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agriculture: A mini-review
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1Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia-
Mestre, Italy, 2Department of Agricultural, Food, Environmental and Animal Sciences, University of
Udine, Udine, Italy, 3Department of Life Sciences, University of Trieste, Trieste, Italy
Nowadays sustainable nanotechnological strategies to improve the efficiency

of conventional agricultural practices are of utmost importance. As a matter of

fact, the increasing use of productive factors in response to the growing food

demand plays an important role in determining the environmental impact of

agriculture. In this respect, low-efficiency conventional practices are becoming

obsolete. On the other hand, the exploitation of nanoscaled systems for the

controlled delivery of fertilizers, pesticides and herbicides shows great potential

towards the development of sustainable, efficient and resilient agricultural

processes, while promoting food security. In this context, lignin − especially

in the form of its nanostructures − can play an important role as sustainable

biomaterial for nano-enabled agricultural applications. In this review, we

present and discuss the current advancements in the preparation of lignin

nanoparticles for the controlled release of pesticides, herbicides, and fertilizers,

as well as the latest findings in terms of plant response to their application.

Special attention has been paid to the state-of-the-art literature concerning

the release performance of these lignin-based nanomaterials, whose efficiency

is compared with the conventional approaches. Finally, the major challenges

and the future scenarios of lignin-based nano-enabled agriculture

are considered.

KEYWORDS

lignin nanoparticles, sustainable agriculture, circular economy, nanocarriers, nano-
enabled agriculture
1 Introduction

The food system was recognized as “the major driver of climate change, changes in

land use, depletion of freshwater resources, and pollution of aquatic and terrestrial

ecosystems through excessive nitrogen and phosphorus inputs” (Springmann et al.,

2018). As the world population is expected to reach 9.7 billions by 2050 (UNDESA 2019),

a higher demand in terms of arable land (+67%), irrigation water (+65%), and N (+51%)

and P fertilizers (+54%) is required (FAO, 2009). Consequently, the environmental
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pressure of agriculture, already very high, will rise even more

(Renner et al., 2020), due to the low efficiency of obsolete

conventional agriculture practices no longer able to support

food security. The current food system thus requires an

agricultural revolution based on sustainable intensification and

driven by system innovation (Willett et al., 2019). In this context,

the field application of fertilizers, pesticides and herbicides

through nanocarriers shows great promise for a sustainable,

efficient and resilient agricultural system, while promoting food

security (Xin et al., 2021). Similarly, the use of renewable

materials to produce nanosized delivery systems, especially if

deriving from waste biomass, represents another crucial step

towards the green transition and the fulfillment of circular

economy paradigms.

In this framework, lignin represents a highly valuable, yet

underutilized bioresource (Calvo-Flores et al., 2015). Over 50 Mt/

y of technical lignins are obtained as byproduct of pulp and paper

and modern biorefinery processes, making it largely available at

low cost. Its peculiar polyphenolic structure is of high interest

towards the generation of nanomaterials. Indeed, lignin a) yields

nanostructures by supramolecular self-assembly, b) permits the

controlled release of active substances thanks to a stimuli-

responsive behavior and high chelating properties (Garcı́ a et al.,

1996), c) possesses intrinsic antimicrobial, antioxidant and UV-

shielding characteristics allowing for the protection of entrapped/

encapsulated compounds, d) is of natural origin, biocompatible

and biodegradable: it thus constitutes a valid alternative to

synthetic polymers commonly employed in this field (Sipponen
Frontiers in Plant Science 02
et al., 2019). Therefore, lignin-based delivery systems could

significantly contribute to the development of a sustainable,

nano-enabled agriculture (Ramı́ rez et al., 1997; Sun, 2010; Lu et

al., 2022) and to the reduction of microplastics (Figure 1).

Recent reviews (e.g.: Lima et al., 2021 and Machado et al.,

2022), discuss the potentialities of lignin nanostructures in

agriculture , focusing on the appl icat ions of these

nanomaterials as pesticides or as carriers of pesticides. Lignin

nanoparticles can be utilized as stimulators or inhibitors of the

plant growth or as agents to control the release of entrapped

active molecules.

