
Frontiers in Plant Science 01 frontiersin.org

Three-dimensional 
reconstruction and phenotype 
measurement of maize seedlings 
based on multi-view image 
sequences

Yuchao Li 1,2, Jingyan Liu 1,2, Bo Zhang 2, Yonggang Wang 3, 
Jingfa Yao 2, Xuejing Zhang 2, Baojiang Fan 2, Xudong Li 2, 
Yan Hai 2 and Xiaofei Fan 1,2*

1 State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China, 2 College 
of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China, 3 Hebei 
Runtian Water-Saving Equipment Co., Ltd., Shijiazhuang, China

As an important method for crop phenotype quantification, three-

dimensional (3D) reconstruction is of critical importance for exploring 

the phenotypic characteristics of crops. In this study, maize seedlings 

were subjected to 3D reconstruction based on the imaging technology, 

and their phenotypic characters were analyzed. In the first stage, a multi-

view image sequence was acquired via an RGB camera and video frame 

extraction method, followed by 3D reconstruction of maize based on 

structure from motion algorithm. Next, the original point cloud data of 

maize were preprocessed through Euclidean clustering algorithm, color 

filtering algorithm and point cloud voxel filtering algorithm to obtain a point 

cloud model of maize. In the second stage, the phenotypic parameters 

in the development process of maize seedlings were analyzed, and the 

maize plant height, leaf length, relative leaf area and leaf width measured 

through point cloud were compared with the corresponding manually 

measured values, and the two were highly correlated, with the coefficient 

of determination (R2) of 0.991, 0.989, 0.926 and 0.963, respectively. In 

addition, the errors generated between the two were also analyzed, and 

results reflected that the proposed method was capable of rapid, accurate 

and nondestructive extraction. In the third stage, maize stem leaves were 

segmented and identified through the region growing segmentation 

algorithm, and the expected segmentation effect was achieved. In general, 

the proposed method could accurately construct the 3D morphology of 

maize plants, segment maize leaves, and nondestructively and accurately 

extract the phenotypic parameters of maize plants, thus providing a data 

support for the research on maize phenotypes.
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Introduction

Maize, as an important food crop and one of the three major 
cereal crops in the world, has a high economic value (Nuss and 
Tanumihardjo, 2010). Maize plant height and leaf area reflect, to 
some extent, the plant’s growth rate and robustness, and the leaves 
have a significant impact on maize yield and disease resistance 
(Liu et  al., 2021b). Therefore, accurate acquisition of maize 
phenotypic traits is of great significance for understanding the 
growth status of the crop, crop yield estimation, disease resistance 
detection and breeding (Fourcaud et  al., 2008). Currently, 
phenotypic information collection of maize seedlings is an 
important task in the maize breeding research. Traditional 
research methods mainly rely on manual measurement, with the 
problems of high workload and low efficiency. In addition, 
manually collected crop phenotypes have the disadvantage of 
insufficient information, which greatly affects the breeding process 
and hinders the long-term development of breeding trials. 
Therefore, it is urgent to develop advanced phenotypic data 
acquisition techniques in modern breeding and cultivation trials 
(Yang et  al., 2020). It is noteworthy that the high-throughput 
phenotyping techniques offer the possibility of rapid and 
nondestructive detection of crop phenotypes (Qinghua, 2018; 
Zhao et  al., 2019). Among them, three-dimensional (3D) 
reconstruction techniques is more widely used in agriculture as a 
highly representative high-throughput phenotyping technique 
(Perez-Sanz et al., 2017).

At present, the application of 3D reconstruction technology 
in agriculture develops rapidly, with diverse methods of data 
acquisition (Zheng et al., 2020). For example, Moreno et al. (2020) 
used LiDAR system equipment for 3D reconstruction of 
vineyards, estimated the amount of vine pruning, and achieved 
considerable results. Zhou et al. (2020) analyzed the variation of 
vertical structure of maize plants at different inversion levels and 
evaluated the variation of maize plant height at different inversion 
levels by using an unmanned aircraft with LiDAR on board for 3D 
reconstruction of maize. Yang et al. (2019) proposed a 3D point 
cloud reconstruction method based on Kinect self-labeling with 
comprehensive display of fruit tree morphological information 
and high accuracy of parameter extraction, which could accurately 
extract 3D information of fruit tree canopy. Wang et al. (2020) 
used Kinect device for 3D reconstruction of leaf lettuce, which has 
high alignment accuracy and stability. Although the above 
methods can be  used to analyze crop phenotypes, LiDAR is 
expensive equipment and susceptibility to weather, and Kinect 
device has the disadvantage of obtaining point clouds with low 
resolution, and the accuracy of the generated point clouds is 
susceptible to light.

