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Drought stress (DS) is a serious challenge for sustaining global crop production

and food security. Nanoparticles (NPs) have emerged as an excellent tool to

enhance crop production under current rapid climate change and increasing

drought intensity. DS negatively affects plant growth, physiological and

metabolic processes, and disturbs cellular membranes, nutrient and water

uptake, photosynthetic apparatus, and antioxidant activities. The application

of NPs protects the membranes, maintains water relationship, and enhances

nutrient and water uptake, leading to an appreciable increase in plant growth

under DS. NPs protect the photosynthetic apparatus and improve

photosynthetic efficiency, accumulation of osmolytes, hormones, and

phenolics, antioxidant activities, and gene expression, thus providing better

resistance to plants against DS. In this review, we discuss the role of different

metal-based NPs to mitigate DS in plants. We also highlighted various research

gaps that should be filled in future research studies. This detailed review will be

an excellent source of information for future researchers to adopt

nanotechnology as an eco-friendly technique to improve drought tolerance.
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Introduction

The world’s population is expected to reach 9.6 billion by the

end of 2050, which requires an increase of 70–100% in crop

productivity to meet the needs of the rising population (Rodrigues

et al., 2017; Alabdallah et al., 2021). However, increases in global

warming and climate change, a reduction in fertile land, overuse

of fertilizers and pesticides, and increases in the intensity of abiotic

stresses cause substantial yield losses (Hasan et al., 2021a; Hasan

et al., 2021b). As a result, the reduction in crop productivity poses

a severe threat to global food security. Therefore, it is imperative

that appropriate measures to eliminate the deleterious impacts of

abiotic stresses on crops are taken to ensure global food security

(Genc et al., 2019; Hasan et al., 2021a). Drought stress (DS) is

severe abiotic stress that negatively affects crop growth and

productivity globally (Seleiman et al., 2021). Successful crop

productivity is a significant challenge in the presence of DS

(Fathi and Tari, 2016). The severity and frequency of DS will

increase in the future, which will pose serious threats to crop

production (Chapman et al., 2021).

DS inhibits seeds germination, plant growth, physiological

functioning, photosynthetic efficiency, and hormonal activities

(Rasheed et al., 2022a; Shah et al., 2022). DS greatly affects the

root morphology and spatial distribution of crops. DS, except in

soils with high moisture content, affects root depth, length, and

surface area (Chun et al., 2021). DS also reduces chlorophyll

synthesis and increases the canopy temperature (CT), which

causes a reduction in photosynthesis and plant metabolic

activities (Morales et al., 2020). Water deficiency also reduces

membrane permeability (Table S1) and increases reactive

oxygen species (ROS) production (Rao and Chaitanya, 2019),

which causes a deterioration in membrane integrity, increases

electrolyte leakage (EL), and causes damage to DNA, proteins,

and lipids (Shah et al., 2017). DS reduced seed yield by lowering

photosynthesis, transpiration, and chlorophyll constituents

(Mafakheri et al., 2010). In another study, Schittenhelm (2010)

studied the impact of DS on the yield and quality of maize (Zea

mays) and sorghum (Sorghum bicolor), and concluded that DS

greatly affected the substrate composition in these crops

(Schittenhelm, 2010). Plants have developed a built-in

tendency to counter the effects of DS; nonetheless, they only

show resilience to a certain extent (Shah et al., 2017; Shah et al.,

2022). Plants accommodate DS by using various mechanisms,

including accumulation of osmolytes, hormones, and activation

of the antioxidant defense system (Hassan et al., 2020; Rasheed

et al., 2022b). Climate change and the consequent frequency of

DS have adversely affected crop productivity globally (Matuszak-

Slamani et al., 2022). To increase crop productivity and counter

the effects of DS, various strategies, including screening and

breeding of tolerant cultivars, osmolytes, hormones, nutrient

application, and microbes, can be used to increase crop
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production (Arslan et al., 2021). These strategies can protect

the plants from DS and substantially increase crop productivity

to meet food needs (Alabdallah et al., 2021).

Nanotechnology (NT) has emerged as a promising field and

is commonly used in the agricultural, food, and medical

industr ies (Alabdal lah and Hasan, 2021) . Various

nanoparticles (NPs), including titanium dioxide (TiO2), iron

oxide (Fe3O4), zinc oxide (ZnO), silicon oxide (SiO2), copper

(Cu-NPs), and selenium (Se-NPs), have received significant

attention recently owing to their non-threatening use in the

agriculture sector (Hafeez et al., 2015; Alabdallah and Hasan,

2021; Hashem et al., 2021). Specific strategies, including

chemical, green, and physical processes, can be used to

produce NPs (Akhtar et al., 2022). NPs have positive impacts

on plant growth and development; however, these effects can

vary based on origin, size, concentration, and time of application

to crops (Rubilar et al., 2013). Recently, NPs have improved

plant tolerance against biotic and abiotic stresses. NPs protect

plants from oxidative damage by increasing the activities of

antioxidants (Ahmed et al., 2021). NPs can reduce drought-

induced toxic effects by decreasing hydrogen peroxide (H2O2)

and malondialdehyde (MDA) accumulation, and maintaining

the efficiency of the photosynthetic apparatus (Adrees et al.,

2020; Ahmed et al., 2021). NPs can also penetrate the plant

chloroplast and reach the photo system-II (PS-II) reaction

center, and increase transmission of electrons and light

absorption in chloroplasts under DS, thereby improving

photosynthetic efficiency and plant growth (Maity et al., 2018).

In addition to their commercial use and prevalence in

various products, there is also concern about the toxicological

and environmental impacts of NPs (Seabra and Durán, 2015).

Their excessive use causes oxidative stress and physiological

abnormalities in plants, resulting in decreased antioxidant

activities and gas exchange characteristics (Wang et al., 2018).

NPs also reduce the mitotic index and disturb the processes of

cell division and root growth (Kumari et al., 2011). NPs also

cause indirect toxicity by changing the growth medium and soil

microbial activities (Ge et al., 2014). Many authors have reported

the positive effects of NPs on growth under DS and a lack of

understanding of the interaction of NPs and intercellular

mechanisms in plants under DS. Therefore, in this review, we

present information on different biochemical, physiological, and

molecular mechanisms mediated by NPs to induce DS tolerance

in plants. We also identify various research gaps that should be

filled in future research studies for the use of NPs in the future. A

better understanding of NPs and drought-stressed plants will

open new opportunities to improve production in drought

conditions. This comprehensive review will be valuable source

of information to conduct more studies and develop more eco-

friendly NPs of different metals to counter the devastating

impact of DS on plants.
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Synthesis and characterization of
metal oxide nanoparticles

The conventional methods for producing NPs are based on

chemical and physical processes involving the use of dangerous

and expensive substances, which have large energy requirements

and adverse impacts on the environment (Alabdallah and

Hasan, 2021). The green synthesis of NPs has recently

attracted significant attention owing to their environmentally

friendly nature (Durán and Seabra, 2012). Compared to

conventional methods (chemical and physical), the green

synthesis of NPs by various organisms (algae, bacteria, fungi,

and plants) (Figure 1) provides an excellent environmentally

friendly option (Durán and Seabra, 2012; Rubilar et al., 2013).
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Green synthesized NPs have excellent photo-catalytic

activity, chemical stability, and oxidation potential. Moreover,

green synthesized NPs also have potent antimicrobial and

antibacterial properties, which enable NPs use in a wide range

of industries (Singh et al., 2016; Bahri et al., 2021). Zn-NPs have

been extensively used in the formulation of cosmetics and sun-

screen lotions, and they possess excellent antibacterial and

anticancer properties (Dutta et al., 2012; Bogutska et al., 2013;