In this contribution, an overview of the most relevant studies

on the employment of lignin-based nanocarriers for agricultural

applications is provided, to highlight their beneficial effects on

crops. Finally, open questions and research needs are outlined.
2 Lignin-based delivery systems

Lignin-based nanocarriers can be divided into lignin

nanoparticles (LNPs) and lignin nanocapsules (LNCs). Both

types have a spherical shape: while LNPs are consist of full

lignin matrix particles in which the active compounds can be

dispersed, LNCs are hollow particles containing liquid (or

solid) substances within the lignin shell. The intrinsic

supramolecular self-assembly characteristics of lignin are

exploited to form LNPs and LNCs via different synthetic

strategies (Figure 2).
FIGURE 1

Lignin-based approach towards a nano-enabled sustainable agriculture.
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LNPs can be conveniently synthesized by sonication of

appropriate lignin solutions (Gilca et al., 2015). Usually, they

are generated by nanoprecipitation, i.e. dissolution in an organic

solvent and subsequent dilution with water, in which lignin is

insoluble (Gigli et al., 2021). Another strategy is solvent-

exchange through dialysis. By varying the pre-dialysis lignin

concentration, the membrane cut-off and the used solvent, the

characteristics of the LNPs can be controlled to a certain extent

(Lievonen et al., 2016). Alternatively, to avoid the use of organic

solvents, LNPs can be prepared by dilution of a highly

concentrated aqueous solution of a hydrotropic agent, an ionic

organic salt promoting the dissolution of lignin. The hydrotropic

agent can be easily recovered and recycled, thus enhancing the

sustainability of the process (Cailotto et al., 2020).

On the other hand, LNCs are obtained from oil-water

emulsions. Lignin is dissolved in the water phase or in a

volatile organic solvent, while the oily phase contains the

active ingredient constituting the particles’ core. Emulsification

is typically achieved by ultrasounds (optionally, a surfactant can

be used) and LMCs can be further stabilized by interfacial

crosslinking. Recently, the formation of LMCs by simple

ultrasonication was demonstrated (Gilca et al., 2015; Sgarzi

et al., 2022; Zongo et al., 2019). The application of ultrasounds

leads to cavitation phenomena locally generating high

temperatures and pressures promoting the p-p stacking

interactions of lignin aromatic groups and the establishment of

intermolecular hydrogen bonds. By the modulation of the

sonication intensity, it is also possible to induce chemical

crosslinking and thus tune capsules shell thickness, stability

and release properties.

LNPs and LNCs not only display a pH-responsive behavior

(Cailotto et al., 2020; Sgarzi et al., 2022), but also the nature and
Frontiers in Plant Science 03
concentration of salts has a significant influence on the stability

of the particles (Zongo et al., 2019). More detailed information

on the synthetic methodologies towards lignin-based

nanostructures can be found in recent literature reviews

(Sipponen et al., 2019; Chen et al., 2021).
2.1 Controlled release of biocides

The traditional methods for crop protection require repeated

applications of large volumes of active species at high initial

dosages. Moreover, the non-controlled delivery causes a time-

limited biocidal protection and causes the ubiquitous presence of

biocides in the environment, resulting in biocide resistance and

soil/water/food chain contamination (Mattos et al., 2017; Usman

et al., 2020). In this context, lignin represents a green matrix for

the design of sustainable biocide delivery systems, which are an

effective tool for a controlled-release and stimuli-responsive

delivery. Supplementary Table 1 summarizes the main

contributions to this topic.

2.1.1 Fungicides and nematicides
Kraft LNPs were used for the in situ growth of brochantite

crystals for the controlled release of Cu2+ ions against P. syringae

tomato, X. campestris, X. arboricola fragari and B. cinerea

(Gazzurelli et al., 2020). The 10% w/w Cu2+-composite (ca.

300 nm) allowed to achieve a 20× reduction of used copper

with respect to commercial copper hydroxide. Interestingly, the

enhanced leaf adhesion of 10-30 nm stick-shaped brochantite

crystals rendered them more efficient than 2-10 nm spherical

ones. Aggregates of LNPs (> 600 nm) were proposed as

Cu2+-substitutes, inhibiting the growth of X. arboricola in vitro
FIGURE 2

Synthetic strategies for the preparation of lignin-based nanocarriers.
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and decreasing the incidence of the related disease on Corylus

avellana with performance comparable with copper oxychloride

(Schiavi et al., 2022).

Kraft methacrylated lignin was crosslinked with

pyraclostrobin (>90% encapsulation efficiency, EE) to prepare

nanocarriers for the treatment of Esca disease in V. vinifera cv.

‘Portugieser’ (Fischer et al., 2019). The degradation of lignin by

the Esca fungi laccases and peroxidases triggered the controlled

release. A single injection of these 200 nm-nanocarriers reduced

Esca symptoms up to 5 years by utilizing only 3% of the

pyraclostrobin used in conventional preventive spraying.

