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Horticultural plants such as vegetables, fruits, and ornamental plants are crucial

to human life and socioeconomic development. Gibberellins (GAs), a class of

diterpenoid compounds, control numerous developmental processes

of plants. The roles of GAs in regulating growth and development of

horticultural plants, and in regulating significant progress have been clarified.

These findings have significant implications for promoting the quality and

quantity of the products of horticultural plants. Here we review recent

progress in determining the roles of GAs (including biosynthesis and

signaling) in regulating plant stature, axillary meristem outgrowth, compound

leaf development, flowering time, and parthenocarpy. These findings will

provide a solid foundation for further improving the quality and quantity of

horticultural plants products.

KEYWORDS

horticultural plants, gibberellins, plant stature, flowering time, parthenocarpy
Introduction

Gibberellins (GAs) are numerous plant hormones that are all consist of a large

number of diterpenoid compounds (Hedden, 2020; Zhang et al., 2020). GA was first

characterized from the pathogenic fungus Gibberella fujikuroi by Japanese scientists

(Yabuta, 1938; Binenbaum et al., 2018), and it causes severe disease with the symptom of

excessive internode elongation known as ‘foolish seedling disease’ in Oryza sativa (rice).

More than 130 GAs have been discovered in plants, fungi, and bacteria (Yamaguchi,

2008; Hedden, 2020), and they are named GAn (for example GA4) in the order of

discovery (MacMillan and Takahashi, 1968). Among GAs, only GA1, GA3, GA4, and GA7

are bioactive, controlling multiple developmental processes in plants (Yamaguchi, 2008;

Hedden, 2020; Zhang et al., 2020).
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It is important to study the biosynthesis and signaling

pathways of GAs to determine their biological functions. GA

biosynthesis in plants consists of a series of complicated

oxidation-reduction reactions, including reactions from

geranylgeranyl diphosphate (GGDP) to bioactive GAs

(Yamaguchi, 2008; Hedden, 2020). This process is usually

classified into three stages in Arabidopsis (Figure 1A;

Yamaguchi, 2008; Zhang et al., 2020; Cheng et al., 2021;

Shohat et al., 2021). The first stage is the synthesis of GGDP

to ent-kaurene using GGDP as starting material in plastids,

which is consecutively catalyzed and oxidated by ent-copalyl

diphosphate synthase (CPS) and ent-kaurene synthase (KS)

(Figure 1A; Sun and Kamiya, 1997; Helliwel et al., 2001;

Hedden, 2020). The second stage is the conversion from ent-

kaurene to GA12 in six steps. The first three steps are oxidized by

ent-kaurene oxidase (KO) and the remaining steps by ent-

kaurenic acid oxidase (KAO) (Figure 1A; Regnault et al.,

2014). KO is located in the plastid membrane while KAO is in

the endoplasmic reticulum (Yamaguchi, 2008). GA biosynthesis

from GA12 to bioactive GAs is the last stage, which is divided

into the 13-hydroxylated pathway (from GA53 to GA1) and the

non-13-hydroxylated cascade (from GA12 to GA4). In the

beginning, partial GA12 is converted to GA53 catalyzed by GA
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13-oxidases (GA13ox) (Magome et al., 2013; He et al., 2019a).

Then, GA12 and GA53 are converted to bioactive GAs in the

cytosol after a series of oxygenation reactions catalyzed mainly

by GA 20-oxidases (GA20ox) and GA 3-oxidases (GA3ox;

Figure 1A; Tenreira et al., 2017; Zhang et al., 2020).

Among the genes encoding the above-mentioned GA

biosynthetic enzymes, CPS, KS, and KO are single copy genes,

while the others are multi-copy genes. Among the above-

mentioned enzymes of GA biosynthesis, GA20ox is a rate-

limiting enzyme (Yamaguchi, 2008). Mutations of GA

biosynthesis related genes decrease plant concentrations of

bioactive GAs, leading to multiple defective phenotypes

(Zhang et al., 2020). These defective phenotypes can be

recovered by addition of exogenous bioactive GAs, and hence

these mutants are called GA-deficient mutants. Besides GA

biosynthesis, GA deactivation is also important for modifying

the concentrations of bioactive GAs in plant tissues (Schomburg

et al., 2003; Zhu et al., 2006). For example, GA 2-oxidases

(GA2ox) can catalyze GA20, GA9, GA1, and GA4 to inactive

GAs (Figure 1A). Loss of function of GA deactivated genes often

leads to tissues with high concentrations of bioactive GAs.

