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Transcriptomic and splicing
changes underlying tomato
responses to combined water
and nutrient stress
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Valerio Cirillo2, Salvatore Esposito3, Antonello Costa1,
Albino Maggio2, Stefania Grillo1 and Giorgia Batelli 1*

1CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research
Division, Portici, Italy, 2Department of Agricultural Sciences, University of Naples, Federico II,
Portici, Italy, 3CREA-CI, Council for Agricultural Research and Economics, Research Centre for
Cereal and Industrial Crops, Foggia, Italy
Tomato is a horticultural crop of high economic and nutritional value.

Suboptimal environmental conditions, such as limited water and nutrient

availability, cause severe yield reductions. Thus, selection of genotypes

requiring lower inputs is a goal for the tomato breeding sector. We screened

10 tomato varieties exposed to water deficit, low nitrate or a combination of

both. Biometric, physiological and molecular analyses revealed different stress

responses among genotypes, identifying T270 as severely affected, and T250 as

tolerant to the stresses applied. Investigation of transcriptome changes caused

by combined stress in roots and leaves of these two genotypes yielded a low

number of differentially expressed genes (DEGs) in T250 compared to T270,

suggesting that T250 tailors changes in gene expression to efficiently respond

to combined stress. By contrast, the susceptible tomato activated

approximately one thousand and two thousand genes in leaves and roots

respectively, indicating a more generalized stress response in this genotype. In

particular, developmental and stress-related genes were differentially

expressed, such as hormone responsive factors and transcription factors.

Analysis of differential alternative splicing (DAS) events showed that

combined stress greatly affects the splicing landscape in both genotypes,

highlighting the important role of AS in stress response mechanisms. In

particular, several stress and growth-related genes as well as transcription

and splicing factors were differentially spliced in both tissues. Taken together,

these results reveal important insights into the transcriptional and post-

transcriptional mechanisms regulating tomato adaptation to growth under

reduced water and nitrogen inputs.

KEYWORDS

differential gene expression, differential alternative splicing, leaf, root, water deficit,
low nitrate, tolerant and sensitive genotypes
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Introduction

Agriculture is the single human activity consuming the

highest amount of water. An increased frequency and duration

of drought spells, due to climate change dynamics, may result in

a higher water demand for agricultural activities. Nitrate

fertilization causes the formation of greenhouse gases,

contributing to climate change (Voigt et al., 2017). Thus, the

development of genotypes with lower demands in terms of water

and nitrate inputs, coupled with optimized management

practices, may reduce the environmental impact of agricultural

practices while improving stress resilience, and is thus

considered a priority in plant breeding.

Tomato is an important vegetable crop in terms of economic

value and as a dietary source of beneficial compounds.

Cultivation in open field is often challenged by drought stress,

which, depending on duration and intensity, can cause stomata

closure and reduced photosynthesis, a reduced leaf water content

and an overall reduction in size and leaf number, leading to a

lower leaf area and biomass accumulation (Iovieno et al., 2016;

Landi et al., 2017; Zhou et al., 2017). In addition, drought can

reduce nitrate uptake in tomato, imposing further constraints on

plant growth (Sánchez-Rodrıǵuez et al., 2011).

Similarly, nitrogen deficiency also has macroscopic effects on

plant growth and accumulation of dry matter, by causing

reduced protein synthesis and hormone imbalances, among

other effects (Scholberg et al., 2000; Scheible et al., 2004).

Drought and N availability are perceived by root systems,

leading to modifications of root architecture, with tomato

primary root growth favored over lateral root development

under water deficit, and a general inhibition of root growth in

the case of low N (Abenavoli et al., 2016; Machado et al., 2022).

Genome-wide expression studies, in addition to classical

genetics have contributed to identify drought responsive genes

and QTLs that may be important to improve tomato tolerance to

drought stress (Gur and Zamir, 2004; Gong et al., 2010; Iovieno

et al., 2016; Liu et al., 2017). Transporters and enzymes regulated

by nitrate availability and important for uptake, translocation

and metabolism of nitrate have been identified (Abenavoli et al.,

2016). However, a combination of drought stress and nitrate

deficiency, and the resulting molecular changes in tomato has

been little explored.

Alternative splicing (AS) is a co- and post-transcriptional

regulatory mechanism that gives rise to multiple transcripts

from a single gene. AS occurs when the spliceosome

recognizes different splice sites in the pre-mRNA, leading to

inclusion of introns (Intron Retention, IR) or exclusion of exons

(Exon Skipping, ES), completely or partially (Alternative Donor

or Acceptor site, A5’SS or A3’SS), in mature mRNA (Syed et al.,

2012; Chaudhary et al., 2019a).

In plants, AS regulates up to 70% of multi-exon genes

(Zhang et al., 2017; Calixto et al., 2018; Jabre et al., 2019). IR
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represents the predominant AS event, often generating

transcripts harboring premature stop codons, which are

retained in the nucleus (Jia et al., 2020), degraded via

nonsense-mediated mRNA decay (NMD) or translated into

truncated proteins (Filichkin and Mockler, 2012; Syed et al.,

2012; Chaudhary et al., 2019b). Some introns, named exitrons,

present characteristics of protein-coding exons. Splicing of these

exitrons modifies protein domains, affecting severely the protein

function (Marquez et al., 2015). During different developmental

stages and under environmental stress conditions, AS

mechanisms contribute to modulate the ratio between

functional and non-functional protein isoforms.

In tomato, Clark and colleagues (2019) integrated genomic

and transcriptomic data to analyze the AS landscape, estimating

that 65% of annotated protein-coding genes generate multiple

transcript isoforms. Recent studies have characterized

differential alternative splicing (DAS) in different tissues, in

response to hormones or abiotic stresses, such as heat or

drought (Zouine et al., 2014; Wang et al., 2016; Lee et al.,

2020; Yang et al., 2020). Analysis of tomato seedlings, flowers

and fruits showed that the number of splice variants per gene

was higher in developing fruit compared to other organs,

indicating distinctive, tissue-specific AS regulation (Sun and

Xiao, 2015).