Similar results were obtained preparing 200-300 nm spermine/

spermidine crosslinked lignin nanocarriers of different

fungicides (azoxystrobin, boscalid, pyraclostrobin and

tebuconazole; EE 70-99%). The encapsulated species exhibited

lower (2-10×) minimum inhibitory concentrations than the bulk

counterparts (Machado et al., 2020).

The delivery of natural fungicides (E. arvense, R. tinctorum,

S. marianum, and U. dioica extracts) was achieved via

crosslinked lignin-chitosan nanocarriers. Differently from

lignin-diamine crosslinked systems, these 185-nm spherical

capsules possess large cavities able to host large bioactive

compounds such as flavonoids and terpenes contained in the

extracts with a 95% EE. The 90% maximal effective

concentration (EC90) values of the encapsulated extracts

against N. parvum were lower than the non-encapsulated ones

(e.g. 90.6 mg·L-1 vs 2938 mg·L-1, respectively, for S. marianum),

proving a higher antifungal activity of the former formulations

(Sánchez-Hernández et al., 2022).

The delivery of the nematicide abamectin was realized via

lignosulfonate-modified epoxy resins (EE 93.4%) (Zhang et al.,

2020). The 150 nm spherical nanocapsules exhibited a slower

release rate (73% after 18h) than abamectin suspensions and

microemulsions (96% after 1h and 91% after 4h, respectively).

Moreover, these nanocarriers improved the mobility and the

distribution of abamectin in soil compared to the other

formulations and exhibited a higher absorption in Cucumis

sativus roots and in M. incognita.

2.1.2 Insecticides
Avermectin (AVM) was loaded into 108 nm hollow spheres

composed of lignin-based azo polymer (61% EE). The system

exhibited 80% cumulative release after 120h in a 7:3 ethanol:

water mixture (cf. AVM emulsifiable concentrate, 100% after

36h). Moreover, the UV-blocking properties of lignin increased

the photostability of AVM under UV irradiation (Deng

et al., 2016).

A xylanase-responsive controlled release of AVM (57.9-67%

EE) was achieved by the use of lignin-xylan nanospheres (160-

210 nm) (Jiang et al., 2020), which released 42% AVM in 2h.

After 16h, a 55% equilibrium value was reached, 10× higher than

in xylanase-free experiments.
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Lignosulfonate (LS)-cetyltrimethylammonium bromide

(CTAB) nanospheres were prepared for the entrapment of

AVM. Cationic nanospheres (94 nm) were obtained with a

1.5:1 LS : CTAB mass ratio, while changing it to 4:1 yielded

anionic nanosystems (170.8 nm). The cationic nanospheres

exhibited a ca. 80% AVM release in 62h, while the anionic

nanosystems released ca. 55% of AVM in the same time range

(cf. AVM emulsifiable concentrate, 100% in 6h). These

nanoformulations presented an enhanced (2.18-2.96×) AVM

anti-photolysis activity with respect to AVM emulsifiable

concentrate (Peng et al., 2020).

AVM was encapsulated in co-surfactant-free hollow

nanospheres (300 nm) thanks to the self-assembly properties

of alkyl chain-crosslinked lignosulfonate (Liu et al., 2017). A

burst 20% release in the first 10h, ascribable to AVM adsorbed

on the capsule’s surface, was observed in a 3:7 ethanol:water

mixture. Only 27.6% of AVM was released after 241h due to the

slow diffusion of the insecticide from the spheres’ core (cf. AVM

emulsifiable concentrate, 100% after 20h, and suspension, 80%

after 10h). The capsules exhibited excellent UV-shielding

performance (100% AVM photolysis after 69h UV irradiation)

compared to AVM emulsifiable concentrate and suspension

( 1 0 0% AVM pho t o l y s i s a f t e r 1 0 h a nd 5h UV

irradiation, respectively).

To improve the adhesion and the retention of insecticides on

leaves, lignin-containing cellulose nanofibers were prepared and

loaded with emamectin benzoate (EB) (Zhang et al., 2022). The

electrostatic interaction between the positively charged

quaternized nanofibres and the negatively charged leaves

increased the retention rate of the droplets of EB. The

insecticidal activity was tested against M. separata, whose

mortality increased by 35% with respect to the one of non-

supported EB, and by 50% in rain-fastness tests. A 90%mortality

after 1.5h UV irradiation was kept using these fibers, thanks to

the UV-shielding properties of lignin (cf. 10% mortality for non-

supported EB).

High EE (85.9-99.9%) were obtained for EB loaded onto

lignosulfonate nanoparticles (150-250 nm) via electrostatic

interactions. The insecticidal activity was improved thanks to

the higher anti-photolysis ability (4× higher than EB emulsion),

and to the lower release rate in methanolic solutions (30% and

60% lower than EB emulsion and suspension, respectively). The

pH-responsiveness of this nanocarrier allowed to obtain faster

EB release at acidic pH (Cui et al., 2019).