Selvakumari et al., 2015). Zn-NPs are stable and affordable to

synthesize and have shown an appreciable potential to improve

crop production under abiotic stresses (Javed et al., 2017; Deka

et al., 2019). Iron oxide NPs are also significantly used in

biomedical fields, including cancer diagnosis, treatments, drug

delivery, and nuclear magnetic resonance imaging (Seabra et al.,
FIGURE 1

Nanoparticles (NPs) play a key role in drought tolerance in plants. NPs can be prepared by two main methods (physical or chemical). Green
synthesis of NPs is an environmentally friendly technique. There are different groups of NPs, such as metal-based, metal-oxide-based, and
carbon-based NPs. NPs increase the expression of genes under drought stress (DS) and protect plants from toxic effects. This Figure is created
with BioRender.com.
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2014). Molybdenum (MO) is toxic at higher concentrations, and

it has lower solubility in water, therefore can be used in high

pressure and high temperature applications (Javed et al., 2020).

MO-NPs can be produced by a minuscule amount of in situ

radioactivity (Feng and Weicheng, 2016). MO-NPs can also be

produced by a green synthesis approach. In this technique, the

leaves of different plants can be taken and an extract prepared by

standard procedures. After obtaining the extract, it is heated for

5–10 minutes and filtered, which can be used later to prepare the

MO-NPs (Sreevani and Anierudhe, 2022). The green synthesis

of MO-NPs is an environmentally friendly approach compared

to chemical synthesis (Sreevani and Anierudhe, 2022).

Various capping agents and structural hosts used to limit the

growth of NPs. Phenolic compounds are used as capping agents

to improve colloidal stability and prevent the aggregation of NPs

(Alabdallah et al., 2021). Tannins are a non-toxic and naturally

occurring compound derived from plants. Tannins can be used

to create NPs with appreciable potential to improve plant

performance (Herrera-Becerra et al., 2010). Similarly, peel

extracts from Plantago spp. and Malus domestica, as well as

extracts from Tridax procumbens, also possess excellent

potential as a capping agents and can be used to prepare NPs

(Senthil and Ramesh, 2012; Venkateswarlu et al., 2013).
Nanoparticle types and their mode
of uptake in plants

The properties of NPs, such as electrical conductance,

magnetism, chemical reactivity, optical effects, and physical

strength, are different from bulky materials, owing to their large

surface area and small size (Asha and Narain, 2020). Nano-

materials are considered to form a link between their respective

NPs and bulk materials (Boisseau and Loubaton, 2011). Different

methods of NP preparation have been developed, which can be

used to develop NPs of diverse shapes and sizes. Generally, two

other processes (bottom-up and top-down) are used to create NPs.

The bottom-up process creates NPs (SnS, MoS2, and Ags) from

atoms and molecules, whereas the top-down approach creates NPs

(CuO, MgO, ZnO, and graphite oxide (GO) from their macro-scale

counterparts. The top-down technique involving the breaking of

bulky materials into NPs, and this approach is an extension of the

techniques being used for synthesis of micron-sized particles (Abid

et al., 2021). Examples of this technique are high energy ball milling,

atomic force manipulation, gas condensation, and aerosol sprays.

On the other hand, the bottom-up technique refers to building

material from the bottom: atom by atom, molecule by molecular,

and cluster by cluster (Abid et al., 2021). Sol-gel synthesis, colloidal

precipitation, template-assisted sol-gel, and electro-deposition are

well known examples of bottom-up techniques to prepare NPs

(Abid et al., 2021). Both top-down and bottom-up techniques are

used to develop NPs around the globe, and each technique has its

own advantages and disadvantages.
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NPs can have one dimension (surface films), two dimensions

(strands or fibers), or three dimensions (particles). Moreover,

they can exist as spherical, tubular, or irregular shapes (Das and

Das, 2019). NPs can be divided into four different groups; the

first group is based on metal NPs (Au, Ag, Fe, Pt, Zn) (Figure 1),

the second group is carbon-based NPs (carbon nanotubes,

fullerenes, and grapheme), the third group is based on

polymer compounds, and the fourth group is based on metal

oxide NPs (FeO2, TiO2, ZnO) (Figure 1) (Paramo et al., 2020).

The biological functioning of NPs depends on their

concentrations, properties, and methods of application (Ali

et al., 2021b). Different techniques, including seed treatments,

foliar sprays, and soil application, are used to apply NPs to crops

(Mahdy et al., 2020). NPs enter into plant tissue from the

wounded regions and root junction; from these regions, they

enter into cell walls and membranes and then move into plant

leaves (Tripathi et al., 2017a). NPs also penetrate leaf cuticles,

stomata, trichrome, hydathodes, and cell cytoplasm (Sharif et al.,

2013). In cell cytoplasm, NPs bind with various organelles,

interfering with different metabolic processes (Zhang and

Monteiro-Riviere, 2009). NPs are also directly absorbed into

the seed through the parenchymatic intercellular spaces in the

seed coat (Tripathi et al., 2017b).

NPs’ accumulation, translocation, and uptake largely depend

on plant species, size, and type of NPs, stability of NPs, and

interaction of NPs with roots, soil, and soil microbes (Ali et al.,

2021b). For instance, it has been noted that the accumulation of

metal and metal oxide bases NPs by roots is significantly affected

by the properties of the NPs and environmental conditions

(Mittal et al., 2020; Ali et al., 2021b). For instance, it was

noted that the application of Ag-NPs considerably increased

the concentration of these NPs in the roots and shoots of lettuce

plants (Doolette et al., 2015). It has also been recorded that root

microbes significantly affected the mobility of NPs applied

through foliar sprays, soil application, and root application

(Feng et al., 2013). For instance, it was recorded that

mycorrhizae reduced the uptake of Ag-NPs in the roots of

Trifolium repens (Feng et al., 2013). Conversely, it was noted

that the uptake of Se-NPs significantly increased owing to the

presence of microbes (Durán et al., 2013).

Mucilage significantly affects the absorption of elements and

the growth of soil microbes (Mckenzie et al., 2013). Mucilage

acidifies the rhizospheric environment (Schaller et al., 2013),

which as a result improves the uptake of metal-based, carbon-

based, and all other types of NPs by plants (Schwab et al., 2016).

The methods of application, climatic conditions, size, and

concentration of NPs are the fundamental factors affecting the

adsorption of NPs (Wang et al., 2013). Moreover, the

morphology of leaves and the presence of trichomes, waxes,

and exudates on the leaf surface also affects the absorption of

NPs through the leaf surface (Larue et al., 2014). Furthermore,

the presence of chemicals in pesticides also affects the absorption

of NPs (Schwab et al., 2016).
frontiersin.org

https://doi.org/10.3389/fpls.2022.976179
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rasheed et al. 10.3389/fpls.2022.976179
Many studies noted that the size of the cell wall’s pores is a

significant issue in the entry of NPs into the plant cell. Small NPs

can pass directly into root epidermal cells (Ali et al., 2021a);

however, plant roots’ epidermal cells are considered semi-

permeable and contain tiny pores that restrict the entry of

large NPs. Moreover, the leaf cuticle also acts as a barrier and

restricts the access of NPs with a size of < 5 nm (Ali et al., 2021a).