In addition, stress-responsive AS events may be differentially

regulated depending on the tissue examined, as shown in maize

(Thatcher et al., 2016). Indeed, Keller and colleagues observed

extensive AS regulation in tomato pollen, a heat-sensitive tissue,

in response to heat stress, where most of the transcript isoforms

identified were partially or fully lacking functional domains

(Keller et al., 2017).

Recently, AS pattern in response to heat and drought

combination was studied in wheat as well as in tea plants,

showing that combined stress can induce specific AS (Liu

et al., 2018; Ding et al., 2020; Ding et al., 2022).

Here, we subjected ten tomato varieties to a combination of

drought stress and low nitrate. By analyzing physiological and

growth parameters, we selected T270 and T250 as sensitive and

least affected by stress, respectively to analyze changes in gene

expression and splicing landscape in two different tissues, root

and leaf. We found key differences in terms of differentially

expressed (DEGs) and spliced (DAS) genes, which thus

highlighted the independent and specific role of AS in

adaptation to stress condition.
Materials and methods

Plant material and growth conditions

Ten Solanum lycopersicum L. genotypes including reference

genotype M82 (T162) and landraces from Southern Italy were
frontiersin.org
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used in this study. Supplementary Datasheet S1 provides a list

and main characteristics of the genotypes. Landraces under

study were selected as tolerant in terms of yield to low water

input conditions applied by local farmers, with the exception of

T270, reported as sensitive. Seeds were germinated at a nursery

(Coral Plant, Italy) in soil in a semi-controlled greenhouse, and

irrigated daily with standard nutrient solution. At two true leaves

stage, seedlings were transplanted to 15 L pots containing river

sand, previously imbibed to field capacity with water, and

maintained in semi-controlled conditions glasshouse. At

transplant, plants were divided in eight blocks, each containing

three to four replicates per genotype and watered for one week

with control nutrient solution. One week after transplant, two

blocks were used for each of four treatments: Control (10.2 mM

NO−
3 ; 100% water supply), Low Nitrate (2.88 mM NO−

3 ; 100%

water supply), Drought (50% water supply) and Combined

Stress (2.88 mM NO−
3 with 50% water supply). Plants

belonging to Control and Low Nitrogen treatments were

irrigated daily until pot saturation (100% water supply), while

in Drought and Combined treatments the time of irrigation was

halved to provide 50% water supply. Nitric acid (HNO3) was

added to the nutrient solution to differentiate the treatments in

terms of nitrogen supply. To maintain pH to 5.7± 0.1 in the

different nutrient solutions, Na2CO3 was used to buffer excess

acidity provided by HNO3 addition in control and drought stress

conditions. Similarly, NaCl was added in low nutrient and

combined stress solution to keep Na+ concentrations similar in

all the treatments. Nutrient solution compositions were as

follows: Control (Foliar drop 0.5 g/L, Brexil 0.05 g/L, KH2PO4

0.1 g/L, Na2CO3 0.675 g/L, NaCl 0.15 g/L, HNO3 (65%) 0.675

ml/L); Low Nitrate (Foliar drop 0.5 g/L, Brexil 0.05 g/L, KH2PO4

0.1 g/L, NaCl 0.3 g/L, HNO3 (65%) 0.2 ml/L), Drought (Foliar

drop 1 g/L, Brexil 0.1 g/L, KH2PO4 0.2 g/L, Na2CO3 1.35 g/L,

HNO3 (65%) 1.35 ml/L) and Combined Stress (Foliar drop 1 g/L,

Brexil 0.1 g/L, KH2PO4 0.2 g/L, NaCl 0.6 g/L, HNO3 (65%) 0.2

ml/L)). A preventive phytosanitary treatment (PREVICUR®

Fungicide, Bayer CropScience) was conducted 9 days

after transplant.

Plants were cultivated under stress conditions for 30 days

and then harvested for molecular and biometric analyses. Leaf

(youngest fully expanded leaf) and root samples for RNA

extraction were collected and snap frozen in liquid nitrogen.
Physiological parameter measurements

To monitor stress progression, chlorophyll content was

measured on three leaves of each individual plant per

treatment using Chlorophyll meter SPAD-502Plus (Konika

Minolta, Japan). Stomatal conductance, monitored through

porometer AP4-UM3 (Delta-T Devices, UK), and Leaf relative

water content (LRWC) were measured on three replicates per

genotype per treatment. For LRWC, excised leaves were
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immediately weighed obtaining the fresh weight (FW) and

hydrated with distilled water for 24 hours to obtain the turgid

weight (TW). Leaf samples were then oven-dried at 70°C for 72

hours and dry weight (DW) was measured. The LRWC

percentage was calculated using the following equation: LRWC

(%)=(FW-DW)/(TW-DW) ×100.
Growth parameter measurements

At harvest, aerial part and roots were collected and

separated. Roots were washed to remove residual sand. Plant

height, shoot fresh weight, shoot dry weight, root fresh and dry

weight, and leaf area were measured using 6 to 8 replicates per

treatment per genotype. To obtain shoot dry weight, samples

were oven-dried at 70°C until a stable weight was reached. Plant

leaf area was measured on excised leaves of all plants using a

scanning planimeter (LI – 3400 area meter, Licor).
Statistical analysis

One way analysis of variance (ANOVA) within each

genotype was carried out on physiological and growth

parameters using the SPSS software package (SPSS 19 for

Windows, SPSS Inc., an IBM Company, United States). When

ANOVA indicated significant differences among treatments,

mean separation was performed using the Duncan’s multiple

range test. Different letters shown in figures indicate significant

difference at p< 0.05.
Heatmap construction

The cluster heatmap was produced with ClustVis tool

(http://biit.cs.ut.ee/clustvis/) using Euclidean distance as the

similarity measure and Ward as linkage rule (Metsalu and

Vilo, 2015). Per each parameter and genotype, the percent

variation induced by the different treatments compared to the

control was used as data input.
RNA sequencing

Total RNA was isolated from 100 mg of root and leaf

samples using RNeasy Plant Mini Kit (Qiagen, Germany)

according to manufacturer’s instructions.