Cyhalothrin was loaded on a core-shell-shell nanostructure

composed of lignosulfonate and dodecyl dimethyl benzyl

ammonium chloride (DDBAC). The capsules were stabilized

by the addition of iron(III) ions, which formed complexes with

lignosulfonate constituting the outer shell. A concentration of 10

g·L-1 DDBAC yielded 216 nm nanocarriers with a 94.5% EE.

Encapsulated cyhalothrin half-life was increased by 4.4 times

under UV irradiation with respect to the emulsifiable
frontiersin.org
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concentrate. Alkaline pH and laccase could increase cyhalothrin

release rate (Zhang et al., 2021).

Lignin-based pH-responsive nanogels were employed to

prepare chlorpyrifos carriers. Lignin methacrylate was graft-

copolymerized on acrylic acid to yield a 113 nm-core-shell

spherical structure. The slowest release of chlorpyrifos (ca. 45%)

was achieved at pH 7 in 7h using the nanogel prepared with a 40

mg·mL-1 acrylic acid formulation (Yiamsawas et al., 2021).

The translocation of methoxyphenoxide (MFZ) in Glycine

max under hydroponic conditions was enhanced by its

encapsulation in 113.8 nm LNPs grafted to poly (lactic-co-

glycolic) acid. This 2.7% w/w MFZ core-shell nanosystem

exhibited a temperature-dependent release behavior (90%

MFZ release after 80h at 25°C, 100% release at 37°C after

20h). The encapsulated MFZ was efficiently translocated to the

roots and, differently from non-encapsulated MFZ, its

concentration increased over time. Thanks to the LNPs

negative charge, their translocation efficiency resulted relatively

higher than particles of similar size reported in the literature, and

decreased with increasing their concentration (after 24h, 0.065

for 0.01 mg·mL-1 LNPs and 0.006 for 0.1 mg·mL-1 LNPs).

Compared to non-encapsulated MFZ, LNPs were able to

deliver 7-17-fold more MFZ (Mendez et al., 2022).

2.1.3 Herbicides
Subabul stem lignin was utilized to produce a 74.3% EE diuron

nanoformulation (Yearla and Padmasree, 2016). The 150-190 nm

LNPs exhibited an initial burst release (25%), followed by a

relatively slower regime. The increase of pH increased diuron

release rate: the behavior at pH 7 and 9 resulted similar (67% and

62%, respectively, after 120days) andhigher than the one registered

at pH 5 (53%). This nanoformulation presented excellent

performance compared to commercial diuron formulation and

bulk solid (100% diuron in 2 days), and induced a more

pronounced leaf mortality and chlorosis on B. rapa.
2.2 Stimulation of plant growth

Other studies focused on the release of fertilizers and on the

impact of lignin-based nanomaterials on the health of various

plant species (Falsini et al., 2019; Yin et al., 2020; Del Buono

et al., 2021; Salinas et al., 2021). The possible adverse effects and

the ability to stimulate plant growth were evaluated, either using

lignin nanocarriers for the delivery of bioactive compounds or

assessing whether LNPs themselves could exert beneficial effects

on seed germination and seedlings development (Supplementary

Table 1).

Lignin-based magnetic nanoparticles (M/ALFeP) were used

as phosphorus adsorbent in wastewater and subsequently as

slow-release nano-fertilizer (Li et al., 2021). Fe3O4 nanoparticles

were embedded in alkaline amino-functionalized lignin and

chelated with Fe(III) ions. The so-formed hybrid nanoparticles
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(300-700 nm) adsorbed HPO−
4 following a pseudo-second-order

kinetic model with maximum adsorption capacity and removal

rate at pH 9 (qe = 12.8 mg·g-1 with 50 mg·mL-1 H2PO
−
4 and 20

mg·mL-1 nanoparticles). M/ALFeP sustained the release of both

Fe (67.2%) and phosphorous (69.1%) over 30 days at neutral pH

at RT. The recyclability of the prepared nanoparticles was also

demonstrated, the recovery and removal efficiency being

respectively 83% and 62% as compared to the freshly prepared

M/ALFeP.