Generally, the basic structure of NPs plays the dominant role in

the uptake and translocation of NPs (Raliya et al., 2016).

Therefore, it is imperative that laboratory studies be

performed to determine the exact impacts of NPs, considering

their different physical and chemical characteristics (Zhang et al.,

2012). More studies are also needed to understand the

absorption, accumulation, and translocations of NPs in plant

bodies. Moreover, it would be fascinating to determine the

movement as well as localization of NPs to various structures,

including cellular organelles, and to monitor and track NPs.
Role of nanoparticles against
drought stress

NPs enter the plant body through the roots and leaves, and

after entering the plant body, NPs induce biochemical,

morphological, molecular, and physiological changes in the

crops (Khan et al., 2019). These changes significantly affect

plant growth depending on the concentration, size, and

application method of the NPs. Moreover, the size, chemical

nature, and reactivity of NPs can substantially impact plants.

The available evidence indicates that NPs mitigate the adverse

effects of DS and appreciably improve plant growth and

development (Ahmed et al., 2021).
Nanoparticles improve membrane
stability and plant–water
relationships to confer
drought stress

DS negatively affects cellular membranes and plant–water

relationships, causing a significant reduction in plant growth

(Hassan et al., 2020). DS induced ROS production, which

damages cell membranes, causes lipid peroxidation, and

increases MDA accumulation (Das and Roychoudhury, 2014).

The application of NPs (ZnO) significantly decreased the MDA

and H2O2 accumulation and maintained membrane stability

which reduced the loss of essential osmolytes (Mohamed et al.,

2017; Sun et al., 2020; El-Zohri et al., 2021). Water deficiency

substantially reduced membrane stability, efficiency of PS-II, and

chlorophyll contents (Semida et al., 2021). However, the
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exogenous application of NPs (ZnO) maintained membrane

stability and cell water status under DS, thereby improving

efficiency of PS-II and metabolic processes (Yan et al., 2016;

Zhao et al., 2017; Semida et al., 2021).

The application of NPs improved plants’ anatomical

features, which in turn maintained membrane stability and

cell stability, thereby ensuring better water uptake (Yan et al.,

2016; Hafez et al., 2020). The application of NPs (ZnO) induces

changes in root morphology and increases the formation of

lateral roots and root biomass, consequently improving water

uptake and maintaining better water status under DS (Ahmad

et al., 2017; Behboudi et al., 2018; Alsaeedi et al., 2019; Dimkpa

et al., 2019; Zahedi et al., 2020a). Moreover, in another study, it

was noted that SiO2 NPs significantly reduced the negative

impacts of DS by increasing photosynthesis (Table S2),

transpiration, relative water content (RWC), and water

uptake (Sutulienė et al., 2021). Additionally, NPs also

increase root hydraulic conductivity, gene expression, and

stress and hormonal signaling, which allows better water

uptake and thereby ensures better plant–water status under

DS (Das and Das, 2019). NPs also increase expression of

aquaporins, maintain hydraulic pressure, increase root

length, and allow better root penetration, allowing better

water uptake by plants (Faraji and Sepehri, 2020). In

conclusion, NP-based maintenance of membrane stability

and plant–water relationship can reduce the adverse effects of

DS. Nonetheless, the effect of NPs on membrane compositions,

osmolyte accumulation, and transportation of different solutes

across the membrane needs further study to better understand

the role of NPs against DS.
Nanoparticles improve nutrient
uptake under drought stress

DS significantly disturbs nutrient homeostasis and induces

nutrient deficiency, which adversely affect plant growth

(Hassan et al., 2020). NPs play a significant role in nutrient

homeostasis and significantly improve nutrient uptake,

translocation, and allocation to different plant parts

(Kopittke et al., 2019). Water deficiency reduced the

concentration of nitrogen (N), potassium (K), manganese

(Mn), and Zn in plants (Semida et al., 2021), which was a

consequence of a reduction in nutrient uptake, transpiration

flux, and membrane stability (Dimkpa et al., 2017). The

application of NPs (ZnO) through soil and applied by foliar

spray significantly improved the uptake of N, phosphorous (P),

K, and Zn, and attenuated the adverse effects of DS (Mangena,

2018; Dimkpa et al., 2019; Fatollahpour Grangah et al., 2020;

Mustafa et al., 2021; Semida et al., 2021; Akhtar et al., 2022).
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Ahmed et al. (2021) noted that Fe- and Hg-NPs significantly

increased N (51%), P (61%), K (27%), calcium (Ca) (53%), and

magnesium (Mg) (62%) uptake compared to the control. The

combination of Si-NPs and plant growth-promoting

rhizobacteria (PGPR) significantly improved photosynthesis,

RWC, antioxidant activities, and nutrient uptake in maize

plants grown under DS (Hafez et al., 2021). Researchers from

Iraq also noted that applying NPs in combination with bio-

fertilizers significantly improved nutrient uptake, nodule

formation, and nitrogenase activity of P. vulgaris (Al-Burki

and Al-Ajeel, 2021). Wheat and sorghum plants treated with

Zn-NPs showed a significant improvement in productivity and

nutrient uptake (Dimkpa et al., 2017; Dimkpa et al., 2019). The

application NPs significantly improved the uptake of nutrients,

nitrate reductase activity, and assimilation of N, which in turn

improved the synthesis of proteins and amino acids (Yuan et al.,

2013). The application of NPs enhances the sequestration of

nutrients to plant roots and increases nutrient uptake by plants

(Jaberzadeh et al., 2013). Additionally, the use of NPs increases

water use efficiency, which also results in substantial

improvements in nutrient uptake and plant growth

(Jaberzadeh et al., 2013). In conclusion, the use of NPs in

plants improves nutrient uptake, plant growth, and DS

tolerance. Nonetheless, the role of NPs in nutrient signaling

and nutrient channels should be explored for future possibilities.
Nanoparticles protect
photosynthetic apparatus and
improve photosynthesis under
drought stress

Water deficiency decreases chlorophyll synthesis, PS-II

efficiency, and electron flow rate, thereby negatively affecting

overall plant photosynthetic efficiency (Semida et al., 2021).

Applying NPs (ZnO) improved the synthesis of chlorophyll,

chlorophyll fluorescence, and activity of chlorophyll synthesis

enzymes (chlorophyllase), which in turn improved the

photosynthetic efficiency under DS (El-Mageed et al., 2021;

Semida et al., 2021). The exogenous application of NPs also

stabilizes the ultra-structure of chloroplast and mitochondria,

which helps plants to maintain their photosynthetic efficiency

under DS (Rahmatpour et al., 2018).