For RNA deep sequencing, three biological replicates per

genotype from control and combined stress treatments were

used. The sequencing service was provided by Macrogen Europe

(https://www.macrogen-europe.com/). Raw sequences are

available at the National Center for Biotechnology Information

Sequence Read Archive, bioproject PRJNA855575. The quantity
frontiersin.org
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and the quality of RNA (RNA integrity) were assured by using

an Agilent Technologies (USA) 2100 Bioanalyzer. The poly-A

tailed mRNA was collected with poly-T oligo beads of TruSeq

stranded mRNA kit (Illumina, USA). The cDNA was

synthesized from the randomly fragmented RNAs. The cDNA

fragments were selected to obtain an optimal insert size of 200-

400 bp. The sequencer specific adaptors and indexes were

attached to the cDNA fragments to generate the libraries

according to the TruSeq stranded mRNA kit instructions. The

size and quantity of target-enriched libraries were confirmed by

TapeStation D1000 Screen Tape (Agilent) and quantitative PCR

following the standard Illumina qPCR Quantification Protocol.

The normalized and pooled libraries were loaded into the flow

cell of NovaSeq 6000 Illumina sequencer, where the bridged

amplification reaction of these libraries occurred, and a series of

images were captured from the extension of nucleotides

possessing reversible fluorophore and termination properties.
Transcriptomic and differential
splicing analysis

Prior to further analysis, a quality check was performed on

the raw sequencing data by using FastQC. (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/), then low

quality portions of the reads were removed with BBDuk

(sourceforge.net/projects/bbmap/). The minimum length of the

reads after trimming was set to 35 bp and the minimum base

quality score to 25. On average, 51.8 million filtered reads were

obtained per sample. The high quality reads were aligned against

the Solanum lycopersicum reference genome sequence

(ITAG4.0) with STAR aligner (version 2.5.0c, Dobin et al.,

2013). On average 86% of the reads could be uniquely mapped

to the reference genome. FeatureCounts (version 1.4.6-p5, Liao

et al., 2014) was used together with the ITAG4.0 annotation to

calculate gene expression values as raw read counts. Normalized

TMM and FPKM values were calculated. All the statistical

analyses were performed with R with the packages HTSFilter

(Rau et al., 2013) and edgeR (Robinson et al., 2010). The first

step was the removal of not expressed genes and the ones

showing too much variability. The HTSFilter package was

chosen for this scope, which implements a filtering procedure

for replicated transcriptome sequencing data based on a Jaccard

similarity index. The “Trimmed Means of M-values” (TMM)

normalization strategy was used. The filter was applied to the

different experimental conditions in order to identify and

remove genes that appear to generate an uninformative signal.

The overall quality of the experiment was evaluated, on the basis

of the similarity between replicates, by a Principal Component

Analysis (PCA) using the normalized gene expression values as

input. The differential expression analysis was performed to

identify the genes that are differentially expressed in all
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comparisons. Only genes with an FDR equal or lower than

0.05 were considered as Differentially Expressed Genes (DEGs).

In order to identify the number of different splicing events

the software rMATS (V 3.2.5, Shen et al., 2014) was used. Prior

to further analysis, the high quality reads were aligned against

the reference genome with STAR aligner (version 2.5.0c), with

Local Mapping and in double pass. rMATS was then used with

the following options: -t “paired” –libType “fr-firststrand” –

readLength 150 –variable-read-length –anchorLength 15 –

allow-clipping –novelSS –mil 3 –mel 13575. The –novelSS

option was used since the ITAG4.0 annotation does not report

splicing variants. An FDR filter of<=0.05 and an absolute

minimum Inclusion Difference of 0.25 was used to detect

significant differences in splicing. Furthermore, for further

analysis were considered events supported by at least 20 reads

as the sum of reads in all treatments in each of the pairwise

comparisons for each of the including form and the skipping

form. For the DEGs and significantly different splicing events, a

Gene Ontology Enrichment Analysis (GOEA) was performed to

identify the most enriched Gene Ontology (GO) categories

across the down- and up-regulated genes following the

method described in Tian et al. (2017). The Gene Ontology

annotation was updated using the software Pannzer2 (Toronen

et al., 2018) providing the FASTA file of the proteins as input

and selection the following options: Minimum query coverage

0.4 or minimum subject coverage 0.4 and minimum alignment

length 40. Transcriptomic and differential splicing analysis was

performed by Sequentia Biotech (http://www.sequentiabiotech.

com). Differential splicing results were validated through RT-

qPCR. Primers used are listed in Supplementary Datasheet S2.
Results

Physiological response to single and
combined stress

To identify tomato genotypes with contrasting responses to

combined stress, we cultivated 10 genotypes, including landraces

and varieties (Supplementary Datasheet S1) in single pots in four

different conditions: Control, Low Nitrate, Drought and

Combined Stress. Physiological measurements confirmed a

lower chlorophyll content in low nitrate and combined stress

treatments, and a low stomatal conductance in plants subjected

to drought or combined stress (Supplementary Figure S1). After

30 days of growth under stress, biometric parameters were

measured (Figure 1). Concerning plant height, genotypes

T162, T249, T250 displayed no difference between the

treatments (Figure 1A). The remaining six genotypes showed

significantly lower height in drought and combined stress

treatment compared to control; genotype T270 showed the

biggest difference in height between combined (49 cm) and
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control treatment (63 cm) (Figure 1A). Leaf area (LA) measured

in stressed plants was lower than that of the control treatment, in

all genotypes; however, single stresses resulted in a bigger

penalty in the leaf area than combined stress (Figure 1B).

