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How do arbuscular mycorrhizas
a�ect reproductive functional
fitness of host plants?

Lei Wang and Zhanhui Tang*

School of Environment, State Environmental Protection Key Laboratory of Wetland Ecology and

Vegetation Restoration, Northeast Normal University, Changchun, China

Arbuscular mycorrhizal (AM) symbiosis in soil may be directly or indirectly

involved in the reproductive process of sexually reproducing plants (seed

plants), and a�ect their reproductive fitness. However, it is not clear how

underground AM symbiosis a�ects plant reproductive function. Here, we

reviewed the studies on the e�ects of AM symbiosis on plant reproductive

fitness including both male function (pollen) and female function (seed). AM

symbiosis regulates the development and function of plant sexual organs

by a�ecting the nutrient using strategy and participating in the formation of

hormone networks and secondary compounds in host plants. The nutrient

supply (especially phosphorus supply) of AM symbiosis may be the main factor

a�ecting plant’s reproductive function. Moreover, the changes in hormone

levels and secondary metabolite content induced by AM symbiosis can also

a�ect host plants reproductive fitness. These e�ects can occur in pollen

formation and transport, pollen tube growth and seed production, and seedling

performance. Finally, we discuss other possible e�ects of AM symbiosis on

the male and female functional fitness, and suggest several additional factors

that may be involved in the influence of AM symbiosis on the reproductive

fitness of host plants. We believe that it is necessary to accurately identify and

verify themechanisms driving the changes of reproductive fitness of host plant

in symbiotic networks in the future. A more thorough understanding of the

mechanism of AM symbiosis on reproductive function will help to improve our

understanding of AM fungus ecological roles and may provide references for

improving the productivity of natural and agricultural ecosystems.

KEYWORDS

arbuscular mycorrhizas, sexual reproduction, male fitness, female fitness, nutrient

supply, pollen, seeds

Introduction

The arbuscular mycorrhizal (AM) symbiosis formed between plants and AM fungus

is a mutually-beneficial symbiosis prevalent in nature which emerged about 400 million

years ago (Selosse et al., 2015). Nearly 80% of vascular plants in terrestrial ecosystems

are able to form and maintain such symbiotic relationships with AM fungus (Bhantana

et al., 2021). In the symbiotic system formed by plants and AM fungus, plants need

to provide the AM symbiosis with carbohydrates produced by photosynthesis, and in

return, AM symbiosis has a positive impact on the growth and reproduction of host
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plants by improving their ability to acquire mineral nutrients

(Bhantana et al., 2021). Thus, the cooperative relationship

can be maintained stably between AM fungus and plants

through mutual help (Bhantana et al., 2021). Although AM

symbiosis occurs underground, the regulation of underground

AM symbiosis on aboveground growth and development of

host plants cannot be ignored. Currently, there are abundant

evidences indicated that underground AM symbiosis has

directly positive effects on growth and reproductive traits of host

plants (Derelle et al., 2015; Bennett and Meek, 2020; Vosnjak

et al., 2021; Chen et al., 2022).

As a biological factor in soil, AM symbiosis may affect

the entire life history of flowering plants involving seed

germination, vegetative growth, and sexual reproduction

(flowering, pollination, fertilization, fruit set, and seed

FIGURE 1

E�ects of AM symbiosis on the reproductive function of host plants. (A) Represents the way in which AM symbiosis may participate in the

realization of male and female functions during plant reproduction, and I represents the pollen production; II represents that changes in floral

characteristics may potentially a�ect pollinators pollination behavior; III represents the pollen germination and pollen tube growth on stigma; IV

represents the fruit formation and seed development after successful fertilization; V represents the seeds production; VI represents the seeds

quality; VII represents the seeds germination; VIII represents the successful establishment of seedlings after germination; IX represents the

growth of o�spring seedlings. (B) Simplifies the AM symbiosis e�ects on plant reproduction fitness. AM symbiosis may directly and indirectly

a�ect the male and female functions of plants through nutrient supply and hormone regulation, thus a�ecting their reproductive fitness. The

Mutual adaptation and coordinate between male and female function may also be a�ected by the AM symbiosis, thus a�ecting the reproductive

fitness of mycorrhizal plants. (C) Indicates that AM symbiosis may directly or indirectly regulate the reproductive function of plants through

nutrient supply (phosphorus and other essential elements), regulation of hormone network and synthesis of secondary compounds (such as

amino acids, proteins, terpenoids, and flavonoids) during the realization of male and female functional fitness of plants.

development) (Figure 1A). Sexual reproduction is an important

stage of the plant life history, AM fungus may indirectly affect

plant reproductive function through the formation of AM

symbiosis with host plants and consequently influence plant

population dynamics (Bennett and Meek, 2020). In particular,

the effect of AM symbiosis on sexual reproduction fitness of

flowering plants should be paid more attention. It is well-known

that the sexual reproduction function of plants is manifested in

the male and female functions of plants. The individual plants

achieve their sexual reproduction fitness through male function,

female function, or both depending on the sexual reproductive

system of the plants (hermaphrodite/dioecious) (Varga, 2010).

