas that was 1

to 10 in Pop2.The length of burnin period and the number of

MCMC replicates after burnin were 5,000 and 50,000,

respectively. The Structure output was visualized by Structure

Harvester (Earl and vonHoldt, 2012), and delta K was used to
B

C D

A

FIGURE 1

The information of 5.5K loci panel and the genotyping profiles in two populations. (A) The distributions of 5.5K target markers on ten
chromosomes. (B, C) represent the distributions of minor allele frequency (MAF), polymorphic information content (PIC), and gene diversity (GD)
in Pop1 and Pop2, respectively. (D) The missing rate on ten chromosomes in both populations.
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determine the optimal number of subgroups. The FullSearch

algorithm in CLUMPP v1.1.2 (Jakobsson and Rosenberg, 2007)

was used to estimate cluster membership coefficient matrices

from the optimal subgroup. To verify the optimal number of

clusters, unweighted pair-group method with arithmetic means

(UPGMA) tree was performed using the software TASSEL

v5.2.60 (Bradbury et al., 2007). The circular tree was

demonstrated using R package ggtree.
Genomic prediction for general
combining ability and hybrid
performance

Five models including Bayes A, Bayes C, Bayesian least

absolute shrinkage and selection operator (Bayesian LASSO),

genomic best linear unbiased prediction (GBLUP), and

reproducing kernel Hilbert space (RKHS) were adopted for

genomic prediction using all filtered genotyping data. For

RKHS, three kernels were used and their bandwidth parameter

h was set at 0.1, 0.5, and 2.5. For the GCA prediction, the

genotypes were coded by -1 for one homozygote, 0 for the

heterozygote, and 1 for the other homozygote. Randomized

imputation was used for missing markers, according to the

known genotype frequency (Ma and Cao, 2021). The above

five GS methods were used to perform hybrid phenotypic

prediction using additive (A) and additive plus dominance

(AD) model. In the A model, the homozygous genotypes were

coded as -1 and 1, and the heterozygous genotypes were coded as

0. For the mating type A1A1 × A1A2 and A2A2 × A1A2, these

hybrids were coded as -0.5 and 0.5, respectively. When the

mating type was A1A2 × A1A2, their hybrids were coded as 0.

For the dominance model, the homozygous genotypes were

coded as 0, and the heterozygous genotypes were coded as 1.

For the mating type A1A1 × A1A2 and A2A2 × A1A2, the

hybrids were all coded as 0.5.

All GS models and prediction strategies were performed

using the R package, BGLR (Pérez and de los Campos, 2014). For

all models, the number of Gibbs iterations was 12,000, and the

burn-in was 3,000. A 10-fold cross-validation scheme was used

and repeated 100 times for all prediction methods and models.

In the 10-fold cross validation, 90% inbred lines or hybrids were

selected as the training set to predict the remaining 10% inbred

lines or hybrids as the testing set. The average correlation

coefficient between genomic estimated breeding values and

phenotypic values in the testing set was used to estimate the

accuracies of different GS models.
Genomic prediction across projects

The fixed nature of the GBTS technology allowed the

comparisons between different projects. The genotyping of the
Frontiers in Plant Science 05
two populations was conducted in two batches, therefore we

found common SNPs between the filtered genotyping data of

both populations. Based on these common SNPs, the prediction

accuracy of GCA and hybrid performance was calculated using

the RKHS method. As all filtered genotyping data, the same

cross-validation and parameters were used.
Genomic prediction for potentially
functional markers

Among the 5,521 target SNPs, 2,644 SNPs were identified from

the weighted gene co-expression network analysis, allele-specific

expression analysis, known genes, and published references

(Table 1), which were defined as potentially functional markers.

These functional SNPs existed in the filtered genotyping data were

used as marker subset to predict GCA and hybrid performance

using the RKHS method. To validate the performance of these

markers, the same number of other target SNPs was also used to

conduct the genomic prediction.
Results

The performance of hybrids and general
combining ability

Hybrid phenotypes and parental GCA were analyzed in this

study. Descriptive statistics were shown in Supplementary

Figure 2. Genetic correlations showed GYP and EW showed

positive and high correlations in both hybrid populations, with r

value ranging from 0.98 to 0.99 (Supplementary Figure 3). HKW

and KNR had low or no correlations, but they were positively

and significantly correlated with GYP and EW, with r value

ranging from 0.36 to 0.64 in both hybrid populations. As the

hybrid trait per se, high correlations (r = 0.98) were also observed

between the GCA effects of GYP and EW in the two populations.

For GCA effects of other traits, similar correlation values were

found as those of the hybrid traits.