Notably, T250 was the only genotype with virtually no

difference in LA in combined stress (909 cm2), compared to

control (1024 cm2), whereas T275 was the most affected, with a

LA in combined stress approximately half that of the control

(Figure 1B). Shoot fresh and dry weight of all genotypes were

reduced in the stress treatments (Figures 1C, D); T250 was least

affected by stress (-12.68% shoot fresh weight and +3% shoot dry

weight in combined stress) (Figures 1C, D). On the opposite end,

T276 and T270 showed the biggest reduction in weight in

combined stress compared to control treatment (Figure 1D).

Thus, combined stress had a different impact on growth

parameters depending on the genotype tested. As summarized

in the heatmap provided in Figure 2, extensive variations in

percentage differences of physiological and biometric parameters

measured in combined stress vs. control treatment were

observed, with T250 showing little or no reduction in several

biometric parameters, and was thus considered tolerant, whereas

T270, like other genotypes, was severely affected by combined

stress and was thus selected as sensitive genotype. These two

genotypes showed obvious differences in root systems, with

T250 having a smaller root and T270 a more developed root

system (Table 1). In addition, T250 had a lower root/shoot ratio,

stable in control and combined stress conditions, whereas T270,
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similarly to T276 and T263, was characterized by a higher root/

shoot ratio showing a significant increase in combined stress

(Table 2). Thus, T250 and T270 (Figure 3) were selected for

further molecular analyses.
Impact of combined stress on root and
leaf gene expression

To investigate gene expression changes elicited by combined

drought stress and low N in tomato, and responsible for the

phenotypic and physiological changes observed, a

transcriptomic analysis was performed on T250 and T270,

with the aim of identifying common or specific responses.

Given the importance of the root systems in the perception of

water/nutrient availability and their uptake, RNA was extracted

and sequenced from roots in addition to leaves, collected 30 days

after stress initiation. Out of 34,075 genes annotated in the

reference genome sequence (ITAG4.0), ~ 22, 000 unigenes on

average were expressed (FPKM > 1), of which ~ 52% were found

in leaves and ~ 57% in roots of both genotypes (Supplementary

Figure S2A). Venn diagrams were then constructed, highlighting

that over 90% of expressed genes in control conditions were

common to the two genotypes in both tissues, whereas ~ 5% on

average were specific (Supplementary Figure S2B). Despite the

high number of shared genes, gene expression levels were

different in the two genotypes, especially in leaves. Indeed, by
A B

DC

FIGURE 1

Biometric parameters measured at the end of the experiment in the four treatments in all genotypes. (A) Height; (B) Leaf area; (C) Shoot fresh weight;
(D) Shoot dry weight. Values indicate mean ± SE (n≥6). Different letters indicate significant difference within each genotype at p< 0.05 (Duncan test).
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performing the differential expression analysis in the pairwise

comparison T250 vs. T270, 1,086 differentially expressed genes

(DEGs) were found in leaves (588 up-regulated and 498 down-

regulated), whereas only eight genes (six up-regulated and two

down-regulated) were annotated as DEGs in roots, suggesting

that the root transcriptomes in the two genotypes were

comparable (Supplementary Datasheet S3). Gene Ontology

Enrichment Analysis (GOEA) revealed several GO terms

involved in stress response-related categories as significantly

enriched (FDR< 0.05) in the tolerant genotype, along with

categories related to plant development (Supplementary

Figure S2C).

Pairwise comparisons were also carried out in stressed

samples versus their respective control (Supplementary

Datasheet S4). As shown in Figure 4A, responses in terms of

the total number of DEGs elicited by combined stress in leaves

were different in the two genotypes. Indeed, 2,460 DEGs were
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identified in the leaves of the former genotype, whereas only 204

were found in the latter (Supplementary Datasheet S4). GOEA

and Venn diagrams highlighted how gene expression changes

elicited in leaves were genotype-specific, with less than 30 genes

being up- or down-regulated and common between T250 and

T270 (Figures 4B-D). Among enriched GO terms, different

categories related to photosynthesis were differentially

regulated in the two genotypes. In T250, GO terms such as

“photosynthesis”, light harvesting” and “response to light

stimulus”, “photosystem I”, “photosystem II”, “chlorophyll

binding” were enriched among up-regulated DEGs, including

several genes encoding Chlorophyll a-b binding proteins. By

contrast, in T270 leaves, several GOs related to catabolic

processes were enriched among up-regulated genes, including

autophagy and protein-ubiquitination related GOs as well as an

“mRNA destabilization” (Figure 4C). GO “chlorophyll

biosynthetic process” was enriched among down-regulated

genes together with several categories related to plastid

function and biology (Figure 4D).

Among the other genotype-specific changes in the sensitive

T270, 30 genes coding for histones (histone H1, histone H2A,

histone H2B, histone 3 and histone 4) were down-regulated, in

addition to ten genes encoding heat shock proteins and one

Pyrroline-5-carboxylate reductase; this latter known to be

involved in proline biosynthesis (Supplementary Datasheet S4).
FIGURE 2

Heatmap constructed through ClustVis (http://biit.cs.ut.ee/clustvis/) of percentage differences in physiological and biometric parameters
measured in plants of the 10 genotypes analysed (See Supplementary Datasheet S1) subjected to combined stress versus control condition. The
red-blue color gradient scaling is indicated, where red and blue colors indicate highest and lowest variations in values measured in stressed
plants compared to controls, respectively. Rows and columns are clustered through correlation distance and average linkage. RootDW, Root
Dry Weight; gs, Stomatal Conductance; ShootFW, Shoot Fresh Weight; ShootDW, Shoot Dry Weight; RWC, Leaf Relative Water Content; SPAD,
Leaf SPAD Values.
TABLE 1 Root biometric parameters in control treatment.