Male functional fitness is the ability of pollen production, pollen

transfer, pollen germination, and pollen tube growth to fertilize

ovules of plants, while female functional fitness is the ability of
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plants to product mature seeds and the subsequent performance

of these seeds (Varga, 2010). The investment of flowering plants

in sexual reproduction is influenced by individual nutritional

status and environmental factors, especially the presence of

AM symbiosis is an important factor regulating the process of

sexual reproduction. It has been suggested that the male and

female functions of flowering plants may be independently

affected by AM symbiosis (Koide and Dickie, 2002) (Figure 1B).

At present, it has been widely reported that AM symbiosis

are positive relate to reproductive fitness of host plants, and

the mechanism that how AM symbiosis affect plant fitness

is relatively well-understood. AM symbiosis can assist host

plants to successfully achieve reproductive fitness by providing

nutrient, regulating hormone balance, and other secondary

product production (Stanley et al., 1993; Varga and Kytöviita,

2014; Bennett and Meek, 2020).

It is generally believed that underground AM symbiosis

may have direct and indirect effects on male and female

functional fitness of host plants. The direct effect is that

AM symbiosis promotes the host plant’s ability to acquire

nutrients and directly drives the host plant to increase resource

investment in sexual reproduction. For example, AM symbiosis

can improve the uptake and accumulation of major elements

(nitrogen, phosphorus, and potassium) and trace elements (zinc,

sulfur, copper, iron, calcium, and manganese) in soil by host

plants (Chen et al., 2017; Turrini et al., 2018; Bhantana et al.,

2021). This positive effect on mineral nutrient uptake directly

promotes the growth and development of host plants, and

changes the resource acquisition and allocation strategies of

host plants, which will make host plants likely to invest more

resources in reproductive functions, thereby improve male and

female function fitness. For example, increased phosphorus

content may have positive effects on flower bud formation and

development, flower number, pollen size, and seed production,

as it has been shown in the interaction between the non-

mycorrhizal root endophytic fungus Piriformospora indica and

Cyclamen persicum (Ghanem et al., 2014). The indirect effects

of AM symbiosis on the male and female functions of plants

may be that it regulates the synthesis and distribution of

secondary compounds in plants by affecting related metabolic

pathways and gene expression in host plants (Zouari et al.,

2014; Bennett and Meek, 2020). Some studies have shown

that AM symbiosis can regulate gene expression and indirectly

participate in various metabolic processes of host plants. For

example, the functions of photosynthesis, nutrient transport,

amino acid synthesis, and terpenoid metabolism were enhanced

after mycorrhizal colonization, which undoubtedly affected the

growth and development of host plants (Zouari et al., 2014). In

particular, AM symbiosis changes the levels of some endogenous

hormones (e.g., auxin, gibberellin, etc.) in host plants, which

regulate the formation and function of sexual organs (Nuortila

et al., 2004; Foo et al., 2013). Thus, AM symbiosis can influence

all components of plant sexual reproduction including pollen

delivery, pollen germination, pollen tube growth, fruit and seed

production, seed germination, etc. by regulating hormones,

phenolic compounds, and secondary metabolites production

and epigenetic modifications (Varga and Soulsbury, 2017; Cui

et al., 2019; Bennett and Meek, 2020; Pons et al., 2020; Ran

et al., 2022; Rashidi et al., 2022) (Figure 1C). These results are

encouraging us to furtherly confirm that AM symbiosis can have

a profound impact on plant reproductive fitness. However, we

still lack a deeper understanding of how these two pathways

work together. Although it is true that increased nutrient supply

or altered hormone levels can affect plant reproductive function

from one pathway, but both pathways may coexist in the plant-

AM symbiosis system. When multiple regulatory pathways

(nutrients, hormones, other gene products, etc.) exist together,

does one pathway get overridden by the other or do these

effects regulate different aspects individually or do they all work

together? That’s still unclear to us.