The application of NPs (TiO2) increases light-induced water

hydrolyzation into oxygen, electrons, and protons (Silva et al.,

2022), which ensures the entry of electrons and protons into the

electron transport chain and results in a considerable increase in

plant photosynthetic efficiency (Alabdallah et al., 2021). In addition,

NPs (TiO2) also improve the expression of genes (LHCII-b) in the

thylakoid membrane, which promotes light absorption in cell

chloroplast (Figure 2) (Ze et al., 2011). Moreover, NPs (TiO2)
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also improve Ribulose-1,5-bisphosphate carboxylase/oxygenase

(RuBisCO) activity, nitrogen assimilation, and nitrate reductase

activity, which in turn ensure better photosynthetic performance

under DS and improve photosynthetic efficiency in plants under DS

(Yuan et al., 2013; Ali et al., 2021a).

Stomata control the exchange of water vapors and CO2

between the atmosphere and leaf interior surface (Suzuki et al.,

2013). DS also activates the ABA signaling pathway that induces

stomata closure (Sierla et al., 2016; Faraji and Sepehri, 2020;

however, application of NPs down-regulated the H2O2-mediated

stomata closing and maintained better CO2 intake

(Djanaguiraman et al., 2018). The application of NPs (TiO2)

improves photosynthetic pigments and gas exchange

characteristics by increasing the activities of enzymes in CO2

fixation and synthesis of chlorophyll (Mohammadi et al., 2016;

Faraji and Sepehri, 2020).

NPs also improve light absorption in chloroplast and

enhance electron transport, efficiency of PS-II, O2 evolution,

and photo-phosphorylation, improving the plant photosynthetic

efficiency under DS (Shafea et al., 2017). NPs also increased the

uptake of Ca, Mg, N, K, and iron (Fe), and improved gas

exchange characteristics, which ensured better photosynthesis

under DS (Faraji and Sepehri, 2020). Carotenoid works as an

antioxidant to protect the chlorophyll from oxidative damage

under stress conditions (Emiliani et al., 2018). Applying NPs

(CuO) significantly improves carotenoid contents, which protect

the chlorophyll from degradation and enhance the chlorophyll

concentration, thereby improving photosynthetic efficiency

under DS (Van Nguyen et al., 2022). In conclusion, the

application of NPs is an effective technique that improves

photosynthesis by increasing nutrient uptake, and improving

chlorophyll synthesis and efficiency of PS-II.
Nanoparticles improve osmolyte
accumulation and maintain
hormonal crosstalk to confer
drought tolerance

NPs modulate the accumulation of osmolytes and hormones

that reduce oxidative stress by strengthening antioxidant

machinery (Silva et al., 2022). Proline accumulation improves

plant–water status, stabilizes proteins, DNA, enzymes, and

cellular membranes, and scavenges the ROS, protecting plants

from drought-induced oxidative damage (Farooq et al., 2017).

The application of NPs (TiO2) induces the P5CS1 gene encoding

d1-pyrroline-5-carboxylate synthetase, which is involved in

proline synthesis (Mohammadi et al., 2016). NPs up-regulate

the synthesis of proline and sugars that maintain cellular

membranes, proteins, and enzymes under DS, thereby

improving plant performance under DS (Gohari et al., 2020;
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Zhang et al., 2020). Similarly, NPs (TiO2) also appreciably

improved the accumulation of proline, soluble sugars, total

proteins, glycine betaine, and phenolic compounds, and

improve plant growth under DS (Kardavan Ghabel and

Karamian, 2020; Mustafa et al., 2021).

The application of NPs increases the synthesis of indole acetic

acid (IAA) and gibberellins (GA), which in turn improve plant

growth under DS (Churilova et al., 2017; Li et al., 2021). The

application of Fe-NPs greatly enhanced the growth and yield of

strawberry (Fragaria × ananassa Duch.) in combination with

salicylic acid (SA), which is a significant growth hormone in

plants (Havas and Ghaderi, 2018). Sun et al. (2020) noted that

NPs induced enhanced drought tolerance by increasing melatonin

synthesis, which indicates the role of NPs in combating DS in

crops by increasing endogenous hormones. Mustafa et al. (2021)

noted that applying 40 ppm TiO2-NPs increased IAA and GA

levels by 49.07% and 27.43% respectively, and decreased ABA

levels by 31.32% (Mustafa et al., 2021). In conclusion, NP-

mediated maintenance of hormonal balance can improve

drought tolerance in plants. The effect of NPs on the synthesis

and concentration of several plant hormones like cytokinin (CK),

ethylene (ET), and ABA has not yet been explored; therefore, it is

imperative that more studies are undertaken to explore the role of

NPs in the synthesis of these hormones.
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Nanoparticles improve the
accumulation of phenolics
compounds under drought stress

DS significantly reduces the accumulation of phenolic

compounds; however, NPs possess an excellent potential to

improve their accumulation in plants. The exogenous supply

of ZnO-NPs (25 and 50 mg/L) significantly enhanced the

concentration of phenolic compounds under DS (El-Zohri

et al., 2021), which in turn increased the antioxidant activities

and thereby reduced MDA and H2O2 accumulation (El-Zohri

et al., 2021). Javed et al. (2017) investigated the impact of ZnO-

NPs on phenolic contents of Stevia rebaudiana, and they noted

that ZnO-NPs (100 and 1000 mg/L) significantly reduced

phenolic concentration. In addition, it has been reported that

total phenolic compounds and non-enzymatic activities (DPPH,

ABTS, and FRAP) (Figure 2) significantly increased in NP-

treated plants, reducing oxidative damage by decreasing lipid

peroxidation (Sun et al., 2021; Ghani et al., 2022).

Anthocyanins are a group of phenolic compounds with

excellent antioxidant properties (Hoekstra et al., 2001). Similarly,

polyphenol compounds also have tremendous antioxidant potential

(Posmyk et al., 2009). The application of Si- and Se-NPs showed a
FIGURE 2

Nanoparticles (NPs) play a key role in enhancing drought stress (DS) tolerance in plants. NPs reduce MDA accumulation, maintain membrane
stability, induce the expression of stress-related proteins, improve nutrient and water uptake, increase photosynthesis, and increase grain yield
and harvest index. This Figure is created with BioRender.com.
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marked increase in anthocyanin, phenolic, and antioxidant activity

(Zahedi et al., 2019; Zahedi et al., 2020a; Zahedi et al., 2021).

Similarly, application of NPs (TiO2) also increases gene expression

involved in the production of enzymes linked with syntheses of

syringic, sinapic, and ferulic acids (Shoarian et al., 2020).
Nanoparticles detoxify ROS and
strengthen the antioxidant defense
system under drought stress

The deficiency of water causes oxidative stress by increasing

the accumulation of MDA, H2O2, and ROS (Sutulienė et al.,

2021). NPs possess an excellent potential to improve antioxidant

activity to mitigate the detrimental impacts of DS. The

application of NPs (ZnO, Se, and Si) significantly improved

APX, CAT, and SOD activity (Figure 2), which reduced drought-

induced oxidative damage (Hernandez-Viezcas et al., 2011;

Khan et al., 2017; Venkatachalam et al., 2017; Zahedi et al.,

2020b; Ali et al., 2021a; Sutulienė et al., 2021). In the same

context, NPs also increase the relative abundance of Cu/Zn-

SOD, APX, and CAT (Table S3) under DS, which noticeably

scavenge the ROS (Sun et al., 2020). The application of NPs

(ZnO) also improves non-enzymatic antioxidant activities

(phenolic compounds, AsA) that work in coordination with

antioxidant enzymes (APX, CAT, and SOD) (El-Zohri et al.,

2021). NPs (SiO2) significantly increased non-enzymatic

activities by increasing TPC, DPPH, and FRAPS activity in

plants grown under DS (Miller and Rice-Evans, 1997;

Sutulienė et al., 2021). NPs trigger the accumulation of

antioxidant genes, osmolytes, nutrients, and amino acids,

which increases antioxidant activities and thus protects the

plants from oxidative stress (Mittal et al., 2020).