The effect of lignin-graft-poly(lactic-co-glycolic)

nanoparticles (ca. 100 nm), prepared by emulsion evaporation,

on the germination of soybean seeds was investigated (Salinas

et al., 2021). No significant variations versus the control were

observed in terms of chlorophyll content, root and stem length

upon exposure to LNPs (0.02, 0.2, 2.00 mg·mL-1), although the

root biomass increased at higher doses. B, S, and Mo uptake

exhibited no variations, while high concentrations of Na and Zn

were found in the seedling roots at high LNPs doses. The

increased Na concentration was well tolerated by soybean,

thanks to its metabolic and structural adaptation mechanisms

(Phang et al., 2008). Lastly, the activity of superoxide dismutase

in the leaves increased after 7d for all LNPs doses, proving a

minimum LNPs-induced oxidative stress.

In another study, kraft lignin-based LNCs (200 – 250 nm)

were prepared by sonication and loaded with gibberellic acid

(GA3), a seed germination enhancer (Falsini et al., 2019). Eruca

vesicaria (arugula) and Solanum lycopersicum (tomato) seeds

were treated with 0.5, 1.0, and 1.5 mg·mL-1 GA3 formulations,

both in solution and encapsulated in LNCs, and with GA3-free

LNCs. The presence of either GA3-loaded or GA3-free LNCs

resulted in an increase of germinated seeds of arugula compared

to the control. Furthermore, GA3-containing LNCs boosted the

growth of stem and root length, and of vegetative biomass. As to

the tomato, no positive impacts were detected for stem and root

length of seedlings treated with LNCs, while GA3-loaded LNCs

enhanced seed germination. LNCs were found in the endosperm

of tomato seeds and in the cortex layer of the germinated roots

reaching the xylem vessels after 72h, confirming LNCs

permeation and accumulation. These effects were ascribed to

the abundance of hydroxyl groups on the surface of LNCs that

may promote seeds germination and growth by enhancing

water availability.

Abscisic acid (ABA), a UV-sensitive plant growth regulator,

was entrapped in LNPs (ca. 300 nm) to achieve its controlled

release and increase its photostability (Yin et al., 2020). CTAB

was used to limit the formation of aggregates. The LNPs showed

a EE > 70% and a much slower release rate as compared to

the control (35.5% vs 90% over 72h). The entrapment of ABA

significantly increased its stability, as more less than 25%

ABA was degraded after 60h of irradiation (cf. ca. 80% free

ABA degradation in 5h). The controlled release of ABA, which is

responsible for the control of stomatal aperture in case of

drought stress, endowed Arabidopsis plants with drought-
frontiersin.org
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resistance ability, resulting in healthier plants as compared to

those treated with free ABA.

Recently, the beneficial effects of pure LNPs (ca. 50 nm) on

the germination of maize seeds was assessed (Del Buono et al.,

2021). Concentrations of LNPs between 321 and 5000 mg·mL-1

stimulated the seed germination, while lower and higher

concentrations displayed no and negative effects, respectively.

80 and 312 mg·L-1 dosages also enhanced the content of

chlorophyll a (50%) and b (40%), of carotenoids and soluble

proteins (especially 80 mg·L-1) with respect to the control and

higher dosages. These effects were ascribed to the hormone-like

action of lignin due to its phenolic structure capable of

stimulating the early biochemical activities of seeds.
3 Conclusions and outlook

Literature production on lignin-based nanosystems for

agricultural applications is so far rather limited especially to the

first plant development stages, which are most likely to reveal

toxicity effects. Moreover, the published works are based on lab

scale experiments carried out under controlled conditions.

Nevertheless, many are the involved fields of investigation,

confirming both the infancy of these studies and the great

potential of lignin nanocarriers as bio- and eco-compatible

materials for sustainable agriculture. The use of LNCs and LNPs

as vectors of fertilizers and active molecules needs further

investigations, not only to define the doses and the efficacies, but

also to verify their environmental sustainability.

Moreover, the specific mechanisms for the nanovectors

uptake and translocation in plants are still not well understood

and plant-dependent interactions with these new formulations

have to be considered. Additionally, the type of administration

(e.g. foliar vs soil application) might also affect the influence on

the soil biology and the soil-plant interaction.

Altogether, greenhouse scale and ultimately field scale

experiments are necessary to validate the advantage of using

lignin nanocarriers vs traditional approaches for the entire plant

cycle from sowing to harvesting. The gap between the lab

experiments and the open field trials is still wide, but also very

rich in research opportunities for the transition toward a more

sustainable agriculture.
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H., et al. (2020). Bio-based lignin nanocarriers loaded with fungicides as a versatile
platform for drug delivery in plants. Biomacromolecules 21, 2755–2763.
doi: 10.1021/acs.biomac.0c00487

Machado, O. T., Grabow, J., Sayer, C., Araújo, P. H. H., Ehrenhard, M. L., and
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