Analysis of variance showed that significant GCA, SCA, GCA-

by-environment interaction, and SCA-by-environment interaction

variances were revealed for all traits except for one source in KNR

of Pop1 (Supplementary Table 2). In Pop1, the variances of SCA

were much higher than those of GCA for GYP and EW. The

contrast trend was observed in Pop2. The heritabilities of traits in

hybrids ranged from 0.55 for KNR in Pop2 to 0.71 for HKW in

Pop1. In Pop1, the heritabilities of GCA effects for GYP and EW

were low (H2 = 0.16-0.17), whereas those were high (H2 = 0.82-

0.84) in Pop2. For other traits, the heritabilities of GCA effects

ranged from 0.50 to 0.84. Big variations observed in the

heritabilities of GCA for GYP and EW across populations could

be attributed to genetic backgrounds, environmental effects, or the

interactions between them.
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Profiles of genotyping using the maize
GBTS-based 5.5K loci panel

Based on the 5,521 target SNPs using the GBTS technology

with capture-in-solution, 75,876 and 33,971 raw SNPs were

detected in Pop1 and Pop2, respectively. After filtering, 20,210

and 11,734 high-quality SNPs were generated for Pop1 and

Pop2, respectively, which were used for the further genetic

analyses. The number of SNPs per chromosome ranged from

1,383 (chromosome 10) to 3,446 (chromosome 1) in Pop1,

whereas that ranged from 376 (chromosome 6) to 2,391

(chromosome 1) in Pop2 (Supplementary Figure 4A). The

mean MAF after filtering across all SNPs was 0.25 and 0.29 in

Pop1 and Pop2, respectively (Figures 1B, C). The mean missing

rate after filtering across all SNPs was 2.16% and 0.30% in Pop1

and Pop2, respectively (Figure 1D). The average PIC and GD

values were 0.27 and 0.33 in Pop1, respectively, whereas those of

Pop2 were 0.30 and 0.38, respectively. Among these filtered

markers, 4,865 and 2,237 target SNPs were found in Pop1 and

Pop2, respectively (Supplementary Figure 5A). The mean MAF,

PIC, and GD values of target SNPs were slightly higher than

those of all filtered markers in both populations (Figures 1B, C,

Supplementary Figures 5B, C). The mean missing rate of the
Frontiers in Plant Science 06
target SNPs was 0.12-0.87%, which was much lower than that of

the full set of filtered markers (Figure 1D and Supplementary

Figure 5D). These results highlighted the high quality of those

target SNPs.
Genetic structures of two maize
populations

The Structure and CLUMMP analyses revealed that Pop1

and Pop2 were divided into five and six sub-populations,

respec t ive ly , based on the opt imal number of K

(Supplementary Figure 6). In Pop1, Cluster 1 and Cluster 2

mainly belonged to non-Stiff Stalk, Cluster 3 mainly represented

Stiff Stalk, Cluster 4 indicated Tang Si Ping Tou, and Cluster 5

inferred as modified Reid group (Figure 2A). For the breeding

population Pop2, the number of inbred lines within sub-

populations ranged from 10 (Cluster 3) to 42 (Cluster 1)

(Figure 2B). Similar genetic divergences (76-89%) were also

observed using the circular UPGMA tree in both populations

(Figure 2), which indicated that the GBTS-based 5.5K loci panel

can be used for genetic analyses and assisted for the inference of

germplasm origins.
B

C D

A

FIGURE 2

Population structure and UPGMA tree in two populations. (A, B) represent population structure in Pop1 (K=5) and Pop2 (K=6), respectively.
Abscissa and ordinate represent the inbred lines and the membership percentage of inbred line, respectively. (C, D) represent circular UPGMA
tree in Pop1 and Pop2, respectively.
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Prediction accuracies for general
combining ability and hybrid
performance

To detect the prediction power of the GBTS panel, we used

the classical parameter model GBLUP, three Bayesian models,

and a semi-parameter model RKHS to predict GCA effects of the

observed traits within populations. The prediction accuracies
Frontiers in Plant Science 07
ranged from 0.33 (GYP) to 0.43 (HKW) in Pop1, whereas those

varied from 0.52 (HKW) to 0.65 (EW) in Pop2 (Figure 3).