The use of NPs (TiO2) also increases nitrate reductase activity

and accumulation of osmolytes. NP-mediated increases in NR

activity leads to NO formation being induced, which stimulates

proline and glycine betaine (GB) synthesis, and protects the plants

from oxidative damage (Khan et al., 2020). NPs also significantly

increases the accumulation of glucose, fructose, trehalose, and

sucrose, which increase antioxidant activities and, as a result,

improve drought tolerance (Heikal et al., 2022). NP-mediated

improvements in antioxidant activities mitigate the adverse effects

of DS on plants by scavenging the ROS.
Nanoparticles improve the
expression of stress-responsive
genes under drought stress

Drought responsive genes including GmRD20A, GmDREB2,

GmERD1, GmFDL19, GmNAC11, GmWRKY27, GmMYB118,
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and GmMYB174 and their expressions are significantly up-

regulated by the application of NPs (Kandhol et al., 2022)

(Figure 1). In another study, Yang et al. (2018) also noted that

CuO-NPs and ZnO-NPs significantly increased the expression

of genes linked with drought tolerance in the roots of wheat

plants (Yang et al., 2018). Moreover, CS-NPs up-regulated the

expression of genes linked with alkaloid biosynthesis and

increased the antioxidant potential of Catharanthus roseus

grown under DS (Ali et al., 2021a). The up-regulation of

deacetylvindoline-4-Oacetyltransferase (DAT), strictosidine

synthase (STR), peroxidase 1 (PRX1), and geissoschizine

synthase (GS) genes following application of CS-NPs increased

the concentration of alkaloid contents (Vakilian, 2019).

Ag-NPs increased the expression of genes associated with

IAA, 9-cis carotenoid dioxygenase (NCED3), and RD22 proteins

in response to DS, and they also suppressed the ACC 7 synthase

(ACS7) and ACC oxidase 2 genes in Arabidopsis thaliana grown

under DS (Pérez-Labrada et al., 2020). Similarly, Cu-NPs

increased the process of glycolysis, the tricarboxylic acid cycle,

and starch degradation mechanism, leading to significant

improvements in drought tolerance (Yasmeen et al., 2017).

Additionally, ceria-based NPs significantly increased the

protein expression associated with stress tolerance and down-

regulated the proteins involved in the storage of nutrients and

carbohydrate metabolism in kidney beans (Majumdar

et al., 2015).

NPs also increased the expression of GmWRKY27,

GmMYB118, and GmMYB174, which increased hormonal

signaling, synthesis of secondary metabolites, lignin, seed

germination, and plant responses against DS (Rushton et al.,

2010). The higher expression of the GmWRKY27 gene in NP-

treated plants suggested that NPs are linked with regulation of

ABA biosynthesis and functioning of stomata under DS (Linh

et al., 2020). Likewise, Fe- and Co-NPs significantly increased

the expression of GmRD20A, suggesting that NPs induce Ca2+-

binding protein expression under DS (Linh et al., 2020).

Recently, Sun et al. (2020) also noted that Zn-NPs increased

the expression of Fe/Mn-SOD, Cu/Zn SOD, APX, and CAT,

which improved drought tolerance. Yalda Raeesi Sadati et al.

(2021) studied the expression pattern of some transcription

factors (TFs) in wheat under DS, and the application of Zn-

NPs significantly increased the expression of WRKY1, HMA2,

and ZIP1 genes, resulting in a substantial increase in drought

tolerance. In conclusion, the application of NPs increased gene

expression which in turn increased hormonal signaling,

synthesis of secondary metabolites, and antioxidant activities,

thereby improving drought tolerance in plants. Nonetheless,

the expression of NP-based activation genes has not been

studied in depth, and more research is necessary to explore

the mechanisms behind increases in drought tolerance

following increases in gene expression after the application

of NPs.
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NPs bring ultra-structural changes
to induce drought tolerance

Applying Zn-NPs (100 ppm) clearly improved the length

and width of stem and vascular cylinder, and increased the

thickness of the cortex and vascular cylinder (Semida et al.,

2021). The plant processes, including physiological, biochemical,

and anatomical mechanisms, are responsible for the

performance of plants, and these functions are linked to a

plant’s internal anatomy (Petrov et al., 2018). Application of

NPs improved anatomical parameters, RWC, membrane

stability, and nutrient status (Hafez et al., 2020). Water

deficiency decreases vessel diameter and vascular length and

width. A foliar spray of Zn-NPs significantly increased the

thickness of the epidermis, the size and width of the vascular

bundle, and the diameter of the vessel, which improved drought

tolerance (Al-Dhalimi and Al-Ajeel, 2020). There is limited

information available in the literature regarding the role of

NPs on plant ultra-structural changes under DS. Therefore,

more studies are urgently required to investigate the role of

NPs on these aspects under DS.

Nanoparticles improve growth,
yield, and quality under
drought stress

The primary response of DS is stomata closing, which affects

CO2 diffusion, reduces photosynthesis, and diminishes plant growth

(Abdelkhalik et al., 2019). The application of NPs improves plant

growth by triggering hormonal signaling, root activity, water

uptake, and antioxidant activities (Ahmad et al., 2017). A foliar

spray of NPs improves photosynthetic efficiency, synthesis of

secondary metabolites and chlorophyll, and antioxidant (APX

and SOD) activity (Table S4), thereby improving plant growth

under DS (Djanaguiraman et al., 2018; Zahedi et al., 2019; Semida

et al., 2021; Van Nguyen et al., 2022). The soil and foliar application

CS-NPs (60 and 90 ppm) reversed the adverse effects of DS and

improved the yield and yield components compared to the control

(Behboudi et al., 2018). CS-NPs have a positive ionic charge and

ensure slow nutrient release in plants, which improves grain weight,

plant height (PH), and harvest index (HI) under DS (Abdel-Aziz

et al., 2016).

NPs also improve water and nutrient uptake and reduce the

production of harmful free radicals by increasing antioxidant

activities that can boost plant growth under DS (Behboudi et al.,

2018). The application of NPs also significantly improved the

quality of crops grown under DS. Likewise, it has been recorded

that the application of NPs led to a maximum concentration of

grain protein contents compared to the control (Behboudi et al.,

2018). The application of NPs increases the N uptake, which

improves protein synthesis in plants under DS (Hatami and
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Ghorbanpour, 2014; Behboudi et al., 2018). DS stress reduces

protein and starch contents, and it has been reported that the

application of Zn-NPs improved the starch and protein contents

under DS (Waqas Mazhar et al., 2022). In another study, applying

Zn-NPs enhanced the amylase activity, increasing nutrient uptake

and mobilization (Do Espirito Santo Pereira et al., 2021).