Most flowering plants can produce offspring through sexual

reproduction (Hiscock, 2011). AM symbiosis may be involved

in various stages of the realization of reproductive fitness of

host plants. The changes of male and female functional traits

of host plant in the presence of soil AM symbiosis were

focused on in this paper. Understanding the trade-off strategy

between vegetative growth and sexual reproduction fitness in

plants will be a meaningful reference for future efforts to use

AM symbiosis to enhance plant productivity. Therefore, we

reviewed the relevant researches on how soil AM symbiosis

affect male and female fitness during sexual reproduction of

host plants. We aimed to understand whether the promotion

of host plant traits by AM symbiosis leads to changes in

male and female functional fitness. Finally, we propose future

research directions that will help to expand existing research

area and enable us to more fully understand the feedback

mechanism of plant sexual reproduction fitness to belowground

AM symbiosis.

E�ects of arbuscular mycorrhizal
symbiosis on male functional fitness

E�ect on pollen production and viability

It has been reported that AM symbiosis can affect pollen

quantity and quality of host plants (Bennett and Meek, 2020).

Pollen production can be affected by AM fungus colonization

at three different levels: at the level of flower production, of

anthers per flower and pollen production per anther (Varga

and Kytöviita, 2014). Because pollen production depends on

the availability of resources during pollen development, which

may be one of the main reasons why AM symbiosis can

have beneficial effects on pollen production and performance

(Poulton et al., 2002; Bennett and Meek, 2020). Phosphorus as

an essential element for pollen production, is directly involved in
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the formation of nutrient storage compound (such as phytate) in

pollen, which will bemetabolized and utilized during pollen tube

growth (Varga, 2010; Pereyra et al., 2019). Previous studies have

shown that the effect of AM symbiosis on pollen production

and performance is mainly due to the improvement of plant

phosphorus acquisition, and that AM Fungus inoculation and

high soil phosphorus conditions have similar beneficial effects

on male function (Varga, 2010). AM fungus can transport

phosphorus from the soil to the plant roots through extraradical

hyphae, especially during florescence, the abundant phosphorus

supply may promote pollen production and viability (Pendleton,

2000; Poulton et al., 2002; Barber and Soper Gorden, 2015;

Pereyra et al., 2019). This can be considered as an important

way for AM symbiosis to affect male function of host plants

(Figure 1C).

AM symbiosis can also affect pollen production and viability

by regulating hormone and secondary metabolite content

in host plants (Halo et al., 2020) (Figure 1C). It is well-

known that plant hormones such as gibberellins (GAs) and

jasmonic acid (JA) play important regulatory roles in pollen

development (Marciniak and Przedniczek, 2019; He et al.,

2021; Amanda et al., 2022). Genes involved in the metabolism

of plant hormones and secondary terpenoids metabolism

have a systematic response to AM symbiosis. For example,

the expression of genes related to the terpenoid synthase

(TPS) family is up-regulated in the presence of arbuscular

mycorrhizal (Zouari et al., 2014). Other studies showed that

the expression of auxin-dependent reporter DR5-GUS in AM

fungus colonized root cells was higher than in surrounding

cells (Etemadi et al., 2014). These results suggested that AM

symbiosis can promote the synthesis of auxin (IAA), Gas

and cytokinin (CTK). In addition, AM fungus itself may

release CTK and IAA and then transport them into the root

tissues of host plants, which may also increase CTK and IAA

content in plants (Pons et al., 2020). These results suggest

that the enhancement of plant hormone synthesis induced

by AM symbiosis may play an important role in promoting

pollen formation.

Furthermore, AM symbiosis also can affect other secondary

compounds in pollen (Figure 1C). For example, AM fungus

inoculation has a significant effect on the alkaloid content

(anabasine and nicotine) in pollen, which may affect pollen

transmission process by pollinators (Davis et al., 2019).

Mycorrhizal symbiosis also affects phenolic compounds (such as

flavonoids) in plants, and generally increases flavonoid synthesis

and accumulation in roots, which regulates IAA transport and

signal transduction to promote plant growth (Cui et al., 2019).

In AM symbiosis system, flavonoids in turn can participate in

mycorrhizal growth and branching, and further promote AM

fungus symbiosis with plant (Nascimento and Tattini, 2022).