The structure from motion (SfM) method is a 3D 
reconstruction technique based on the basic principles of multi-
view geometry (Iglhaut et  al., 2019). Generally speaking, SfM 
performs 3D reconstruction from the acquired multi-view images, 
which has the advantages of being simple to use and subject to few 
environmental constraints (Liu et al., 2021c). In terms of the plant 

phenotypic measurements, the 3D reconstruction of plants based 
on the SfM algorithm has some advantages of higher 
reconstruction accuracy as well as the ability to achieve dynamic 
and lossless reconstruction of the research object (Xiao et  al., 
2020) used the SfM method to reconstruct a 3D model of three 
growth stages of sugar beet in the field and extracted phenotypic 
traits such as height, leaf area, and leaf length. The coefficient of 
determination R2 > 0.8 between the measured and estimated 
values showed that they had a high correlation. After acquiring 
image sequences from three different angles, (Andújar et al., 2018) 
used the SfM method for 3D modeling of weed plants, and found 
that the actual values of plant height and leaf area could 
be  estimated accurately. Zhang et  al. (2022b) conducted a 3D 
reconstruction of planted forests based on the SfM method after 
image acquisition by UAV. The results showed that the method not 
only described the understory structure of the plantation forest 
and its centimeter-level vegetation efficiently and economically, 
but also constructed a large-scale point cloud model. Sun et al. 
(2019) reconstructed the 3D structure of cotton boll using the SfM 
method and got the number and location of the boll by point 
cloud clustering and segmentation. Additionally, Zermas et al. 
(2020) adopted the SfM method to reconstruct the point cloud of 
maize plants and obtained phenotypic parameters through 
extraction of their skeleton.

This paper used two methods, RGB camera photography and 
video frame extraction, to obtain multi-view images and then 
reconstructed maize seedlings in 3D based on SfM algorithm. The 
accuracy and speed are balanced in performing maize phenotype 
analysis and segmentation. In addition, a point cloud 
pre-processing algorithm based on Euclidean clustering algorithm, 
color filtering algorithm, and voxel filtering algorithm was 
designed, which had a good effect in obtaining maize point cloud 
models. Moreover, phenotypic parameters such as maize plant 
height, stalk height, leaf length, leaf width and relative leaf area 
were extracted. The dynamic changes of morphological 
characteristics at the seedling stage of maize were analyzed, and 
the accuracy of the reconstruction was evaluated based on the 
measured data and errors analysis. Finally, the stalk segmentation 
of maize seedlings was identified by using a region growth 
segmentation algorithm, which achieved the expected 
segmentation results. In summary, this study provides a 
convenient, rapid and quantitative analytical method for 3D 
phenotypic measurements of maize seedlings.

Materials and methods

Experimental material

The selected experimental material was the maize seed of 
Zhengdan 958 variety, which was purchased from Baoding 
agricultural market. Firstly, maize seeds were heated in a water 
bath at 39°C and soaked for 7 h. Then, they were planted in pots 
and numbered into seed germination incubator. Furthermore, the 
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corn was observed to grow over 1 week. The temperature in the 
germination incubator was set to 28°C and the humidity was set 
to 70%. Phenotypic parameters, such as plant height, stem height, 
leaf length, leaf width, and relative leaf area of maize seedlings, 
were recorded by manual measurements. Specifically, for maize 
seedling height, a tape measure was adopted to measure the 
distance from the above-ground part of the plant to the top of the 
plant canopy. For leaf length and leaf width of maize, vernier 
calipers with an accuracy of 0.01 mm were used for measurement. 
The relative leaf area is approximated by the product of the 
measured leaf length and leaf width.

Image acquisition

We adopted two methods to acquire images in this study. The 
main purpose is to balance the speed and accuracy of the corn 3D 
reconstruction. When analyzing the phenotypic parameters of 
maize, there is a higher requirement for the clarity of the point 
cloud model, and higher resolution images are needed. When 
identifying the structure of maize, it is only required to reconstruct 
the point cloud model quickly, and the reconstruction accuracy of 
the point cloud is not required at this time. In terms of the first 
method, the RGB camera was used to take pictures to obtain 
multi-view images. It required a collection of 50–60 images when 
the modeling was much sharper. The accuracy is also higher when 
analyzing phenotypic parameters of maize seedlings, but the 
process of data acquisition is time-consuming. The RGB camera 
(Model NO. FSFE-3200D-10GE, JAI) was a 2-CMOS multi-
spectral prism camera. It employed two prism-mounted 3.2 
megapixel CMOS imagers which were aligned with a common 
optical path for image alignment regardless of motion or viewing 
angle. The plant was placed on the center of the carrier table, and 
then the rotary arm with the camera rotates around it while taking 
photos at 6° intervals and transferring the acquired images to the 
computer for processing after rotating 360°.

In terms of the second method, plant videos were acquired 
with cellphone camera, and key frames were extracted from the 
video (Ma et  al., 2015), with which the plant 3D model was 
reconstructed. The resolution of the images was 1080 × 1920, and 
the video frame rate was 30 fps. Modeling by video frame 
extraction is mainly for maize stalk segmentation recognition, 
which was only used to model the entire plant and has lower 
requirements for accuracy.

Figure 1A is a schematic diagram of the 3D imaging device, 
which consists of (a) rotating platform, (b) aluminum profile (the 
bracket constituting the device), (c) camera fixation support, (d) 
camera, (e) loading platform (for the placement of to-be-measured 
experimental materials), (f) controller (to control the rotational 
speed of the motor) and (g) computer (to process image data and 
for 3D reconstruction). Figure 1B is a real picture for the image 
acquisition part of the 3D imaging device. Therein, the rotating 
platform drives the rotation of the camera fixation support 
and camera.