Regardless of populations and traits, GBLUP and the three

Bayesian methods resulted in similar predictive performance

for GCA effects, with the difference values ranging from 0 to

0.01. In general, the prediction accuracy of RKHS was slightly

lower than that of the other four methods, with the percentage

decrease ranging from 1.18 to 6.96%. Moderate-to-high
B

A

FIGURE 3

Accuracy of five models predicting general combining ability for four traits in two populations. (A) The prediction accuracy of GYP, EW, HKW,
and KNR in Pop1. (B) The prediction accuracy of GYP, EW, HKW, and KNR in Pop2. GYP, EW, HKW, and KNR are abbreviations of grain yield per
plant, ear weight, thousand-kernel weight, and kernel row number, respectively. BA, BC, BL, GB, and RK denote Bayes A, Bayes C, Bayesian
LASSO, GBLUP and RKHS, respectively.
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accuracies were obtained for GCA effects in the breeding

population (Pop2), which suggested that the maize GBTS-

based 5.5K loci panel can be used for GS-assisted selection for

high GCA lines.

Except for GCA effects, the predict power of hybrid

phenotypes was also evaluated for the genotyping panel. The

above five GS methods incorporating additive effect only and

additive plus dominance effect were adopted. In Pop1, the

prediction accuracies for the performance of hybrids ranged
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from 0.22 (GYP) to 0.65 (HKW) in the five methods including

additive effects, whereas those were improved and ranged from

0.51 (EW) to 0.66 (HKW) in the AD model (Figure 4).

Compared with the A model, the AD model of GBLUP and

the three Bayesian methods improved the accuracy by 114.35-

134.52% for GYP and EW in Pop1. Compared with the A model,

the percentage increase ranged from 45.66 to 46.82% for KNR

when the dominance was incorporated into GBLUP and the

three Bayesian methods, whereas a small percentage increase
B

C D

E F

G H

A

FIGURE 4

Accuracy of additive and additive-dominance model predicting hybrid performance. (A–D) represent the prediction accuracy for GYP, EW, HKW,
and KNR in Pop1, respectively. (E–H) represent the prediction accuracy for GYP, EW, HKW, and KNR in Pop2, respectively. A and AD represent
additive and additive-dominance model, respectively.
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(4.89-5.15%) was observed for HKW. For RKHS, the addition of

dominance slightly improved the accuracies of hybrid

performance for GYP, EW, and KNR in Pop1. Due to high

accuracies (0.53-0.75) achieved in the A model for all four traits

in Pop2, the incorporation of dominance did not improve the

accuracies of hybrid performance in most scenarios. For the A

model only, RKHS showed the superior performance over the

other four methods, improving the accuracy by 42.68-126.44%

for GYP, EW, and KNR in Pop1. Regardless of GS methods and

models, moderate-to-high accuracy values were achieved for the

hybrid prediction in both populations, which supported the

reliability of GS-assisted selection of excellent hybrids using

the maize 5.5K loci genotyping panel.
Cross-project comparisons and
prediction accuracy for potentially
functional markers

Based on all filtered SNPs, the RKHS method showed superior

performance over the other four methods particularly when the

additive effect was considered in Pop1 and showed similar or

slightly lower advantages in other circumstances, therefore the

method was used for the cross-project comparisons and the

prediction for potentially functional markers. Due to the fixed

nature of target genomic loci, 7,743 SNPs were simultaneously

detected between 20,210 and 11,734 SNPs, accounting for 38-66%

of those filtered genotyping data (Supplementary Figure 4B). The

prediction accuracies of 7,743 SNPs ranged from 0.35 to 0.64 for

GCA effects of GYP and EW in the two populations, which was

slightly higher than those of all filtered markers (Figure 3 and

Supplementary Figure 7A). Compared with all filtered SNPs,

slightly lower accuracy was found in GCA effects of HKW and

KNR in Pop1. The 7,743 SNPs enabled high accuracy (0.71) for

GYP with the A and AD model in Pop2, although the value was

smaller than that of all markers (Figure 4E and Supplementary

Figure 7C). For other circumstances, similar prediction abilities

were observed between common SNPs and the full set of markers.

These findings agreed with Spindel et al. (2015) who pointed out

that ~ 7,000 (approximately 1 SNP for every 0.2 cM) SNPs were

sufficient for GS. These suggested that the GBTS-based 5.5K loci

genotyping platform can be used for cross-project comparisons in

terms of genomic prediction.