It was found that these flavonoids also have been shown to

promote pollen production (Cheyniera et al., 2013). It is worth

mentioning that silencing the expression of sucrose transporter

SlSUT2 in plants reduced pollen viability and germination,

and then caused male sterility of flowers which could be

alleviated by Brassinosteroids (BRs) (Hansch et al., 2020). It

was been found that AM symbiosis can increase the content

of BRs in roots (Sun et al., 2020). Therefore, these secondary

compounds may also have positive effects on male fitness of AM

symbiotic plants.

The improvement of pollen quantity and quality reflects the

enhancement of male function of plants, because high-quality

pollen as male gamete is more conducive to seed formation and

development (Ghanem et al., 2014). Generally, AM symbiosis

can stimulate pollen formation, increase pollen quantity, and

improve pollen quality and viability by improving the ability

of plants to obtain nutrients (especially phosphate) from soil

and mediating other metabolic pathways (Poulton et al., 2002).

High quality and viability pollen are conducive to pollen transfer

and fertilization, and determines the successful realization of

male function of the host plant (Varga, 2010; Ghanem et al.,

2014).

E�ect on pollen germination and pollen
tube growth

Pollen is transferred by pollinators to the stigma, where it

rehydrates and germinates to form pollen tubes. The pollen

tubes subsequently penetrate the stigma and grow through

the style toward the ovules in the ovary. After penetration

of the embryo sac in the ovule, the sperm cells are released

and fertilization takes place (Pezzotti et al., 2002). There are

many complicated steps involved in this process. The pistil

delivers many compounds to the pollen, such as myo-inositol,

flavonoids, proteins, water, and lipids after pollen deposition on

the stigma, which maintain the hydration and germination of

pollen and the growth of pollen tubes on the stigma (Pezzotti

et al., 2002). At the same time, phytate stored in pollen is

hydrolyzed into phosphate and inositol, which are used in the

synthesis of cell walls and membranes of pollen tube (Poulton

et al., 2002). So, nutrients stored in pollen also affect pollen

germination, pollen tube growth rate and competition ability

with other pollens (Koide and Dickie, 2002). This suggests

that we can consider the influence of AM symbiosis on pollen

germination and pollen tube growth from the perspective of

pollen’s own nutritional status and stigma’s active transport of

nutrients to pollen.

AM symbiosis changes the mineral nutrient supply level of

host plants, which may be directly or indirectly affect pollen

viability and germination (Poulton et al., 2002; Bennett and

Meek, 2020). The nutrient accumulation increase in pollen may

be the direct cause of improved pollen germination (Figure 1C).

AM symbiosis also promotes the uptake and accumulation of

trace elements (boron, calcium, magnesium, sulfur, strontium,
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etc.) in host plants (Ramírez-Flores et al., 2019). For example,

boron (B) is an essential trace element in flowering plants

and participates in pollen germination. AM symbiosis may

contribute to the maintenance of B homeostasis, increase the

passive transport of B and promote the uptake of B in soil

by enhancing water transport by aquaporin, thus affecting

the pollen germination (Quiroga et al., 2020). Therefore, the

importance of AM symbiosis’s supply of mineral nutrients in

the successful realization of male function of host plants needs

special emphasis (Figure 1C). At present, studies on the direct

effects of AM fungus colonization on pollen germination are

scarce. However, we hypothesized that the benefits of nutrient

supply by AM symbiosis during pollen production process

might be an enhancement mechanism for pollen germination

and pollen tube growth.

The growth of pollen tubes after pollen germination to

ovules through stigma is a complex biochemical process

involving cell wall digestion. AM fungus colonization affected

the synthesis and accumulation of hormones, flavonoids, and

mineral elements in plants, which may directly affect their

accumulation in pollen during pollen formation. Pollen tube

growth may be influenced by the substances contained in pollen

and the substances transported by stigma during pollen tube

growth. For example, pollen tube growth can be enhanced with

the participation of flavonoids and gibberellins (Singh et al.,

2002; Taylor and Grotewold, 2005). Trace elements (such as

zinc) are also important for pollen tube formation (Bhantana

et al., 2021). AM symbiosis usually shows a positive effect on the

production and accumulation of these above substances, which

is conducive to improving the pollen tube growth (Poulton et al.,

2001). Thus, AM symbiosis may enhance pollen tube growth by

increasing the content of these substances in pollen and stigma

(Figure 1A).

Moreover, the process of pollen tube growth into ovules

also need to use expansins to catalyze cell wall relaxation

without damaging the cell wall (Cosgrove, 2017; Bennett and

Meek, 2020). Expansins have been proved to be a regulatory

substance affecting pollen tube growth (Mohanty et al., 2018).