Itroutwar et al. (2020) noted that ZnO-NPs applied by seed

priming markedly improved rice bio-fortification grown under

DS (Itroutwar et al., 2020). The experiments conducted by

Yasmeen et al. (2017) showed that Fe- and Cu-NPs significantly

improved the spike length, grain/spike, and grain weight of wheat

plants grown under DS. Similarly, in rice plants, ZnO-NPs also

increased nutrient uptake by increasing the synthesis of enzymes

involved in nutrient uptake and acquisition (Khanra et al., 2018).

Growth, yield, and quality are the most significant parameters of

any crop badly affected by DS. NP-mediated yield and quality

enhancement is linked with improved antioxidant activity,

photosynthetic efficiency, and nutrient and water uptake.
Toxic effects of nanoparticles

NPs interact with plants by various chemical and physical

means, and these interactions cause various signaling that leads to

the production of ROS. NP-mediated increases in ROS

production can cause damage to plant cells and substantially

reduce the plant growth and development (Nel et al., 2006; Xie

et al., 2019). The toxic effects of NPs depend on the size, shape,

and properties of the NPs. Certain metal NPs, including iron,

silver, platinum, and gold, and metal oxide NPs, including Fe3O4,

ZnO, and TiO2, used in various sectors can be dangerous to

human health. These NPs come into contact with cells and

damage protein, DNA, and membranes, and can induce a

significant reduction in plant growth (Hsin et al., 2008). These

NPs can also enter into the blood stream and reach vital organs

where they can cause serious toxicity (Hsin et al., 2008). Soil is

considered a large reservoir of NPs, and plant roots absorb NPs

and nutrients from soil by active transport (Khan et al., 2021).

After being absorbed by the roots, NPs infiltrate into the

epidermis of cell walls and root cortex, and then move to upper

parts of the plant where they can cause serious toxicity (Rajput

et al., 2018). At higher concentrations, NPs also affect plant

growth by decreasing chlorophyll synthesis, photosynthetic

performance, and antioxidant activities (Wang et al., 2018).

NPs, being small in size, get absorbed into biological systems

around 15–20 times faster compared to conventional bulky

materials (Khan et al., 2021). NPs are absorbed by soil systems,

and they adversely affect natural fauna, including bacteria, fungi,

and nematodes (Handy and Shaw, 2007; Khan et al., 2021).

Studies indicated that NP-mediated toxicity in plants, algae, and

other microbes is associated with physical damage and oxidative

stress generated by ROS production (Hou et al., 2018).
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In addition to plants, NPs cause cyto- and genotoxicity in

mammals because of the production of ROS (Khan et al., 2015).

NPs also enter into the environment through discharge from

nano-powered items, discharge during use, and discharge after

removal of NPs from materials containing them (Gottschalk

et al., 2013; Tolaymat et al., 2017). Likewise, in aquatic

environments, NPs also change photosynthetic color structure,

efficiency of PS-II, and growth of amphibian plants (Jacobasch

et al., 2014). Nanotechnology has emerged as an important tool

to improve energy consumption efficiency and environmental

health, and to solve various health problems. It is considered an

important approach that can increase manufacturing production

at reduced costs (Khan et al., 2021). NPs can be produced by

physical, chemical, biological, and mechanical means, and each

method of synthesis has its own advantages and disadvantages.

The physical method of NP synthesis is expensive, whereas

chemical methods can pose environmental risks along with

slow growth rates (Pandey and Jain, 2020). The biological

method of NP synthesis is environmentally friendly and non-

toxic, and this eco-friendly approach is more acceptable than

traditional methods (Patra and Baek, 2014).
Conclusion and future perspectives

DS significantly reduces plant growth and development by

disturbing the plant’s biochemical, molecular, and physiological

processes. However, the use of NPs substantially improves plant

performance and provides substantial resistance to plants

against DS. The use of NPs enhances the stability of

membranes and nutrient and water uptake, and protects the

plant photosynthetic apparatus from the damage caused by DS,

thereby improving plant growth under DS. The application of

NPs also enhances the accumulation of stress-protective

hormones, osmolytes, and phenolics. Moreover, NPs also

enhance the expression of stress-responsive and antioxidant

genes, leading to significantly improved mechanisms against

DS. In recent years, the role of NPs in mediating the various

mechanisms to induce DS tolerance has been well explored.

The role of NPs in seed germination has not yet been studied;

therefore, it is necessary that the role of NPs in germination

mechanisms is examined, including water uptake by seeds, radical

protrusion, and activation of enzymes involved in food

mobilization. In addition, the role of NPs on the metabolic

aspects of gibberellin and abscisic acids should be explored

because these hormones are imperative in seed germination. The

application of NPs improves nutrient uptake under DS; however,

the role of NPs on nutrient channels and ionic transporters in plants

under DS should be explored. The application of NPs significantly

protects photosynthetic apparatus; however, the role of NPs on

intercellular signaling, stomata movements, and regulation of anion

channels in guard cells of plants under DS should also be explored.
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The role of NPs in osmolytes and hormone accumulation

has been well studied; however, more studies are needed to

explore the role of NPs in accumulation hormones and

osmolytes in plants under DS. The effect of NPs on plants’

ABA-dependent and independent responses to DS should also

be studied in detail. The effect of NPs on salicylic acid, gibberellic

acid, cytokinin, ethylene, proline, and glycine-betaine should be

explored at the transcriptomic level. Moreover, the role of NPs

on gene expression, and enzymes linked with the synthesis of

these osmolytes, should also be explored. It would also be

interesting to determine the role of NPs in crosstalk of

different hormones and osmolytes: this research gap should be

filled. Additionally, identification as well as characterization of

NP-mediated gene expression involved in hormone-mediated

stimulation of osmolyte biosynthetic pathways will open new

research directions.

The role of NPs in defensive and antioxidant genes should

also be studied to increase our knowledge of inducing DS

tolerance in plants. There is no information available about the

metabolically active roles of NPs under DS; therefore, this area

should be explored. Different types of NP transporters for the

uptake of NPs have been identified in plants; however, the various

transporters and channel proteins responsible for the loading of

NPs have not yet been explored. Therefore, it is necessary that this

role of NPs be explored in future research programs. It would also

be fascinating to study the distribution of NPs in cell walls and cell

nuclei to enhance tolerance against DS.

The effect of NPs on proteomics would also be worthwhile in

order to increase our understanding of the different mechanisms

mediated by NPs to induce DS tolerance. Morphological as well as

physiological proteomic studies on NP- induced toxicity would

determine the particle size and NP chemistry and concentration

required for each plant species to ascertain the level of plant

response against DS. In addition, more studies are required to

establish whether NPs exert toxicity because of their large surface

area, size, and release of metal ions. Additionally, -omic

techniques, including integration genomics, transcriptomics,

proteomics, and metabolomics, are also needed to determine the

impact of NPs on plants.