Genotype Root fresh weight (g) Root dry weight (g)

T250 17.32 ± 1.37 1.47 ± 0.13

T270 64.87 ± 2.59 4.87 ± 0.32
Values indicate mean ± SE (n≥6).
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Exclusively up-regulated genes in T270 leaf included 12 nitrate

transporters, five heat shock proteins, three heat shock factors,

three PYLs and two LEAs, whereas only 66 genes were exclusively

up-regulated in T250, including a Nitrate Transporter in addition

to the Chlorophyll a/b binding proteins described above

(Supplementary Datasheet S4).

As was true for leaves, responses in terms of the total number

of DEGs in roots was higher in the susceptible genotype T270

compared to the tolerant T250, since 3,912 and 692 DEGs were

identified, respectively (Supplementary Datasheet S4; Figure 5A).

GOEA analysis and Venn diagrams revealed interesting genotype-

specific and shared features (Figures 5B-D). Among genotype-

specific changes, GOs related to galactinol galactosyltransferase

activity were up-regulated in susceptible T270, along with

“response to nitrate” and “response to water”, whereas

“regulation of circadian rhythm” and “response to heat” were

induced in the tolerant T250 (Figure 5C). Concerning GOs

enriched among down-regulated genes, “water transport” and
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“nitrate transport” were identified in T250, whereas “nitrate

assimilation” was peculiar to T270 (Figure 5D), pointing to

different responses of the root systems in the two genotypes.

The sensitive genotype showed 1,986 exclusively induced DEGs

(Figure 5B), including osmotic stress responsive genes such as

HSPs, LEAs, ERDs, AREB Transcription factors, and a Delta-1-

pyrroline-5-carboxylate synthase (P5CS) that catalyzes the first two

steps in proline biosynthesis. Different candidates belonging to the

same gene families were also identified in T250 roots but in lower

number (Supplementary Datasheet S4). In addition, as shown in

Figure 5B, root tissues shared 163 and 185 commonly down and

up-regulated genes, respectively. Among the former dataset, a

gene coding for a putative Wuschel protein was in common

between T250 and T270, together with three nitrate transporters

and ABA receptor PYL4. By contrast, among the second dataset,

six HSPs, six HSFs, three NRTs, two LEAs, one dehydrin, and

ABA receptor PYL10 were found (Supplementary Datasheet S4).
Alternative splicing regulation

We investigated the common and genotype-specific

alternative splicing (AS) regulation in response to combined

stress in T250 and T270 leaf and root tissue. Multivariate

Analysis of Transcript Splicing software (rMATS) was used to

investigate AS events, including intron retention (IR), alternative

3’ or 5’ splice site (A3SS; A5SS), exon skipping (ES) and mutually

exclusive exon (MXE) (Supplementary Datasheet S5). Pairwise

comparisons identified differential alternative splicing (DAS)

events, and the concerned genes, in both control and stress

conditions (Figure 6, Supplementary Datasheets S6-S11). The

DAS events identified through RNA-seq were validated by RT-

qPCR, and the presence of non-canonical splice variants was

verified in additional genotypes (Supplementary Figure S3).
TABLE 2 Root/shoot ratio in control and combined stress treatments.

Genotype Control Combined stress

T162 0.29 ± 0.04 (b) 0.48 ± 0.08 (a)

T247 0.30 ± 0.03 (b) 0.58 ± 0.07 (a)

T249 0.16 ± 0.02 (b) 0.30 ± 0.04 (a)

T250 0.17 ± 0.01 (n.s.) 0.20 ± 0.02 (n.s.)

T263 0.34 ± 0.03 (n.s.) 0.38 ± 0.05 (n.s.)

T265 0.24 ± 0.02 (n.s.) 0.38 ± 0.07 (n.s.)

T270 0.30 ± 0.03 (b) 0.57 ± 0.02 (a)

T275 0.20 ± 0.02 (b) 0.46 ± 0.07 (a)

T276 0.30 ± 0.03 (b) 0.71 ± 0.08 (a)

T279 0.20 ± 0.03 (b) 0.47 ± 0.06 (a)
Values indicate mean ± SE (n≥6); different letters indicate significant difference within
each genotype at p< 0.05 (Duncan test). N.s., non significant.
FIGURE 3

Representative plants of genotypes T250 (left) and T270 (right) grown for 24 days in Control (Ct), Low Nutrient (LN), Drought (Dr) or Combined
stress (Cm) condition.
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FIGURE 4

Differentially expressed genes (DEGs) and enriched Gene Ontology terms in leaves of T250 and T270 subjected to combined stress. (A) MA plots
depicting the distribution of DEGs (green dots, down-regulated, red dots, up-regulated) in T270 (left) and T250 (right) leaves. X-axis: log2 mean
expression across treatments; Y-axis: log2 expression fold change in combined stress vs. control treatments. (B) Venn diagrams depicting
number and overlap of up-regulated (upper panel) and down-regulated (lower panel) DEGs in leaves of combined stress-treated T250 and
T270. The diagrams were drawn using the online tool Venny (Oliveros, 2007-2015); (C, D) Plots showing enriched GO terms in leaf DEGs up (C)
or down-regulated (D) in T270 (left) or T250 (right). Symbols indicate GO categories: MF, Molecular Function; CC, cellular compartment, BP,
biological process. Symbol sizes are proportional to the gene count, whereas colors represent FDR values< 0.05. X-axis: enrichment score.
Categories with ES> 5 and gene count > 4 are shown.
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FIGURE 5

Differentially expressed genes (DEGs) and enriched Gene Ontology terms in roots of T250 and T270 subjected to combined stress. (A) MA plots
depicting the distribution of DEGs (green dots, down-regulated, red dots, up-regulated) in T270 (left) and T250 (right) roots. X-axis: log2 mean
expression across treatments; Y-axis: log2 expression fold change in combined stress vs. control treatments. (B) Venn diagrams depicting
number and overlap of up-regulated (upper panel) and down-regulated (lower panel) DEGs in roots of combined stress-treated T250 and T270.
The diagrams were drawn using the online tool Venny (Oliveros, 2007-2015); (C, D) Plots showing enriched GO terms in root DEGs up (C) or
down-regulated (D) in T270 (left) or T250 (right). Symbols indicate GO categories: MF, Molecular Function; CC, cellular compartment, BP,
biological process. Symbol sizes are proportional to the gene count, whereas colors represent FDR values< 0.05. X-axis: enrichment score.
Categories with ES> 5 and gene count > 4 are shown.
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In all pairwise comparisons, IR was the most abundant

category, consistent with previous studies in plants (Filichkin

et al., 2010; Chaudhary et al., 2019a), whereas MXE was the least

represented (Figures 6A B; Supplementary Figure S4A).