Improved AM fungus colonization can induce an increase in

the transcription level of expansins (Dermatsev et al., 2010).

In addition, calcium (Ca2+) also plays an important role

in flowering plant (angiosperm) sexual reproduction. Ca2+

signals are present during pollen germination and interaction

with papillae cells of the stigma surface, during pollen tube

growth within the stigma of female flowers, and during sperm

release when the pollen tube reaches the ovule (Chen et al.,

2015). AM fungus colonization can activate Ca2+ channels

and induce a series of gene expression, leading to calcium

surge in root epidermal cells (Caroline and Martin, 2013).

It has been found that AM symbiosis and the increase of

Ca2+ content synergistically promote the content of gibberellin

and flavonoids in roots (Cui et al., 2019). This may increase

AM fungus colonization, and promote pollen tube growth

in stigma after pollination. Thus, AM symbiosis may affect

pollen tube growth by regulating expansins production or

altering Ca2+ signaling, or by increasing overall pollen viability

(Bennett and Meek, 2020). However, how the regulation of AM

symbiosis on expansins and Ca2+ signals affects the growth of

pollen tube after pollination still needs to be further proved

by experiments.

E�ects of arbuscular mycorrhizal
symbiosis on female functional
fitness

E�ect on seeds production

The seeds of angiosperms are developed from the

fertilized ovules in the ovary, which can be regarded as the

realization of female function (Koide and Dickie, 2002).

Plant seed production is closely related to the number of

flowers, fruits, and seeds in each fruit (Varga, 2010). Seed

production is similar to pollen production and mainly

depends on resource availability (Varga, 2010). Therefore,

the effect of AM fungus colonization on seed production

can be reflected in three aspects: ovule number and

viability, seed setting (ratio of mature fruits to flowers),

and seed quality.

In addition to ovule number and viability, pollen viability

and fertilization capacity are also important determinants

of seed production. The effects of AM symbiosis on ovule

formation, pollen quality, or successful fertilization were

equally important for seed production. Previous studies

have shown that AM fungus colonization can significantly

increase the phosphorus content in plants, and sufficient

phosphorus supply can promote the development of more

and better ovules and improve the ovules viability (Poulton

et al., 2002; Ghanem et al., 2014). While promoting pollen

viability, AM symbiosis also improves ovule viability, and the

joint enhancement of pollen and ovule viability ultimately

benefits seed production (Poulton et al., 2002). Although

one study showed that AM fungus colonization appeared

to have no significant effect on ovule production, it could

increase pollen production (Philip et al., 2001). So, the

successful transfer of large amounts of pollen could improve

the fertilization success of cross-pollinated plants, thereby

increasing seed production.

The increase of concentrations of photosynthetic products,

plant hormones (such as auxin) and the content of essential trace

elements after AM fungus colonization will lead to increased

flower and fruit numbers (Bona et al., 2017; Saini et al., 2019)

(Figure 1A). When fertilization capacity of plants is not affected

by AM symbiosis, the increase of flower number and fruit

number may directly increase seed yield, but we still need to

consider whether AM symbiosis will reduce or not affect fruit
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abortion. Current researches indicated that AM symbiosis has a

positive effect on fruit development and yield (Berta et al., 2014;

Igiehona et al., 2021). AM symbiosis enhances the ability of host

plant to obtain resources, and increases the resource investment

of host plants to sexual reproduction. Under the condition

of AM symbiosis, the increase of photosynthetic products,

plant hormones (such as auxin), and absorbed trace elements

(such as inducing the expression of potassium transporter gene

in host plant cell and promoting the uptake of potassium

by the host plant) may promote the increase of investment

to reproductive organs, thus increasing the development and

growth of plant flowers and fruit. The increase in fruit yield

also leads to the increase in seed yield (Bona et al., 2015,

2017; Liu et al., 2019). However, the positive effect of AM

symbiosis on fruit production may only reflect in the early

stages of fruit production, but mycorrhizal can prolong the

period of fruit abortion and reduced fruit yield at later stage

of the fruit production. This may reflect the higher carbon

costs of plant symbiosis with AM fungus at later growth

stage, and lead to the decline of potential early benefits of

AM symbiosis to total fruit yield (Trimble and Knowles,

1995).

Seed traits in fruits are also very important because seed

quality has an important impact on plant reproductive success.