Studies on the effect of NPs on proteomics would also be

worthwhile to increase our understanding of the different

mechanisms mediated by NPs to induce DS tolerance. The

effects of NPs on proteomics and genetic factors have been

poorly studied, and it would be beneficial to explore these

aspects in future studies. In addition, combining microbes and

NPs to induce DS tolerance would also be an attractive area of

research. Moreover, developing detailed knowledge about the

interactions of NPs and plants would facilitate a better

understanding of DS tolerance in plants. Research is necessary

to optimize the timing and concentration of NPs under diverse

climate conditions for different crops. The majority of studies

concentrate on the impact of NPs on plants under DS; however,
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as plants often face multiple stresses during their growth cycle,

exploring the effects of NPs on plants under a combination of

different stresses is necessary.
Author contributions

AR conceptualized and prepared the manuscript. HL, MMT,

AM, MN, ANS, MN, MTA, SN, MM and MUH reviewed and

editing. ZW supervised the study.
Funding

'The research was supported by the National Natural Science

Foundation of China (31760350 and 71963020), the Training

Program for Academic and Technical Leaders in Major

Discipline in Jiangxi Province (20204BCJL22044), the Natural

Science Foundation of Jiangxi (20202BABL205020), the Key

Research and Development Program of Jiangxi Province

(20192ACB60003), and the Jiangxi Agriculture Research

System (JXARS-18).
Acknowledgments

The authors are thankful to ZW for his supervision and

support during the entire research work. The authors are also

thankful to Dr. Muhammad Aamer for his valuable suggestions
Frontiers in Plant Science 11
to improve the quality of the manuscript. The authors would

also like to thank the Deanship of Scientific Research at King

Khalid University, Abha, KSA for supporting this work under

grant number (R.G.P.2/197/43).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fpls.2022.976179/full#supplementary-material
References
Abdel-Aziz, H. M., Hasaneen, M. N., and Omer, A. M. (2016). Nano chitosan-
NPK fertilizer enhances the growth and productivity of wheat plants grown in
sandy soil. Span. J. Agricul. Res. 14, e0902–e0902. doi: 10.5424/sjar/2016141-8205
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“Nanoparticles in plants: morphophysiological, biochemical, and molecular
responses,” in Plant life under changing environ (Elsevier), 289–322.
doi: 10.1016/B978-0-12-818204-8.00016-3

Petrov, P., Petrova, A., Dimitrov, I., Tashev, T., Olsovska, K., Brestic, M., et al.
(2018). Relationships between leaf morpho-anatomy, water status and cell
membrane stability in leaves of wheat seedlings subjected to severe soil drought.
J. Agron. Crop Sci. 204, 219–227. doi: 10.1111/jac.12255

Posmyk, M., Kontek, R., and Janas, K. (2009). Antioxidant enzymes activity and
phenolic compounds content in red cabbage seedlings exposed to copper stress.
Ecotoxicol. Environ. Saf. 72, 596–602. doi: 10.1016/j.ecoenv.2008.04.024

Rahmatpour, S., Mosaddeghi, M. R., Shirvani, M., and Šimůnek, J. (2018).
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Miliauskienė, J. (2021). The response of antioxidant system of drought-stressed
green pea (Pisum sativum l.) affected by watering and foliar spray with silica
nanoparticles. Horticulturae 8, 35. doi: 10.3390/horticulturae8010035

Suzuki, N., Miller, G., Salazar, C., Mondal, H. A., Shulaev, E., Cortes, D. F., et al.
(2013). Temporal-spatial interaction between reactive oxygen species and abscisic
acid regulates rapid systemic acclimation in plants. Plant Cell 25, 3553–3569. doi:
10.1105/tpc.113.114595

Tolaymat, T., El Badawy, A., Genaidy, A., Abdelraheem, W., and Sequeira, R.
(2017). Analysis of metallic and metal oxide nanomaterial environmental
emissions. J. Clean. Prod. 143, 401–412. doi: 10.1016/j.jclepro.2016.12.094

Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., et al.
(2017a). An overview on manufactured nanoparticles in plants: uptake,
translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 110, 2–
12. doi: 10.1016/j.plaphy.2016.07.030

Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K., and Chauhan,
D. K. (2017b). Silicon nanoparticles more effectively alleviated UV-b stress than
silicon in wheat (Triticum aestivum) seedlings. Plant Physiol. Biochem. 110, 70–81.
doi: 10.1016/j.plaphy.2016.06.026

Vakilian, K. A. (2019). Gold nanoparticles-based biosensor can detect drought
stress in tomato by ultrasensitive and specific determination of miRNAs. Plant
Physiol. Biochem. 145, 195–204. doi: 10.1016/j.plaphy.2019.10.042

Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H.
M., et al. (2022). Copper nanoparticle application enhances plant growth and grain
yield in maize under drought stress conditions. J. Plant Growth Reg. 41, 364–375.
doi: 10.1007/s00344-021-10301-w

Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I.,
Indiraarulselvi, P., Geetha, N., et al. (2017). Enhanced plant growth promoting
role of phycomolecules coated zinc oxide nanoparticles with p supplementation in
cotton (Gossypium hirsutum l.). Plant Physiol. Biochem. 110, 118–127. doi: 10.1016/
j.plaphy.2016.09.004
frontiersin.org

https://doi.org/10.1155/2014/417305
https://doi.org/10.1155/2014/417305
https://doi.org/10.1016/B978-0-12-818204-8.00016-3
https://doi.org/10.1111/jac.12255
https://doi.org/10.1016/j.ecoenv.2008.04.024
https://doi.org/10.1016/j.geoderma.2018.02.016
https://doi.org/10.1016/j.geoderma.2018.02.016
https://doi.org/10.1016/j.enmm.2017.12.006
https://doi.org/10.1016/j.enmm.2017.12.006
https://doi.org/10.3389/fpls.2016.01288
https://doi.org/10.1007/s12892-019-0088-0
https://doi.org/10.3389/fpls.2022.911610
https://doi.org/10.1016/j.jksus.2022.102089
https://doi.org/10.1039/C6EN00573J
https://doi.org/10.1007/s10529-013-1239-x
https://doi.org/10.1016/j.tplants.2010.02.006
https://doi.org/10.1016/j.tplants.2010.02.006
https://doi.org/10.1016/j.scitotenv.2012.10.016
https://doi.org/10.1016/j.scitotenv.2012.10.016
https://doi.org/10.1111/j.1439-037X.2010.00418.x
https://doi.org/10.3109/17435390.2015.1048326
https://doi.org/10.3390/met5020934
https://doi.org/10.1021/tx500113u
https://doi.org/10.3390/plants10020259
https://doi.org/10.3390/plants10020421
https://doi.org/10.24051/eee/68607
https://doi.org/10.3389/fgene.2017.00141
https://doi.org/10.3390/agronomy12051056
https://doi.org/10.3390/agronomy12051056
https://doi.org/10.1039/C2EM30613A
https://doi.org/10.1104/pp.16.00328
https://doi.org/10.3390/toxics10040172
https://doi.org/10.1016/j.tibtech.2016.02.006
https://doi.org/10.1166/jbt.2022.3021
https://doi.org/10.3390/ijms21030782
https://doi.org/10.1080/03650340.2020.1723003
https://doi.org/10.1080/03650340.2020.1723003
https://doi.org/10.3390/horticulturae8010035
https://doi.org/10.1105/tpc.113.114595
https://doi.org/10.1016/j.jclepro.2016.12.094
https://doi.org/10.1016/j.plaphy.2016.07.030
https://doi.org/10.1016/j.plaphy.2016.06.026
https://doi.org/10.1016/j.plaphy.2019.10.042
https://doi.org/10.1007/s00344-021-10301-w
https://doi.org/10.1016/j.plaphy.2016.09.004
https://doi.org/10.1016/j.plaphy.2016.09.004
https://doi.org/10.3389/fpls.2022.976179
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rasheed et al. 10.3389/fpls.2022.976179
Venkateswarlu, S., Rao, Y. S., Balaji, T., Prathima, B., and Jyothi, N. (2013).
Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract.
Mat. Lett. 100, 241–244. doi: 10.1016/j.matlet.2013.03.018