When genotypes were analyzed under control conditions,

934 and 1,210 events were identified in root and leaves,

respectively, and annotated as DAS in the tolerant genotype

compared to the susceptible one (Supplementary Datasheets S6-

S7). GOEA analysis on this subset revealed GO terms involved in

the regulation of gene expression, RNA binding, nucleoplasm

and peroxisome as significantly enriched in both leaves and

roots of the tolerant genotype T250 compared to the susceptible

T270 (Supplementary Figures S4B, C).

In stress conditions, we observed a substantial number of

genes subjected to DAS under stress in both genotypes.

Consistent with DEGs, a higher number of DAS events were

detected in roots (Figure 6C). In particular, we detected 2,152

and 1,839 DAS events in T270 and T250 roots, respectively,
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compared to 1,547 and 1,440 in leaves. Less than 30% of genes

concerned by DAS were shared by the two genotypes in both

tissues (Figure 6D). In detail, the percentage of events common

to the two genotypes was lower than 8% for A3SS and A5SS, and

lower than 10% in the case of SE, IR and MXE. For all categories,

the common events were lower in leaves compared to roots

(Table 3). The fraction of genotype-specific A3SS events was

highest in T270 leaves (84%) compared to T250 leaves (14%),

whereas similar percentages were found in roots (50% in T270

and 44% in T250) (Table 3).

To better understand the correlation between gene

expression and RNA processing regulation, we compared DAS

genes to DEGs. Little overlap was detected between DAS and DE

genes in both genotypes. In T250 in particular, only 3 and 34

differentially regulated genes in leaf and root respectively, were

also regulated by DAS (Table 4; Supplementary Datasheet S12).

GOEA analysis was performed to investigate the biological

functions and the cellular component of genes that undergo DAS
A B

DC

FIGURE 6

Alternative splicing (AS) regulation in root and leaf of T250 and T270 under combined stress condition. (A, B) Bar graph of the number of
differential up- (A) and down-regulated (B) AS events. (C) Number of genes concerned by DAS (left) and DAS events (right). (D) Venn diagram
depicting the number of genotype-specific and common (DAS) genes.
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in response to combined drought and low nitrogen stress

(Supplementary Figures S4-S5). In leaves, categories such as

“response to abiotic stimulus” and “photosynthesis” were

enriched among DAS genes in T270, whereas “cellular

homeostasis” and “cell growth” terms were enriched in T250

(Supplementary Figure S5). In roots, categories such as

“peroxisome”, and “response to extracellular stimulus” were

specific to the tolerant T250, whereas “endomembrane system”

and “tropism” were found only in T270.

Interestingly, we identified many genes involved in TOR

pathway, major regulatory pathway controlling plant growth. For

example, a transcript retaining intron of putative tomato TOR

orthologous gene (Solyc01g106770.4) was down-regulated in T250
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roots. Additional orthologous genes involved in TOR pathway such

as LST8 and RAPTOR2 were also differentially spliced in T250.

Among other genes that underwent DAS under combined

stress, we detected alteration in key players involved in

phytohormone metabolism, transport and signaling, abscisic

acid, ethylene and auxin-related pathways. For example,

numerous protein phosphatases belonging to the PP2C family,

such as SlPP2C30 (Solyc03g121880), a member of group A of

PP2C (Qiu et al., 2022), underwent alternative splicing

regulation in T250 or T270 roots. This is noteworthy since

clade A PP2Cs are negative regulators of ABA responses and are

involved in several physiological and biochemical processes

during biotic and abiotic stress responses (Lee and Luan, 2012).
TABLE 3 Number of shared and genotype-specific transcripts subjected to each of the five splicing types of event in T250 and T270 leaf and root.

Splicing event T250 total T270 total T250 specific T270 specific Common

A3SS leaf 57 307 49 299 8

14% 84% 2%

A3SS root 315 352 272 309 43

44% 50% 7%

A5SS leaf 195 161 177 143 18

52% 42% 5%

A5SS root 230 234 194 198 36

45% 46% 8%

MXE leaf 44 25 38 19 6

60% 30% 10%

MXE root 50 50 41 41 9

45% 45% 10%

IR leaf 688 630 570 512 118

48% 43% 10%

IR root 741 814 599 672 142

42% 48% 10%

ES leaf 151 131 128 108 23

49% 42% 9%

ES root 138 174 109 145 29

39% 51% 10%
fro
A3SS, alternative 3’ splice site; A5SS, alternative 5’ splice site; MXE, mutually exclusive exon; IR, intron retention; ES, exon skipping.
TABLE 4 Number and fraction of DEGs and DAS genes in T250 and T270 leaf and root in combined stress condition.

Genotype Tissue Number of DEGs Number of DAS DEGs Specific DAS Specific Common

T250 leaf 204 885 201 882 3

(18.5%) (81.2%) (0.3%)

root 692 1089 658 1055 34

(37.7%) (60.4%) (1.9%)

T270 leaf 2460 955 2348 843 112

(71.1%) (25.5%) (3.4%)

root 3912 1205 3721 1014 191

(75.5%) (20.6%) (3.9%)
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Several splice variants of stress and hormone-related

transcription factors were also detected, including MYBs,

bHLHs, bZIPs, WRKYs, Heat Shock Transcription factors and

Auxin Response Factors, indicating that AS regulates their

activity in response to combined stress.