The effects of AM symbiosis on seed yield and performance

are also largely related to improved phosphorus uptake (Varga,

2010). AM fungus colonization of plant roots can increase the

content of nitrogen and phosphorus in the aboveground parts

of plants, leading to higher seed yield and quality (Thioub et al.,

2019). The resource investment of plants in reproduction may

also be regulated by AM symbiosis, and the effects of AM

symbiosis on plant hormones and other metabolism products

should not be ignored (Varga, 2010) (Figure 1C). AM symbiosis

may play a role in the regulation of hormone networks during

seed development, such as gibberellin, which is necessary for

normal development of seed (Singh et al., 2002). The ultimate

effect of AM symbiosis on seeds can be reflected in the

changes of mature seeds size and weight. At present, most

studies about the effect of AM symbiosis on plant seeds have

revealed nutrient content in seeds can be regulated by AM

symbiosis. For example, starch, fat, protein, and trace element

(zinc) content in seeds and seed weight were significantly

increased after AM fungus colonization (Berta et al., 2014; Al

Mutairi et al., 2020; Marro et al., 2020; Copetta et al., 2021;

Igiehona et al., 2021; Wang et al., 2022a). These positive effects

can be attributed to the improvement of nutrient status of

host plants (phosphorus, nitrogen, etc.) by AM symbiosis, as

well as changes of regulation mechanism mediated by AM

symbiosis may also be involved. Transcriptome analysis by

RNA-Seq showed that the genes of vacuolar invertase (TIV1)

and cell wall invertase (LIN6) synthesis were up-regulated in

tomato after AM fungus colonization. Vacuolar and cell wall

invertase can cleave sucrose transported from the source organ

(leaf) into hexose (glucose and fructose) as a direct source of

carbon and energy (Zouari et al., 2014). This pathway may also

increase nutrient accumulation (sugar) in seeds and improve

seed quality.

E�ects on seed germination and
seedlings performance

Seed germination and seedling establishment are also

necessary for the successful realization of female function

after seed formation (Figures 1B,C). AM symbiosis may have

direct and indirect effects on seed germination and seedling

establishment of host plants. Direct effects include increasing

seed size or nutrients stored in endosperm, and indirect effects

include that changing the trait plasticity of parental plant,

which may lead to transgenerational transmission of phenotypic

plasticity in functional adaptation (Herman and Sultan, 2011;

Varga et al., 2013; Varga and Kytöviita, 2014; Yin et al., 2019).

It is noteworthy that the transgenerational effect can operate

via two mutually non-exclusive mechanisms, seed provisioning

(seed size, seed nutritional quality, or hormonal balance), and

environmentally induced heritable epigenetic modifications in

offspring (Puy et al., 2022). Here, we review the effects of AM

symbiosis on female functional fitness of host plants from two

aspects: the effects of AM symbiosis on seed germination and

the growth performance of germinated seedlings.

Seeds produced by plants after AM fungus colonization

generally have better germination performance (Bennett and

Meek, 2020). It is mainly reflected in the promotion of seed

germination and radicle elongation (Koide et al., 1994; Copetta

et al., 2021). It is generally believed that AM symbiosis promotes

the host plant to devote more resources into seed production

during seed formation, which makes the produced seeds easier

to germinate (Zhu and Smith, 2001). As mentioned above,

when AM symbiosis promotes seed formation, plant hormones

(gibberellin, cytokinin, etc.) are also be more allocated and

stored in seeds, thus affecting seed germination (Figure 1C).

Strigolactones (SLs) (carotenoid derivatives) also participate

in the germination process of seed. AM fungus colonization

increases SLs (GR24) the synthesis and SLs accumulation of

SLs (GR24) in seeds, thus which can improving improve seed

germination (Mohanty et al., 2018; Faizan et al., 2020; Rehman

et al., 2021). In a recent study on the role of alternative oxidase

(AOX) and sucrose in seed germination, it was found that the

increase of intracellular sucrose content was not conducive to

seed germination, but seeds significantly alleviated sucrose stress

and effectively restored normal respiration during germination

and then increase germination percentage after AM fungus

inoculation (Bharadwaj et al., 2021). Besides, a study has

shown that seed DNA methylation was promoted after host

plants symbiosis with AM fungus, which is also conducive to
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seed germination (Varga and Soulsbury, 2017). Therefore, AM

symbiosis may improve increase seed germination percentage

rate by improving seed performance. This reminds us that the

influence of AM symbiosis on plants may not only exist in the

plants symbiosis with AM fungus, but also may persist in the

propagule (seed).