Wang, X., Li, Q., Pei, Z., and Wang, S. (2018). Effects of zinc oxide nanoparticles
on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants.
Biol. Plant 62, 801–808. doi: 10.1007/s10535-018-0813-4

Wang, W.-N., Tarafdar, J. C., and Biswas, P. (2013). Nanoparticle synthesis and
delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res.
15, 1–13. doi: 10.1007/s11051-013-1417-8

Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., and Cai, Y. (2019). The roles of
environmental factors in regulation of oxidative stress in plant. BioMed. Res. Int.
2019, 1-11. doi: 10.1155/2019/9732325

Yalda Raeesi Sadati, S., Jahanbakhsh Godehkahriz, S., Ebadi, A., and Sedghi, M.
(2021). Study of expression pattern of some transcription factors in wheat under
drought stress and zinc nanoparticles. Plant Genet. Res. 7, 135–144. doi: 10.52547/
pgr.7.2.11

Yang, K.-Y., Doxey, S., Mclean, J. E., Britt, D., Watson, A., Al Qassy, D., et al.
(2018). Remodeling of root morphology by CuO and ZnO nanoparticles: effects on
drought tolerance for plants colonized by a beneficial pseudomonad. Botany 96,
175–186. doi: 10.1139/cjb-2017-0124

Yan, W., Zhong, Y., and Shangguan, Z. (2016). A meta-analysis of leaf gas
exchange and water status responses to drought. Sci. Rep. 6, 1–9. doi: 10.1038/
srep20917

Yasmeen, F., Raja, N. I., Razzaq, A., and Komatsu, S. (2017). Proteomic and
physiological analyses of wheat seeds exposed to copper and iron nanoparticles.
Biochim. Biophys. Acta (BBA)-Prot. Prot. 1865, 28–42. doi: 10.1016/
j.bbapap.2016.10.001

Yuan, Z., Ye, Y., Gao, F., Yuan, H., Lan, M., Lou, K., et al. (2013). Chitosan-graft-
b-cyclodextrin nanoparticles as a carrier for controlled drug release. Int. J.
Pharmaceut. 446 (1-2), 191–198. doi: 10.1016/j.ijpharm.2013.02.024
Frontiers in Plant Science 15
Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N., and Peijnenburg,
W. (2021). Mitigation of the effect of drought on growth and yield of pomegranates
by foliar spraying of different sizes of selenium nanoparticles. J. Sci. Food Agricul.
101, 5202–5213. doi: 10.1002/jsfa.11167

Zahedi, S. M., Hosseini, M. S., Meybodi, N. D. H., and Da Silva, J. (2019). Foliar
application of selenium and nano-selenium affects pomegranate (Punica granatum
cv. malase saveh) fruit yield and quality. South Afri. J. Bot. 124, 350–358.
doi: 10.1016/j.sajb.2019.05.019

Zahedi, S. M., Karimi, M., and Teixeira Da Silva, J. A. (2020a). The use of
nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agricul. 100,
25–31. doi: 10.1002/jsfa.10004

Zahedi, S. M., Moharrami, F., Sarikhani, S., and Padervand, M. (2020b).
Selenium and silica nanostructure-based recovery of strawberry plants subjected
to drought stress. Sci. Rep. 10, 1–18. doi: 10.1038/s41598-020-74273-9

Ze, Y., Liu, C., Wang, L., Hong, M., and Hong, F. (2011). The regulation of TiO2
nanoparticles on the expression of light-harvesting complex II and photosynthesis
of chloroplasts of arabidopsis thaliana. Biol. Trace Ele. Res. 143, 1131–1141.
doi: 10.1007/s12011-010-8901-0

Zhang, Z., Kong, F., Vardhanabhuti, B., Mustapha, A., and Lin, M. (2012).
Detection of engineered silver nanoparticle contamination in pears. J. Agricul. Food
Chem. 60, 10762–10767. doi: 10.1021/jf303423q

Zhang, Y., Liu, N., Wang, W., Sun, J., and Zhu, L. (2020). Photosynthesis and
related metabolic mechanism of promoted rice (Oryza sativa l.) growth by TiO2
nanoparticles. Front. Environ. Sci. Engin. 14, 1–12. doi: 10.1007/s11783-020-1282-5

Zhang, L. W., and Monteiro-Riviere, N. A. (2009). Mechanisms of quantum dot
nanoparticle cellular uptake. Toxicol. Sci. 110, 138–155. doi: 10.1093/toxsci/kfp087

Zhao, L.-S., Li, K., Wang, Q.-M., Song, X.-Y., Su, H.-N., Xie, B.-B., et al. (2017).
Nitrogen starvation impacts the photosynthetic performance of porphyridium
cruentum as revealed by chlorophyll a fluorescence. Sci. Rep. 7, 1–11. doi: 10.1038/
s41598-017-08428-6
frontiersin.org

https://doi.org/10.1016/j.matlet.2013.03.018
https://doi.org/10.1007/s10535-018-0813-4
https://doi.org/10.1007/s11051-013-1417-8
https://doi.org/10.1155/2019/9732325
https://doi.org/10.52547/pgr.7.2.11
https://doi.org/10.52547/pgr.7.2.11
https://doi.org/10.1139/cjb-2017-0124
https://doi.org/10.1038/srep20917
https://doi.org/10.1038/srep20917
https://doi.org/10.1016/j.bbapap.2016.10.001
https://doi.org/10.1016/j.bbapap.2016.10.001
https://doi.org/10.1016/j.ijpharm.2013.02.024
https://doi.org/10.1002/jsfa.11167
https://doi.org/10.1016/j.sajb.2019.05.019
https://doi.org/10.1002/jsfa.10004
https://doi.org/10.1038/s41598-020-74273-9
https://doi.org/10.1007/s12011-010-8901-0
https://doi.org/10.1021/jf303423q
https://doi.org/10.1007/s11783-020-1282-5
https://doi.org/10.1093/toxsci/kfp087
https://doi.org/10.1038/s41598-017-08428-6
https://doi.org/10.1038/s41598-017-08428-6
https://doi.org/10.3389/fpls.2022.976179
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review
	Introduction
	Synthesis and characterization of metal oxide nanoparticles
	Nanoparticle types and their mode of uptake in plants
	Role of nanoparticles against drought stress
	Nanoparticles improve membrane stability and plant–water relationships to confer drought stress
	Nanoparticles improve nutrient uptake under drought stress
	Nanoparticles protect photosynthetic apparatus and improve photosynthesis under drought stress
	Nanoparticles improve osmolyte accumulation and maintain hormonal crosstalk to confer drought tolerance
	Nanoparticles improve the accumulation of phenolics compounds under drought stress
	Nanoparticles detoxify ROS and strengthen the antioxidant defense system under drought stress
	Nanoparticles improve the expression of stress-responsive genes under drought stress
	NPs bring ultra-structural changes to induce drought tolerance
	Nanoparticles improve growth, yield, and quality under drought stress
	Toxic effects of nanoparticles
	Conclusion and future perspectives
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