Methods

3D reconstruction based on SfM
3D reconstruction techniques based on images are mainly the 

techniques for recovering 2D images into 3D models (Aharchi and 
Ait Kbir, 2019). SfM is one of the 3D reconstruction methods, and 
its principle is to apply the matching algorithm to the acquired 
multi-view image sequence so as to obtain the correspondence of 
the same pixel points of the image, and use the matching 
constraint relationship combined with the triangulation principle 
to obtain the 3D coordinates of the spatial points, and then 
reconstruct the 3D model of the object (Chen et al., 2020). The 
reconstruction process mainly consists of the key steps such as 
feature point extraction and matching, sparse point cloud 
reconstruction, and dense point cloud reconstruction.

In this paper, the software used for 3D reconstruction based 
on SfM is mainly Visual SfM (version 5.26), Agisoft Metashape 
(version 1.6, Agisoft LLC, St. Petersburg, Russia), and 
CloudCompare (Martinez-Guanter et al., 2019). For multi-view 
images acquired by RGB camera shooting, Agisoft metashape was 
used for sparse reconstruction and dense reconstruction of point 
clouds. For the multi-view images acquired by video frame 
extraction, VisualSfM was adopted to acquire the sparse point 
cloud, which was then reconstructed into a dense point cloud. The 
RGB camera used in this study, an industrial-grade camera, could 
acquire high-quality pictures with a big file data size, while Agisoft 
Metashape could process the high-quality image sequence with 
higher accuracy and a better effect when applied to the 3D 
reconstruction. The video frame extraction method, which was 
based on videos shot by smartphones, the resolution and image 
quality of the obtained image are much lower than the former, and 
the generated data is small. VisualSfM harvested a higher speed 
and smaller time consumption when used for 3D reconstruction 
since it supported the acceleration of GPU and CPU.

Point cloud preprocessing
During the acquisition of point cloud data, due to the 

influence of equipment accuracy and environmental factors, some 
noisy points may inevitably appear in the point cloud data. In 
addition, there are often some discrete points in the point cloud 
data that are far away from the subject point cloud owing to the 
impact of external interference factors such as line of sight 
occlusion and obstacles. Thus, a point cloud filtering method is 
needed to filter out and remove the irrelevant information, which 
in turn improves the speed of the point cloud processing at the 
time of operation (Han et al., 2017). In this paper, the Euclidean 
clustering algorithm was used for the removal of background (Sun 
et al., 2020). The color threshold-based segmentation method was 
utilized to remove the noise points from the plant edges (Zhang 
et al., 2011). The point cloud voxel filtering algorithm was then 
used to downsample the point cloud to reduce the number of 
point clouds (Miknis et al., 2016).

The point cloud preprocessing algorithm used in this study is 
as shown in the Figure  2, in which (a) displays the acquired 
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multi-view image sequence, (b) exhibits the original point cloud 
data of maize acquired based on SfM algorithm, (c) is a noisy point-
containing point cloud model of maize acquired through 
background segmentation and removal using the Euclidean 
clustering algorithm, (d) shows the noisy point-free point clouds of 
maize acquired based on the point cloud color filtering algorithm, 
and (e) is the final point cloud model of maize acquired after down-
sampling through the point cloud voxel filtering algorithm.

Euclidean clustering for image background 
removal

Euclidean clustering, as a clustering algorithm based on the 
Euclidean distance metric, essentially judges the distance between 
near-neighboring points by distinguishing the proximity of their 
neighborhoods. The KD-Tree based nearest neighbor query 

algorithm is one of the important preprocessing methods to 
accelerate the Euclidean clustering algorithm.

A point in the space was randomly selected as the initial point, 
and the Euclidean distance between each sample point and the 
initial point was calculated by the KD-Tree nearest neighbor 
search algorithm. If it is less than the Euclidean distance threshold, 
the point clouds are clustered into the most similar classes. 
Besides, the process is repeated until the number of point clouds 
no longer increases, and the whole clustering process is finished.

Point cloud filtering based on color threshold
In terms of the fundamental idea of color-based threshold 

segmentation in 2D images, it is to determine a threshold value, 
compare the grayscale value of each pixel with the threshold value, 
and classify the pixels according to the comparison result. The 

A B

FIGURE 1

Image acquisition equipment. (A) Schematic diagram of the 3D imaging system. It is composed of (a) rotating platform, (b) aluminum profile, (c) 
camera fixing bracket, (d) camera, (e) load table, (f) controller, and (g) computer. (B) A picture of the 3D imaging equipment.

A B C D E

FIGURE 2

Point cloud algorithm process flow chart.
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point cloud filtering based on color threshold is similar to this, 
and the RGB color threshold was determined after the RGB 
information of the point cloud was obtained.

Since there was observable difference between the RGB value 
of the point cloud noise and the RGB value of the leaf, the 
threshold was determined based on the difference. From the point 
cloud color information, the white noise at the edge of the corn 
seedling leaves was removed.