The seedlings growth performance of seeds after seed

germination can be regarded as the true embodiment

indicator of the successful reproductive function success

and improved adaptability of plants (Bennett and Meek,

2020). If parental plants with AM fungus colonization

provide more resource to seed, it can theoretically affect the

performance of seedlings germinated from the seeds, and

better growth performance of seedlings may be related to

increased phosphorus content in seeds (Zhu and Smith, 2001;

Varga, 2010) (Figure 1A). Currently, most studies have shown

that the growth performance of the next generation seedlings

of plants with AM symbiosis is better than that of plants

without AM fungus colonization, which can be attributed to

the differences of seed quality between the plants with AM

symbiosis and without AM symbiosis (Nuortila et al., 2004).

One explanation for the improvement of AM symbiosis to next

generation seedling growth is that pollen from mycorrhizal

plants has higher competition ability than non-mycorrhizal

plants. The pollen competition hypothesis predicts that when

the number of pollen grains deposited onto stigmas exceeds

the number of ovules, natural selection will play a role during

the pollination and fertilization process. Moreover, pollen

competition has been proved to improve seed fitness, to produce

seeds with higher germination percentage and increase seedling

growth performance (Varga et al., 2013). The effect of pollen

competition on seedling growth performance may become

obvious only at later stages of growth and when it was assessed

in different resource environments (Kalla and Ashman, 2002;

Varga et al., 2013). It is not comprehensive to only consider

that increased nutrient content in seeds has a positive effect on

seedling growth, since nutrients in the endosperm are quickly

consumed as seedlings grow, and this beneficial effect may

only occur in the early stages of seedling growth. Therefore,

the passive plasticity of parental AM symbiosis on nutrient

uptake capacity might be transmitted to the seedling and affect

their nutrient uptake capacity, thus improving the growth

performance of seedlings (Varga et al., 2013). At present, a

study has shown that the characteristics of increased root

phosphatase activity of parents after AM fungus colonization

can be passed on to seedling, so that the root phosphatase

activity of seedling is also improved (Koide and Lu, 1995).

This may be an important reason for the improvement of

seedling growth. Furthermore, some studies have shown that

the epigenetic modification induced by plants to adapt to

the environment not only exists in the present generation,

but also can transfer “memory” to the offspring (Boyko and

Kovalchuk, 2011; Cicatelli et al., 2014). The AM symbiosis

induces the changes of epigenetic modifications in host plant,

which are transmitted to offspring through transgenerational

effects and showing beneficial phenotype in offspring. This

may be another reason why offspring are more vigorous and

fecundity in same environment. Thus, AM symbiosis may

contribute to the overall fitness of a host plant and strongly

influence long-term plant population dynamics (Stanley et al.,

1993).

Future directions

Although the effects of AM symbiosis on male and female

functional fitness of host plants have been discussed from

a positive perspective, reproductive traits of plants are also

dependent on resource availability, and AM’s ecological function

may also be affected by soil conditions (Wang et al., 2022b).

The function of arbuscular mycorrhiza varies among AM

fungus species and plant genotypes, and was determined

by the costs and benefits of mycorrhiza-plant interactions

(Bennett and Groten, 2022; Wang et al., 2022b). Therefore,

we can predict that the plant reproductive traits could be

positively, negatively, or neutrally affected by AM symbiosis,

thus the male and female functions may be enhanced, weakened

or unaffected. The existing evidences do not support the

universality of relationship between AM symbiosis and the host

plants with different nutrition uptake strategies, and they can

only represent the results of symbiosis in the most suitable

state between plants and AM fungus (Grilli et al., 2013; Bennett

and Meek, 2020). Further consideration should be given to

the differences in environment, characteristics of host plants,

and functional compatibility between AM fungus and plant

in future.

For the successful realization of reproductive function

fitness of plants, it is one-sided to think that AM symbiosis

alone enhances male or female function. We also need to

fully consider whether AM symbiosis affects the behavior of

pollinators during pollen transfer process in cross-pollinating

plants (Figures 1A,B). Pollinator activity is an important

determinant to seed formation in insect-pollinated plants (Varga

and Kytöviita, 2010). The role of AM symbiosis in pollen transfer

process has been well-reported (Bennett and Meek, 2020).

AM symbiosis can affect the pollen dispersed by pollinators

through influencing the number of flowers, nectar content,

and volatile organic compounds production (VOCs). The visit

frequency and pollination success of pollinator may increase

with the increase in contents of nectar, sugar, and amino

acids (Barber and Soper Gorden, 2015). Therefore, for cross-

pollinating plants, the influence of AM symbiosis on pollinator

attraction still needs to be explored. More experiments

are needed to directly verify pollinators’ response to AM

symbiosis, which is particularly important for understanding
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the successful realization of male and female functions of

mycorrhizal plants.