Among the 5,521 target SNPs, 2,644 SNPs were associated

with mid-parent heterosis, allele-specific expression, known

genes, and yield-related traits and were considered as

potentially functional markers. A total of 2,021 target SNPs

were overlapped between the two populations among the filtered

genotyping data (Supplementary Figure 5A), of which 906 target

SNPs were potentially functional markers. The prediction ability

was compared when these potentially functional markers and

the same number of other target SNPs were used for genomic

prediction. For GYP and EW, the prediction accuracy of
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potentially functional markers was consistently higher that of

randomly selected markers in terms of GCA and hybrid

performance in Pop1 (Figures 5A, C, E). The good

performance was also observed for GCA prediction in both

populations and for hybrid prediction with the A model in Pop1

for KNR (Figures 5A–C). These might prove that the selection

strategies for functional SNPs were valid. Zhang et al. (2020b)

found that the employment of functional genes information such

as the number of favorable alleles and genotypes enabled

accurately predicting maize yield. However, these potentially

functional markers did not show any advantage in the remaining

scenarios (Figure 5). Most of these target SNPs achieved similar

accuracies as the full set of filtered SNPs (Figures 3–5), which

again highlighted the reliability of target SNPs.
Discussion

Evaluation of genotyping, genetic
diversity, and population structure

High-throughput genotyping technology is very important

for effective crop breeding programs. GBTS technology

integrates the advantages of array-based and partial

sequencing, showing advantages in customized flexibility, high

throughput, and low cost. In maize, a series of high-quality

GBTS panels, including 1-20K SNP (GenoBaits) and 1-40K

mSNP, were developed, which made the technology an

effective and efficient tool for genotyping and population

structure classification (Guo et al., 2019; Guo et al., 2021). In

the present study, the GBTS-based 5.5K loci panel was developed

mainly from the whole genome resequencing and transcriptome

sequencing of Huanghuaihai maize germplasms. Two

populations containing 383 accessions were genotyped using

the platform. Due to the target region sequencing, the number of

detected raw SNPs was approximately 14-fold and six-fold as

that of the target SNPs for Pop1 and Pop2, respectively. Wang

et al. (2021) found that 1,579,411 SNPs were identified and

further filtered according to the Faba_bean_130K targeted next-

generation sequencing genotyping platform. These all showed

that the GBTS technology can detect a large number of SNPs in

comparison to the capacity of target SNPs. Like the genotyping-

by-sequencing or restriction-site associated DNA, the GBTS was

based on next-generation sequencing, therefore the genotyping

results were affected by the size of restriction fragment length,

population background, and population size when samples were

genotyped in different batches. Based on the filtered genotyping

data, the mean missing rate across populations was 1.23%, which

was lower than that of populations genotyped using GBTS-based

1-20K panels (Guo et al., 2019). The average PIC and GD values

ranged from 0.27 to 0.38, which could be considered high. The

biallelic nature of the SNP markers limited the range of PIC and

GD values from 0 to 0.5 (Eltaher et al., 2018; Shen et al., 2021).
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All these proved that the GBTS-based 5.5K loci panel is available

for identifying the genetic diversity of maize germplasms.

For Pop1, 254 maize accessions were divided into five

subpopulations by the Structure analysis, 76% of which was in

agreement with the phylogenetic tree (Figures 2A, C). For Pop2,

Structure and phylogenetic tree results agreed with each other

with 11% exceptions (Figures 2B, D). For Structure analysis, a

sub-population membership percentage was produced and the

highest percentage was used to assign one individual to one

group, whereas a fixed branch position was assigned to each

accession for UPGMA analysis (Wang et al., 2009; Shen et al.,

2021). This discrepancy between the two methods of grouping

might result in some biases. The similar results showed that the

GBTS-based 5.5K loci panel can be assisted for the population

structure classification.
Frontiers in Plant Science 10
Potential applications in genomic
selection

GS has obvious advantages for improving genetic gains in

animal and plant breeding, but the price of genotyping can be

prohibitive for many species (Kriaridou et al., 2020). Therefore,

the development of cost-effective and user-friendly genotyping

platform that is suitable for genomic selection is valuable for

breeding programs with limited funds and resources. We

demonstrated the potential of the GBTS-based 5.5K loci panel

in genomic prediction in terms of GCA and hybrid performance

using one genetic population and one breeding population.

Regardless of GCA or hybrid performance prediction, higher

accuracies were observed in Pop2 than in Pop1, especially for

GYP and EW. The phenomena also occurred even if only
B

C D

E F

A

FIGURE 5

Accuracy of target SNPs in two populations. (A, B) represent the general combining ability prediction using RKHS method in Pop1 and Pop2,
respectively. (C, D) represent hybrid performance prediction using RKHS with additive model (A) in Pop1 and Pop2, respectively.
(E, F) represent hybrid performance prediction using RKHS with additive-dominance model (AD) in Pop1 and Pop2, respectively. Functional
markers represent 906 target SNPs associated with mid-parent heterosis, allele-specific expression, known genes, and yield-related traits.
Random markers represent 906 target SNPs which are randomly selected from 1,115 target SNPs.
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common SNPs, such as 7,743 overlapped SNPs, 906 functional

target SNPs, and randomly selected target SNPs, were used for

prediction. Obvious variations in prediction accuracies for

hybrid performance were also revealed in different maize

breeding populations (Windhausen et al., 2012; Li et al., 2021).