First, point cloud files were input to traverse all points in point 
clouds and acquire the RGB value of each point cloud. The values 
of each point cloud in three channels—R, G and B—were denoted 
as r, g and b, respectively, the sum of which was defined as Srgb. The 
absolute value of the difference value between r and g was solved 
as absrg, that between b and g as absbg, and that between r and b as 
absrb, specifically as seen in Formula (1).
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The absrg/Srgb ratio was defined as Rrg, the absbg/Srgb as Rbg, and 
the absrb/Srgb ratio as Rrb, as seen in Formula (2).
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By inquiring RGB color values, the threshold distribution 
range of green color value is as seen in Table 1.

When the point cloud part of maize met the above threshold 
distribution range, g > r and g > b, this point cloud was reserved as 
the maize plant part. If the above conditions were not satisfied, the 
point cloud was removed as a noisy point.

Point cloud down sampling based on voxel 
filtering

The purpose of point cloud voxel filtering is to reduce the 
number of point clouds using voxelization methods. Point cloud 
voxel filtering is the creation of tiny spatial 3D cubes, or voxel 
grids, in the point cloud data. All points in each voxel are 

approximated by its center of gravity, which enables point cloud 
down sampling. This method reduces the number of point clouds 
and keeps the morphological features of the point clouds 
unchanged. In addition, it is also useful in improving the speed of 
algorithms such as point cloud alignment and shape recognition. 
This method does not affect the microstructure of the point cloud 
compared to the random down sampling method, and the voxel-
based filtering method is more accurate for the representation of 
surfaces corresponding to the sampled points.

Maize phenotype calculation method
The selection of a suitable calculation method is crucial to 

obtain accurate values of maize phenotypic parameters.
The corn plant height measured in this paper refers to the 

distance from the point where the plant meets the soil to the top 
of the corn seedling. Firstly, we use the translation and rotation 
matrix to align the growth direction of the maize seedlings with 
the positive direction of the z-axis, then we traverse all the point 
clouds to find the maximum and minimum values of the maize 
seedling point clouds on the z-axis, and finally we find the height 
of the maize by taking the difference.

The calculation formula is shown in Equation 3.

 h z z= -max min  (3)

The formula h indicates the height of the maize plant, zmax 
indicates the maximum value of the maize point cloud on the 
z-axis, and zmin indicates the minimum value of the maize point 
cloud on the z-axis.

In this paper, we use the RANSAC method of fitting a straight 
line to calculate the stalk height of maize. The Randomized 
Sampling Consensus (RANSAC) algorithm can estimate the 
parameters of a mathematical model from a set of observed data 
containing outliers using an iterative approach. The algorithm has 
a wide range of applications in linear fitting.

The algorithm is applied to the spatial straight line fitting with 
the following parameter settings. Firstly, M iterations are 
performed to find out the parametric model containing the 
maximum number of interior points, and then a subset of samples 
of size n is set to perform the calculation during the iteration. The 
point cloud model studied in this paper is a 3D model, so n = 2 is 
set and the iteration is stopped when M satisfies the 
following conditions.

The calculation formula is shown in Equation 4.

 

M
P
n

³
-( )
-( )

ln

ln

1

1 1

 

(4)

where P is the degree of confidence, which is generally 
set to 99%.

After finding the fitted straight line of the maize stem, then 
calculate the point cloud coordinates of the two endpoints of the 

TABLE 1 Color threshold distribution of corn point cloud.

Color Threshold range parameters

Min Max

Srgb 165 642

absrg 35 255

absbg 16 255

Rrg 0.098 0.697

Rbg 0.032 0.670
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line based on the Euclidean distance calculation formula to find 
the stem height of the maize.

In this paper, maize seedlings are selected for the study, and 
the leaves at this stage are characterized by a small degree of curl. 
Therefore, the calculation of the leaf width and length of maize 
leaves was performed using an interactive point selection 
measurement method. The point cloud coordinates of the widest 
point in the transverse direction of the maize leaf and the longest 
point in the longitudinal direction of the maize leaf were 
manually selected.

Afterwards, the leaf width and leaf length are calculated based 
on the Euclidean distance algorithm formula.

Suppose the coordinates of two point clouds are p1 (x1, y1, z1) 
and p2 (x2, y2, z2), then the Euclidean distance calculation formula 
in 3D space is shown in Equation 5.

 
d x x y y z z12 1 2

2

1 2

2

1 2

2= -( ) + -( ) + -( )  
(5)

Point cloud coordinate scale 
transformation

In order to obtain the dimensional relationship between the 
plant point cloud in 3D virtual space and the real-world plant, it 
is necessary to find the corresponding reference to calculate the 
scaling ratio. For acquiring the scale of the corn 3D point cloud 
model and the real corn plant, we used the checkerboard grid as 
the reference to calculate the conversion scale.

The calculation formula is Equation 6.

 
k L

L
= real

virtual  
(6)

Where Lreal represents the real length of the checkerboard grid, 
Lvirtual represents the length of the reconstructed model of the 
checkerboard grid, and k represents the conversion ratio. During 
the recording process, a checkerboard grid of a certain size 
(25 mm × 25 mm/grid) was placed by the plant. The actual size of 
the reconstructed maize model in the real world could be obtained 
after the calculation of the conversion ratio.