In addition, AM symbiosis may play different roles in

reproduction process for seed plants with different sexual

systems. Studies have shown that females devote more resources

to sexual reproduction than males in dioecious plants, because

the reproductive success of females often costs more resources

than that of males (Mizuki et al., 2005; Varga et al., 2013).

Other studies suggest that AM symbiosis may preferentially

promote male functions rather than female functions. In

particular, AM symbiosis may improve male functions by

enhancing pollen number and size and may decrease female

functions by reducing seed yield (Pendleton, 2000; Varga and

Kytöviita, 2010; Barber and Soper Gorden, 2015; Bennett

and Meek, 2020). In gynodioecious populations, females

must compensate for not contributing genes through pollen,

as hermaphrodites do, in order to be maintained in the

same population (Varga et al., 2013). In fact, pollinators

are more likely to visit hermaphrodite flowers, which may

be due to the superior number of flowers or floral reward

(nectar) to dioecious flowers (Varga and Kytöviita, 2010).

So, we need to consider the differences of plant sexual

systems when recognizing the influence of AM symbiosis on

reproductive fitness. For plants with monoecious, dioecious,

or other complex sexual systems, AM symbiosis may regulate

their male or female functions by influencing their resource

allocation patterns.

In the field environment, the interactions between plant

reproduction and the surrounding organisms is more complex.

Reproduction is not only promoted by underground symbionts

and pollinators, but also affected by a variety of other

soil biological factors, including nitrogen-fixing bacteria of

leguminous plants and other beneficial bacteria, root-knot

nematodes, as well as the herbivores. AM symbiosis can induce

immune defense responses of host plants, thus helping host

plants resist the infection of multiple plant pathogens and the

feeding of herbivores (Hol and Cook, 2005; Wang et al., 2019;

Ralmi et al., 2021; Frew et al., 2022). However, it is still not clear

how plants in complex ecosystems use AM symbiosis to respond

to changes in a wild range of biological and abiotic factors,

including interactions with other plants and insects. Plant

reproduction may be negatively affected by other stresses, while

AM symbiosis and its interaction with other microorganisms

may alleviate or enhance these adverse effects. Further, AM

fungus can also combine with other beneficial microorganisms

[plant growth promoting rhizobacteria (PGPR)] to affect the

growth and reproduction process of host plants (Turrini et al.,

2018; Mohanty et al., 2021; Rai et al., 2021). Generally, the

same as AM fungus, rhizosphere microbes can assist the

growth and development of plants by enhancing nutrient

uptake, regulating the expression of genes and producing

hormones (IAA, CTK, and GAs, etc.) (Dodd et al., 2010;

Gao et al., 2022; Yu et al., 2022). PGPR also modulated

the formation and development of plant reproductive organs

through hormone homeostasis (Sharma et al., 2022). Therefore,

PGPR community is also involved in the realization of plant

reproductive fitness in rhizosphere. Although PGPR treatment

had positive feature on seed germination and seedling growth

(Mitra et al., 2021), the effect of vertical transmission of

PGPR on plant progeny remains unknown. It is worth noting

that some PGPR can promote plant growth better than AM

fungus under environmental stress (Durán et al., 2016). That

will also be an interesting challenge to better distinguish

and quantify the individual contributions of AM fungus and

PGPR when combined. In the future, the ecological role of

AM symbiosis in plant reproduction under the coexistence

of multiple factors will enable us to better understand the

influence of AM symbiosis on the fitness of plant male and

female function.

Conclusion

In conclusion, we reviewed the possible mechanisms and

pathways of arbuscular mycorrhizal symbiosis’ effects on

plant reproductive fitness from the two aspects: the direct or

indirect effects of arbuscular mycorrhizal symbiosis on male

function (pollen) and female function (seed) of host plants.

With the development of genomics and transcriptomics,

the future application of various components analysis and

protein-hormone interaction methods in plants will help

us better understand the ecological functions of arbuscular

mycorrhizal symbiosis on plant reproduction. At the same

time, combining molecular biological and ecological methods

to explore the ecological effects of arbuscular mycorrhizal

fungus will allow us to better understand the interaction

mechanisms between plants and arbuscular mycorrhizal

fungus. The combined application of above-mentioned

research methods will make us clearer how arbuscular

mycorrhizal symbiosis manipulate the changes in plant

reproductive fitness.
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