The variances of GCA and SCA varied across populations

indicated that the genetic structure of GYP and EW was very

different in two populations. Therefore, the differences in genetic

basis of traits among different populations might be an

important factor influencing the prediction accuracies (Li

et al., 2021). The significant environment effect and genotype-

by-environment effect were revealed across traits and

populations through analysis of variance, indicating that the

environment factor might affect the prediction results because

the two populations were grown in different years.

Decomposing of variances of hybrid performance into GCA

and SCA variances could reflect the role of additive and non-

additive effects. In Pop1, the inclusion of the dominance effects

could effectively improve the prediction accuracy of hybrid

phenotypes in GBLUP and the three Bayesian methods. In

particular, the AD model boosted the prediction accuracy for

GYP and EW by more than two-fold compared with the A

model, which agreed with a previous study where GBLUP with

AD effects doubled the predictive capacity for maize grain yield

under water-stressed trial in comparison to the A model (Dias

et al., 2018). In general, these results were consistent with the size

of SCA variances (Supplementary Table 2). Incorporating

dominance effects improved the prediction accuracy

considerably for convergent parent populations, where

dominance generated major contributions of SCA effects to

the genetic variance among inter-population hybrids

(Technow et al., 2012). In Pop2, the AD model didn’t not

improve predictive performance in comparison to the A model

in most circumstances because the GCA variances (additive

variances) was large. High level of additive variances also

explained the reason that the A model achieved high

accuracies in Pop2. In line with our findings, Ferrão et al.

(2020) demonstrated that the inclusion of dominance effects

increased the predictive ability of grain yield because dominance

explained a large portion of the phenotypic variance for grain

yield; when the additive variance was large, the A model yielded

better results for grain moisture. The superiority of GBLUP-AD

and Gaussian kernel regression depended on the level of

dominance variance in sorghum (Ishimori et al., 2020). In

addition, the loss in accuracy that was induced by the

inclusion of dominance or epistatic effects was most likely

caused by more pronounced interactions of environments with

dominance and epistatic effects than with additive effects (Liu

et al., 2017b).

In most instances, RKHS did not improve the prediction

accuracies when the dominance effect was included especially in

Pop2. RKHS per se can capture non-additive effects in hybrid
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populations (Gianola et al., 2006), even if only additive genomic

matrix was fitted into the method. For trait per se, RKHS gave

consistently high predictive performance than some parameter

models (Ma and Cao, 2021). However, our findings showed that

this method was not good for GCA prediction. Alves et al. (2019)

found that although RKHS was in all cases the one that had the

highest proportion of variance explained, the predictive

performance of this model was not the highest one.

The prediction accuracy (0.62-0.64) of GCA effects for GYP

in Pop2 based on 11,734 SNPs was higher than that (0.49-0.55)

achieved using 39,659 SNPs from the DArT-seq platform

(Zhang et al., 2022). For hybrid prediction, high prediction

accuracy (0.74-0.75) was achieved for GYP using 11,734 SNPs

in Pop2. In some previous studies, lower accuracies (0.03-0.67)

were achieved for GYP or grain yield per hectare in hybrid

populations with higher marker densities (21,475-52,811) which

were obtained from the genotyping-by-sequencing, 50K

Illumina chip, maize 500k Affymetrix chip, and Affymetrix

genotyping array of 616 K SNPs platforms (Supplementary

Table 3, Dias et al., 2018; Alves et al., 2019; Schrag et al., 2019;

de Oliveira et al., 2020; Dias et al., 2020; Ferrão et al., 2020;

Costa-Neto et al., 2021). Using fewer markers, a moderate

accuracy was achieved with the AD model for hybrid GYP in

Pop1, which was comparable to that achieved in some previous

studies (Supplementary Table 3). Heffner et al. (2010) concluded

that GS can significantly accelerate genetic gains through

shortening the breeding cycle if moderate selection accuracies

are obtained. Several studies showed that GBTS can significantly

reduce the cost of genotyping by at least half compared with

the array-based and genotyping-by-sequencing platforms (Guo

et al., 2019; Bernardo et al., 2020; Guo et al., 2021). All these

indicated that the GBTS-based 5.5K loci panel is sufficient for

predicting GCA effects and hybrid performance and will be

a reliable, efficient, and low-cost genotyping platform for GS-

assisted breeding in selecting high GCA lines and high-yielding

hybrids in maize.
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