Point cloud segmentation

In this paper, we  used the region growth segmentation 
algorithm to segment the point clouds of maize seedlings. This 
method can better identify and segment plant organs such as the 
leaves and stems of maize seedlings. The principle of the region 
growth algorithm is to gather point clouds with similarities to 
form a region. Firstly, a seed point was identified for each region 
to be segmented as the starting point of the growth. Secondly, the 
points in the neighborhood around the seed point that had the 

same or similar properties to the seed were merged into the region 
where the seed pixel was located. Then the new points continued 
to grow like seeds in all directions until no more points satisfying 
the conditions could be included. In this algorithm, the output 
data structure is an array of clusters, where each cluster is a 
collection of points considered to be part of the same smooth 
surface. Moreover, the point clouds segmented using the area 
growth algorithms have one cluster for each color.

The region growth segmentation algorithm is mainly based on 
the specific implementation of normal difference and curvature 
difference. Firstly, the normal and curvature are calculated and sorted 
in ascending order according to the curvature. Secondly, the lowest 
curvature is selected as the initial seed point, and the neighboring 
points around the seed point are compared with the seed point. 
Finally, the normal angle threshold is set to determine whether the 
normal angle is smooth enough, and the curvature difference 
threshold is set to determine whether the curvature is small enough. 
If the normal angle threshold and curvature difference threshold are 
satisfied, the point can be used as the seed point. If only the normal 
angle threshold is satisfied, the point is classified without seeding.

Results

Point cloud reconstruction results

After acquisition of the multi-view image sequence, the SfM 
algorithm was used to obtain the sparse point cloud. The Multi-
View Stereo Reconstruction algorithm was then applied to 
reconstruct the sparse point cloud into a dense point cloud. 
Figure 3 shows the 3D point cloud reconstruction results of the 
image sequences extracted by these two methods.

Point cloud pre-processing results

Euclidean clustering algorithm was used to segment the plant 
point cloud and remove the irrelevant background and spatial 
discrete points. As shown in Figure 4, the algorithm could extract 
the 3D point cloud of corn seedlings in an intact way.

As shown in Figure  5, a lot of point cloud noises were 
contained in the 3D point cloud images in (a1–c1) in addition to 
maize seedlings. As observed from the images in (a2–c2) after 
point cloud filtering, the white noisy point clouds at the leaf edge 
were obviously reduced, indicating the good point cloud filtering 
performance of this algorithm.

The point cloud color filtering algorithm and the point cloud 
voxel filtering algorithm used in this paper had achieved good 
results in filtering the corn point clouds. Apart from that, eight 
groups of data were randomly selected from the acquired raw 
point cloud data for the point cloud filtering process. As shown in 
Figure 6, the number of point clouds in each group after filtering 
is significantly reduced compared with the number on point 
clouds before filtering.
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Maize point cloud segmentation 
recognition results

The number of leaves of the maize plants all yielded 
similar results to the real plants when segmented using 
the region growth segmentation algorithm. As shown 

by the experimental result, the region growth algorithm 
used in this paper can not only segment and identify the 
number of leaves of maize more accurately, but also accurately 
identify the segmentation of its stems and leaves, and other 
organs (see the result of maize point cloud segmentation in 
Figure 7).

A1

A2

B1

B2

C1

C2

D1

D2

FIGURE 3

3D point cloud reconstruction process. (A1) The point cloud sparse reconstruction based on Agisoft Metashape. (B1–D1) 3D point cloud sparse 
reconstructions based on Visual SfM. (A2–D2) Point cloud extractions of maize seedlings.

A B

C D

FIGURE 4

Segmentation Chart of Maize Seedlings Based on Euclidean Clustering. The segmentation process from (A–D) shows that the irrelevant 
background segmentation such as carrier table, flower pot and checkerboard grid can be removed using the Euclidean clustering segmentation 
algorithm.
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3D point cloud accuracy analysis of 
maize phenotype

A comparison of the point cloud extraction results of each 
phenotypic parameter of maize with the manual measurement results 
is displayed in Figure 8. Based on the obtained point cloud model, 
phenotypic parameters such as plant height, leaf length, relative leaf 
area, and leaf width of maize were calculated. Apart from that, 30 sets 
of plant height values, 49 sets of leaf length values, 49 sets of relative 
leaf area values and 17 sets of leaf width values were extracted by 

algorithmic measurements. The plant height, leaf length, relative leaf 
area values and leaf width values extracted through point cloud had 
a significant linear relationship with the manually measured values. 
The coefficients of determination R2 were 0.991, 0.989, 0.926 and 
0.963, respectively. Besides, the root means square error RMSE was 
8.61 mm, 7.11 mm, 281.62 mm2 and 0.60 mm, respectively.

Through the comparison between the point cloud measurements 
and the corresponding manual measurements, it was concluded that 
the algorithm used in this paper was accurate in maize 
reconstruction with multi-view imaging. This verifies, to a certain 

A1 B1 C1

A2 B2 C2

FIGURE 5

Color threshold based point cloud filtering of corn leaves. (A1-C1) Corn leaf point cloud images containing noise before filtering. (A2-C2) The 
corn leaf point clouds without noise after filtering.