Similarly, numerous intron-retaining variants of splicing

factors, such as Serine/Arginine-rich-splicing factor SR46a

(Solyc06g076670), RS40 (RS41, Solyc11g072340), SCL30A

(SCL29, Solyc11g072340) were differentially spliced.
Discussion

Drought stress and low nitrate availability limit tomato plant

growth, as shown here and in previous reports (e.g. Iovieno et al.,

2016; Abenavoli et al., 2016). Because reduction of inputs in

agriculture and improvement of plant stress tolerance are

becoming increasingly urgent issues, we have focused on the

combined drought/low N stress condition, analyzing tomato

responses in terms of morpho-physiological and transcriptomic

changes in different genotypes. The combined stress condition

applied had a different impact depending on the biometric or

physiological parameter and the genotype examined, indicating

that strategies to withstand simultaneous stresses may vary

among genotypes (Figures 1-3, Tables 1-2). Combined stress

had little impact on leaf area and shoot weight of T250, whereas

growth of T270 was severely hindered. Root systems of the two

genotypes were dramatically different, with T250 having a small

root apparatus in terms of dry weight, and a lower root/shoot

ratio compared to T270 or other genotypes analyzed here

(Table 2). An increase in root/shoot ratio is a common

response to limited nitrate and water availability, and is a trait

often observed in tolerant genotypes (Koevoets et al., 2016;

Moles et al., 2018). T270 increased the root/shoot ratio in

response to combined stress, whereas this parameter remained

low and stable across the treatments in the tolerant T250, thus

suggesting that T250 may possess a root system that maybe pre-

adapted to stressful environments that does not require adaptive

modifications. In addition, T250 shows the lowest biomass

accumulation also in control conditions, which may aid in

maintenance of tissue water and N status under stressful

conditions (Araus et al., 2020).

The analysis of transcriptomic changes of T250 and T270

leaf and root in control and under combined drought stress and

nitrogen deficiency conditions gave a comprehensive view of

differential expression and alternative splicing of transcripts

(Figures 4-6, Supplementary Datasheets S3-S12). In both

genotypes, combined stress caused most transcriptomic

changes in roots (Figures 4-5), consistent with a previous work

carried out in spinach (Joshi et al., 2020).

Cytokinins (CKs) contribute to modulation of lateral root

proliferation and mediate one of the major long-distance root to

shoot nitrogen signaling pathways (Ruffel et al., 2011; Zhang et al.,
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2020), starting from adenosine phosphate-isopentenyl-transferase

(IPT), which catalyzes the initial and rate limiting step of CKs

biosynthesis. In our RNAseq results (Supplementary Datasheet S4),

a gene coding for IPT (Solyc04g007240.1) was present and up-

regulated only in T270 root, while another Solyc09g064910.1 was

repressed in T270 leaf, possibly indicating enhanced CK synthesis in

T270 root. In addition, in T270, eight genes implicated in the CKs

activation pathway were differentially expressed, indicating a CK-

dependent modulation of transcription, which could possibly

contribute together with other pathways to the increase in root/

shoot ratio observed in T270. CKs are implicated in the

maintenance of the stem cell homeostasis in the shoot apical

meristem, by inducing WUSCHEL (WUS) (Chickarmane et al.,

2012), and repressing CLAVATA3 (CLV3) expression (Nimchuk

et al., 2015). WUS acts as a positive regulator for the expression of

CLV3, which in turn negatively regulates the meristem size by

suppressing WUS expression (Ikeda and Ohme-Takagi, 2014).

CLV3 (Solyc11g066120.3) and WUS (Solyc11g072770.2) were

both down-regulated in T270 root, consistent with the markedly

reduced growth of T270 in combined stress condition compared

to T250.

ABA-dependent pathways of stress response are implicated

in both drought and nitrogen deficiency (Machado et al., 2022).

Interestingly, 10 genes encoding PYR/PYL ABA receptors were

differentially expressed in T270 root, most of them down-

regulated, compared to only 2 in T250, suggesting that

repression of expression of PYLs may contribute to stress

signal desensitization (Ali et al., 2021) in T270.

Drought stress and nitrogen deficiency also impair

photosynthesis (Iovieno et al., 2016; Mu and Chen, 2021);

under drought in particular, several GO categories related to

photosynthesis were enriched in clusters showing down-

regulation in drought stressed samples, including those

containing light-harvesting chlorophyll a/b-binding protein

coding genes (LHCBs, Iovieno et al., 2016). In T250 exposed

to combined stress, “Photosynthesis, light harvesting” and

“Response to light stimulus” GOs, as well as 12 LHCBs were

up-regulated in leaf, indicating an active photosynthetic

machinery. It is reported that the Arabidopsis LHCBs are

positively involved in guard cell signaling in response to ABA,

and they may affect ABA signaling partly by modulating ROS

homeostasis (Xu et al., 2012). In addition, over-expression of

several LHCBs was shown to improve stress tolerance (Zhao

et al., 2020). The observed up-regulation of LHCBs in T250

leaves may thus contribute to explain the tolerance traits

displayed by this genotype.

In T270 leaves autophagy and protein-ubiquitination related

terms and mRNA destabilization terms were enriched among

up-regulated genes, which may indicate a degradation of

cytoplasmic, protein and RNA material to aid survival under

stress (Su et al., 2020).

Down-regulation of histone coding genes was previously

observed in tomato plants exposed to drought stress and was
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correlated to a reduction of cell division and growth (Iovieno

et al., 2016). In our RNAseq results, down-regulation of 36

histone loci was observed in susceptible T270, indicating that

this may contribute to the observed growth arrest under stress.

Alternative splicing (AS) is among the main co- and post-

transcriptional mechanisms involved in plant adaptation to

suboptimal environmental conditions (Laloum et al., 2018;

Punzo et al., 2020). Here, we have identified a high number of

combined stress-related splice events in root and leaf of

genotypes T250 and T270. Interestingly, compared to the low

number of DEGs, the alternative splicing profile of T250

changed strikingly under combined stress (Table 4), suggesting

that AS might represent the prevalent mechanism of

transcription regulation in this genotype.