FIGURE 6

Number of point clouds before and after filtering. The three colors indicate the number of point clouds before filtering, the number of point 
clouds after color filtering, and the number of point clouds after voxel filtering, respectively.
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extent, that the method of extracting phenotypic parameters of crops 
via 3D imaging has high practicality and stability, and can extract 
the phenotypic parameter values of plants rapidly and losslessly.

Error analysis

A total of 15 groups of measured maize data were selected to 
analytically evaluate their errors as seen in Table 2, where L0, W0, 
S0 and H0 denote the actual leaf length, leaf width, relative leaf area 
and maize plant height acquired through artificial detection, 
respectively, and L, W, S and H stand for those measured through 
point cloud computing, respectively.

Two indexes—absolute error and relative error—were used to 
evaluate and analyze the errors generated by point clouds, where the 
former means the absolute difference value between measured value 
and real value, and the latter stands for the percentage of absolute 
error in the real value. In this study, the manually measured 
phenotypic parameter values of maize served as real values, and 
those obtained through point cloud computing as measured values. 
The absolute error and relative error of such phenotypic parameters 
and their average errors are listed in Table 3.

Table 2 displays the errors between manually measured values 
and point cloud computed values of maize seedlings. It could 
be seen from average absolute errors that the absolute errors of 
maize leaf length, relative leaf area and plant height were all large. 
The main reason was that the leaf length was mainly measured the 
straight line distance between the two ends of the leaf veins of the 
leaves, and did not fully consider the degree of curvature of the corn 
leaves. Moreover, the relative leaf area was approximately expressed 
by the product between leaf length and leaf width, and its absolute 
error was greatly influenced by the leaf length. The measurement of 
maize plant height was affected by soil factors, which disturbed the 
accurate measurement to some extent. The error in the 
measurement of maize plant height comes from the following two 
main components. In this paper, the stalk portion buried by soil is 
not included in the measurement of maize plant height. This part of 
the error exists for both manually measured and point cloud 
extracted maize plant height. Therefore, the maize plant height 
defined in this paper is the distance from the contact of the maize 
with the soil part to the highest point of the top of the maize. In 
addition, the point cloud extracted maize plants have a small 
portion of soil on the stalk near the soil part. This part is sometimes 
removed when performing plant height calculations. However, 

A

B

C

FIGURE 7

Maize point cloud segmentation based on region growth. In the three data sets (A-C), the image on the left is when the data were collected, the 
middle one is the processed 3D point cloud image, and the image on the right is the corn point cloud after segmentation by the region growing 
algorithm.

https://doi.org/10.3389/fpls.2022.974339
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.974339

Frontiers in Plant Science 10 frontiersin.org

during the manual measurement, this part of the stalk with soil can 
be measured accurately. Therefore, there is some error in the point 
cloud extracted plant height compared to the actual measurement.

According to the average relative errors of maize phenotypes, 
the relative errors of maize leaf length, leaf width and plant height 
were relatively approximate, while the average relative error of 
relative maize leaf area was relatively large, which might 
be ascribed to the not intact enough local point clouds during the 
3D maize reconstruction. Hence, the deviation of a minority of 
calculated relative leaf area data was large.

Results on the growth dynamics of maize 
seedlings based on 3D model

Four plants were randomly selected for growth tracking 
study, with the longest leaves from each plant numbered as 

Leaf 1–4 and the one of the shorter leaves numbered as Leaf 
5–8. Figure 9 shows the dynamics of phenotypic parameters 
such as plant height, stem height, leaf length and relative 
leaf area of seedling numbered maize plants over 1 week. 
In the early stages of growth, all phenotypes presented an 
increasing trend. Among the four traits, the growth rate of 
plant height and stem height varied more significantly. 
Beyond that, the dynamics of leaf length and relative leaf 
area varied more significantly from leaf 1 to 4 and less 
significantly from leaf 5 to 8. By observing the changes in 
the phenotypic parameters of maize in Figure 9, we can find 
out that the growth rate of maize seedlings varies among 
different individuals. The differences in the growth rate of 
maize can reveal to some extent how well it is growing. It 
can be seen that the analysis of phenotypic parameters of maize 
can provide unique insights for its development in 
precision agriculture.

A B

C D

FIGURE 8

Accuracy analysis of phenotype extraction values based on 3D point cloud and manual measurements. From (A–D), the precision analysis of 
phenotypes of plant height, leaf length, leaf relative area and leaf width based on 3D point clouds and manual measurements, respectively. The 
sample sizes N for four of the phenotypic indicators were 30, 49, 49 and 17, respectively.

https://doi.org/10.3389/fpls.2022.974339
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.974339

Frontiers in Plant Science 11 frontiersin.org

Discussion

With the continuous development of 3D reconstruction 
technology, the research of the 3D reconstruction of crops 
based on various sensors has also made significant progress 
(Gibbs et  al., 2017). The traditional phenotypic analysis 
methods of plants are characterized by destructiveness, great 
time consumption, low efficiency and high cost, so the present 
research focus has been on nondestructively, rapidly, and 
accurately acquiring plant phenotypes. The most extensively 
applied 3D reconstruction technologies for plant phenotypes 

mainly include image technology-based 3D reconstruction, 
laser radar technology-based 3D reconstruction and 3D 
reconstruction based on UAVs in combination with various 
sensors (e.g., multispectral cameras, hyperspectral sensors or 
lidars). When applied to the analytical investigation on plant 
phenotypes, UAVs integrate the merits of portability, high 
efficiency and suitability for field operation. However, UAV 
detection is also influenced by other limiting factors, such as 
weather effect, limited working altitude in the air, and limited 
data processing speed (Zhao et al., 2019). Despite the capability 
of 3D imaging, multispectral and hyperspectral cameras are 

TABLE 2 Measured data of phenotypic parameters of maize.

Corn Number L0 (mm) L (mm) W0 (mm) W (mm) S0 (mm2) S (mm2) H0 (mm) H (mm)

1 64.00 69.17 13.97 14.29 1113.60 1308.14 74.20 66.15

2 69.20 66.06 13.88 14.07 1141.80 1155.54 44.80 50.55

3 45.20 45.14 16.12 16.36 863.32 935.93 42.40 40.52

4 70.70 71.63 14.97 15.38 855.47 1230.96 64.40 59.10

5 70.10 77.67 13.11 13.88 1184.69 1371.95 60.00 60.86

6 104.40 108.94 16.78 16.54 1545.12 1551.94 135.70 128.24

7 104.90 102.05 10.75 11.09 1521.05 1441.25 126.30 119.19

8 71.20 64.87 12.54 12.11 1132.08 1147.46 108.20 107.02

9 132.40 131.95 12.66 13.48 1986.00 1881.59 134.50 130.37

10 110.70 115.75 13.99 14.16 1726.92 1994.75 130.40 124.37

11 180.10 170.69 12.59 13.48 2773.54 2084.64 174.50 182.54

12 180.70 172.21 13.79 14.80 3035.76 2887.03 156.70 147.38

13 143.30 141.21 10.13 10.56 2292.80 2278.85 142.70 143.12

14 197.30 186.36 9.59 10.20 3255.45 2890.01 201.90 194.59

15 181.20 177.19 9.88 10.52 2989.80 3033.35 191.20 187.77

TABLE 3 Error analysis of phenotypic parameters of maize.

Corn 
number

Leaf length Leaf width Relative leaf area Plant height

Absolute 
error (mm)

Relative 
error (%)

Absolute 
error (mm)

Relative 
error (%)

Absolute 
error (mm2)

Relative 
error (%)

Absolute 
error (mm)

Relative 
error (%)

1 5.17 8.08 0.32 2.29 194.54 17.47 8.05 10.85

2 3.14 4.54 0.19 1.37 13.74 1.20 5.75 12.83

3 0.06 0.13 0.24 1.49 72.61 8.41 1.88 4.43

4 0.93 1.32 0.41 2.74 375.49 43.89 5.3 8.23

5 7.57 10.80 0.77 5.87 187.26 15.81 0.86 1.43

6 4.54 4.35 0.24 1.43 6.82 0.44 7.46 5.50

7 2.85 2.72 0.34 3.16 79.8 5.25 7.11 5.63

8 6.33 8.89 0.43 3.43 15.38 1.36 1.18 1.09

9 0.45 0.34 0.82 6.48 104.41 5.26 4.13 3.07

10 5.05 4.56 0.17 1.22 267.83 15.51 6.03 4.62

11 9.41 5.22 0.89 7.07 688.9 24.84 8.04 4.61

12 8.49 4.70 1.01 7.32 148.73 4.90 9.32 5.95

13 2.09 1.46 0.43 4.24 13.95 0.61 0.42 0.29

14 10.94 5.54 0.61 6.36 365.44 11.23 7.31 3.62

15 4.01 2.21 0.64 6.48 43.55 1.46 3.43 1.79

Average error 4.74 4.32 0.50 4.06 171.90 10.51 5.08 4.93
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sensitive to electromagnetic radiation spectra with a broad 
scope, and fail to detect the specific information from a single 
wavelength (Tripodi et al., 2018). In addition, most spectral 
cameras cannot be promoted in a large scale due to the high 
cost. The development lidars has provided an effective analysis 
tool for investigating indoor and field plant phenotypes and 
improved the 3D plant modeling at different spatial–temporal 
scales in agriculture. The plant phenotypes extracted by lidars 
play important roles in agricultural seed breeding and 
management by virtue of a very high accuracy (Jin et al., 2021). 
However, the difficulty of lidars lies in how to realize high-
speed data acquisition through hardware and their real-time 
processing using algorithms so as to acquire high-accuracy 
original point cloud data. In this study, the image-based 3D 
reconstruction method with simple operations was used, where 
the RGB camera, which was cheap, could be integrated onto the 
self-established phenotype platform, thereby providing an 
effective solution to the extraction of crop phenotypes. In 
addition, studies on 3D reconstruction of maize have been 
more focused on the ears and grains stage (Ma et al., 2019; 
Wang et al., 2019; Zhu et al., 2020; Zhang et al., 2022a), while 

less attention has been paid to 3D reconstruction of seedlings. 
During the ears and grains stage, the maize structure is 
complex and it is more difficult to perform 3D reconstruction 
of maize. In contrast, at the seedling stage, the maize plant has 
few leaves and simple growth structures, so 3D reconstruction 
of maize at the seedling stage is easier to accomplish. In this 
paper, we have successfully achieved 3D reconstruction and 
phenotype extraction of maize seedlings.