In tomato, the key regulator of heat stress response HsfA2

(Fragkostefanakis et al., 2016) is also induced in response to

water deprivation, with higher up-regulation in root compared

to leaf (Mishra et al., 2021). Consistent with this report, we

observed severe up-regulation of HsfA2 in roots of both

genotypes. In addition, HsfA2 was recently shown to be

alternatively spliced in response to heat stress, with isoform

abundance being temperature-dependent (Hu et al., 2020; Broft

et al., 2022). The two main variants, HsfA2-II and HsfA2-Ia,
characterized by splicing or retention of intron 2 respectively,

were detected with different abundance in wild or modern

tomato accessions. HsfA2-I was mainly observed in wild

tomatoes and proposed to increase their capacity to rapidly

acclimate against severe heat stress compared with modern

cultivars (Hu et al., 2020). Interestingly, we observed down-

regulation of HsfA2-Ia in T250 roots, suggesting rapid

acclimation to stress of this genotype.

It has been shown that tomato HSFs regulate the expression

of several Serine/arginine-rich (SR) proteins, which are

important regulators of alternative splicing (Rosenkranz et al.,

2021). SR genes are subject to alternative splicing themselves. In

Arabidopsis, abiotic stresses, such as high temperature and

salinity as well as hormones, severely affect splicing of SR

transcripts (Palusa et al., 2007; Duque, 2011). In tomato, 17

SR protein-coding genes were identified. Most of them showed a

reduction in protein levels under heat stress (Rosenkranz et al.,

2021). We observed DAS of numerous members of SR family

under combined stress, including Solyc06g076670 (Sl-SR46a),

orthologue of Arabidopsis SR45a.

SR45a acts in Arabidopsis at the early stage of spliceosome

assembly through the interaction with U1-70 K and U2AF35b

(Tanabe et al., 2009; Day et al., 2012), and is involved in different

environmental stress response, such as high-light irradiation and

salinity (Tanabe et al., 2007; Li et al., 2021). Two splice variants

of SR45a are induced by salt stress, SR45a-1a encoding full-

length functional protein and SR45a-1b encoding a truncated

isoform lacking the C-terminal RS domain. SR45a-1a interacts

with the cap-binding protein 20 (CBP20) which regulates the

expression and splicing of salt-related genes. Interestingly, the
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truncated isoform SR45a-1b promotes the interaction between

SR45a-1a and CBP20, increasing the plant salt-stress tolerance

(Li et al., 2021).

The tomato Sl-SR46a is highly expressed in response to heat

stress due to the presence of HS elements (HSEs) in the

promoter, that are bound by HSFs (Rosenkranz et al., 2021).

Interestingly, we detected down-regulation of the ES event of

SR46a in T250 leaf compared to T270 in control condition. This

predicted exon is located in the intron 5 region and contains a

predicted premature terminator codon when included in the

transcript. Thus, we speculate that the identified DAS event in

Sl-SR46a may influence the T250 stress tolerance through a

regulatory mechanism similar to Arabidopsis.

Auxin is mainly involved in the regulation of plant growth

and development, however their roles in abiotic stress response

were reported in different species (Jain and Khurana, 2009; Ha

et al., 2013; Sekhwal et al., 2015). In tomato, several Auxin

Response Factors (ARF) are differentially expressed under

drought, salt or flooding condition both in leaves and roots

(Bouzroud et al., 2018). We mainly observed differential

regulation of several ARFs in T270 root. Interestingly, these

factors are also regulated by AS. Studies on tomato fruit set

revealed that over 30% of ARF genes undergo AS, and all the

analyzed splice variants generated frame shift that creates a

premature stop codon (Zouine et al., 2014). We detected several

ARF splicing variants mainly in T250, such as ARF4, ARF8A,

ARF9B, indicating that AS regulates these factors also in

response to combined stress. In Arabidopsis, several ARF

splice variants were characterized. The two isoforms of the

ARF4, ARF4 and DARF4, lacking sequence of exon, showed

different function during carpel development (Finet et al., 2013).

A splicing variant of ARF8.2, ARF8.4, characterized of retention

of intron 8, regulates stamen elongation and endothecium

lignification by directly activation of AUX/IAA19 and MYB26,

more efficiently than ARF8.2. In T250, the intron retention of

ARF4 and ARF8 is differentially regulated in response to drought

and nitrogen starvation.

Auxin also represents a key signal for upstream regulation of

the Target of Rapamycin (TOR) kinase pathway (Deng et al.,

2016; Schepetilnikov et al., 2017; Pacheco et al., 2021). TOR

coordinates the cell growth with nutrient or energy availability

and hormonal signaling pathways (Punzo et al., 2018; Burkart

and Brandizzi, 2021). In mammals, mTOR undergoes alternative

splicing (Panasyuk et al., 2009). We detected IR events in TOR in

T250 root, suggesting that this regulation may be present also in

plants. Interestingly, in maize root the increased auxin transport

and accumulation under low nitrogen condition induce root

growth through TOR activation (Sun et al., 2020). Recent report

showed that TOR controls alternative splicing in root (Riegler

et al., 2021). We detected splicing variants of tomato homologs

of TOR-associated protein LST8-2 in T250 root.

Altogether, this study has sought to identify tomato

genotypes with contrasting morphophysiological behaviors
frontiersin.org

https://doi.org/10.3389/fpls.2022.974048
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ruggiero et al. 10.3389/fpls.2022.974048
under combined water and nutrient deficit and establish their

expression and splicing responses to the stress applied. A

number of differentially expressed genes and splice variants

were identified which may contribute to describe the observed

phenotypes. Further studies pursuing a detailed characterization

of selected genes and alternative splicing events identified here

will assess their roles and possible applications in low

input agriculture.
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