Changes in phenotypic parameters during the growth 
of maize seedlings are important observations reflecting 
their growth. The size of leaves, plant height and stem 
height of maize seedlings are important phenotypic 
information that represent their growth rate and seed vigor 
(Das Choudhury et  al., 2020). Therefore, we  designed an 
image acquisition platform for the 3D reconstruction of maize 
seedlings after acquiring multi-view image sequences, and 
calculated the actual size of the maize phenotype with a 
checkerboard grid.

Compared to 3D reconstruction with devices such as 
LiDAR and Kinect, the method we used only requires the use 
of RGB cameras and video frame extraction to acquire image 

A B

C D

FIGURE 9

Line graph of growth dynamics of different phenotypic traits in maize. Maize phenotypic traits were plant height (A), stem height (B), leaf length 
(C), and relative leaf area (D) in that order.
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sequences, which is more convenient for acquiring data, faster 
and more automated when performing 3D reconstruction 
(Garrido et al., 2015; Sun and Wang, 2019). Thapa et al. (2018) 
measured the total leaf area of maize and sorghum using a 
lidar, with R2 values of 0.95 and 0.99, respectively, indicating a 
high measurement accuracy. In this study, the mean R2 value 
of image-based maize phenotype measurement could also 
reach 0.967, which differed very little from the model 
accuracy in geometrical measurement after lidar-based 3D 
reconstruction. Besides, the image-based method could acquire 
more detailed phenotype information in comparison with the 
lidar-based 3D reconstruction method. The multi-view image-
based 3D reconstruction could not only observe the 
morphological characteristic information plants but also 
observe their color characteristic information. The color 
information could represent the plant growth status, based on 
which countermeasures could be taken in advance to ensure 
the healthy growth of crops.

In terms of the point cloud segmentation, the region growth 
algorithm used could achieve more accurate stalk segmentation 
recognition of corn seedlings. However, in order to obtain the 
optimized segmentation results, it was required to adjust the 
threshold values for point cloud segmentation step by step, which 
was a time consuming process. In recent years, researchers have 
investigated the skeletonization of crop point cloud models (Wu 
et al., 2019; Liu et al., 2021a), which provides a new research idea 
for point cloud segmentation. In conclusion, the effective 
segmentation of point clouds still needs more exploration and 
further research.

Compared with 2D imaging, 3D reconstruction can  
obtain more detailed morphological characteristics of crop 
phenotypes, but it could time consuming depending on the 
number of reconstructed point clouds and hardware 
equipment. In our study, it usually took 30 ~ 40 min to perform 
a set of 3D model reconstruction. Therefore, it is necessary to 
consider reducing the quality of the point cloud reconstruction 
as well as the number of point clouds without affecting the 
reconstruction effect, so as to accelerate the point cloud 
reconstruction process. The extraction of phenotypic 
parameters after 3D reconstruction of maize was influenced,  
to some extent, by such objective factors as incomplete 
experimental methods and equipment and the surrounding 
environment, and measurement errors were thus generated. 
Specifically, such errors mainly derived from the minor 
vibration of the rotating platform of the 3D imaging device 
during the rotation as well as out-of-focus situation during the 
photographing of RGB camera due to inadequate lighting. 
Consequently, a minority of acquired pictures were unclear, 
thus generating point cloud noises. The indoor environment 
was complicated, the 3D imaging device was not isolated using 
a background plate, so unrelated backgrounds during the 
photographing process were also recorded, thus leading to 
point clouds of unrelated backgrounds generated in the 3D 
reconstruction of maize.

Conclusion

In this study, the phenotypes of maize seedlings were 
investigated using the multi-view image-based 3D reconstruction 
method, including the following three parts.

In the first stage, the self-designed 3D imaging device was 
used to acquire image data, and a multi-view image sequence was 
acquired through an RGB camera and video frame extraction 
method, followed by the 3D reconstruction of maize seedlings 
based on SfM algorithm. Subsequently, the acquired original 
point cloud data of maize were preprocessed using the Euclidean 
clustering algorithm, point cloud color filtering algorithm and 
point cloud voxel filtering algorithm, thus obtaining a point cloud 
model of maize. In the second stage, the images acquired by the 
RGB camera were used for the 3D reconstruction of maize, and 
then the phenotypic parameters of maize obtained by point cloud 
computing were compared with the corresponding manually 
measured values. The mean R2 value could reach 0.967. In 
addition, the point cloud errors of maize phenotypes were 
analyzed, which tended to be small, indicating a high accuracy of 
the established 3D reconstruction model of maize in this study. 
Therefore, the proposed method was applicable to the phenotypic 
analysis of maize crops and feasible in analyzing maize 
phenotypes. In the third stage, the 3D reconstruction of maize 
was performed through the video frame extraction method, 
which was featured by a high speed and less time consumption. 
Afterwards, maize stem leaves were segmented and identified 
through the region growing segmentation algorithm, and the 
expected segment effect was harvested.

To sum up, the proposed 3D reconstruction method, which 
is characterized by automation, high efficiency and nondestructive 
extraction in the research on corn phenotypes, can provide 
guidance for maize breeding and growth monitoring.
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