The GA signaling pathway has also been characterized in

Arabidopsis. The current model of the GA signaling pathway
B

A

FIGURE 1

Schematic representations of GA biosynthesis (A) and signal (B) pathways (Yamaguchi, 2008; Binenbaum et al., 2018; Wu et al., 2020). (A) GGDP,
CDP, and cat represent geranylgeranyl diphosphate, ent-copalyl diphosphate, and catabolite, respectively. CPS, KS, KO, and KAO represent ent-
copalyl diphosphate synthase, ent-kaurene synthase, ent-kaurene oxidase, and ent-kaurenoic acid oxidase, respectively. GA13ox, GA20ox, GA3ox,
and GA2ox represent GA13-oxidases, GA20-oxidases, GA3-oxidases, and GA2-oxidases, respectively. CPS, KS, KO, KAO, GA13ox, GA20ox, and
GA3ox are the key enzymes in GA biosynthetic pathway. GA2ox is GA deactivated enzyme. Enzymes locate in plastid, endoplasmic reticulum, and
cytosol using pink font, green font, and blue font, respectively. Bioactive metabolic products (GA1 and GA4) use red font. The remaining metabolic
products use black font. (B) When bioactive GAs are exhausted or limited, DELLAs (consisting of the following proteins: GA-INSENSITIVE, GAI;
REPRESSOR OF GA1-3, RGA; RGA-LIKE1, RGL1; RGL2 and RGL3; GRAS-domain proteins) interact with transcription factors (TFs) inhibiting
expression of corresponding downstream genes and therefore growth. When endogenous GA concentration is increased, a complex of GA-
INSENSITIVE DWARF1 (GID1; the GA receptor)-GA-DELLA is formed. Then, the complex is recognized by the F-box proteins, leading to degradation
of DELLA by ubiquitin-26S proteasome system and thus releasing the growth inhibition. GID1 and DELLAs are the core components of GA signal
pathway. The orange circles represent F-box proteins, such as SLEEPY1 (SLY1).
frontiersin.org

https://doi.org/10.3389/fpls.2022.978223
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.978223
consists of several key components, including bioactive GAs,

GIBBERELLIN INSENSITIVE DWARF1 (GID1, the GA

receptor), DELLAs (consisting of the following proteins: GA-

INSENSITIVE, GAI; REPRESSOR OF GA1-3, RGA; RGA-

LIKE1, RGL1; RGL2 and RGL3; GRAS-domain proteins), and

two F-box proteins (SLEEPY1; SLY1 and SNEEZY; SNZ)

(Davière and Achard, 2014; Shohat et al., 2021). When

bioactive GAs are exhausted or limited, DELLAs interact with

multiple transcription factors (TFs), inhibiting expression of

corresponding downstream genes, and thus repressing almost all

GA-related growth responses (Davière and Achard, 2014;

Shohat et al., 2021; Chai et al., 2022; Jin et al., 2022). When

bioactive GA concentration is increased, a GA-binding pocket in

GID1 captures bioactive GAs and H2O, causing conformational

change of the flexible N-terminal extension from the pocket and

thus closing the GA-binding pocket (Murase et al., 2008;

Shimada et al., 2008). Subsequently, DELLAs bind with the N-

terminal extension of GID1 via its TVHYNP regions forming a

GID1-GA-DELLA complex, and the recruited F-box proteins

immediately bind with DELLA (Shohat et al., 2021). SLY1 (a F-

box protein) is a component of SKP1, CULLIN, F-BOX (SCF) E3

ubiquitin-ligase complexes and the SCF complex contributes to

subsequent degradation of DELLAs. Once the GID1-GA-

DELLA-SCFSLY1 complex is formed, DELLAs are subsequently

degraded by the 26S proteasome, releasing the growth inhibition

(Figure 1B; Davière and Achard, 2014; Shohat et al., 2021; Chai

et al., 2022). DELLAs exert a core role in the GA signaling

pathway. Mutations of GA perception and signal transduction

can lead to mutant phenotypes in plants even if they have high

concentrations of GAs. This kind of defective phenotype of

mutant plants cannot be recovered using exogenous bioactive

GAs, and they are hence called GA-insensitive mutants.

Both GA-deficient and GA-insensitive mutants generally

exhibit typical dwarf phenotypes (Davière and Achard, 2014;

Hedden, 2020; Zhang et al., 2020). Among these mutants,

mutations of CPS, KS, or KO always lead to severe dwarfism

because they are all single-copy genes (Sun and Kamiya, 1997;

Helliwel et al., 2001; Regnault et al., 2014). Mutations of other

GA-biosynthesis and -signaling pathway related genes often

display a semi-dwarf phenotype as they are all multi-copy

genes (Griffiths et al., 2006; Magome et al., 2013). In

comparison, mutants related to constitutively active GA

exhibit a spindly internode, such as elongated uppermost

internode (eui; a deactivated gene; Zhu et al., 2006). The semi-

dwarf1 (sd1) and Reduced height-1(Rht-1) mutants, caused by

mutations of GA20ox2 and DELLA, respectively, prevent

excessive internode growth and lodging, and therefore grain

yield loss caused by wind and overuse of chemical fertilizer

(Peng et al., 1999; Sasaki et al., 2002). The dramatically increased

yield from semi-dwarf crops has saved countless lives, and is

referred to as the ‘Green Revolution’. Recently, the GROWTH-

REGULATING FACTOR4 (GRF4)-DELLA-NITROGEN-

MEDIATED TILLER GROWTH RESPONSE 5 (NGR5)
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module in rice has shown potential to improve nitrogen use-

efficiency (NUE) and increase tiller number in semi-dwarf

‘Green Revolution’ varieties (Li et al., 2018a; Wu et al., 2020).

This discovery is regarded as a new Green Revolution in the

21st century.

Apart from biosynthetic and signaling pathways of GAs, the

local accumulation maxima of bioactive GAs in the organ

formation zone is a prerequisite for normal organ

development (Binenbaum et al., 2018). Synthesis sites of

bioactive GAs are generally the sites where GAs function.

However, this is not always the case (Ragni et al., 2011;

Lacombe and Achard, 2016; Camut et al., 2019). Hence,

transportation of GAs from synthesis sites to the sites where

they function is essential (Katsumi et al., 1983). Some precursors

of bioactive GAs or their deactivated metabolites can also be

transported (Hu et al., 2008; Regnault et al., 2015; Lange and

Lange, 2016; Camut et al, 2019). Like other hormones, GAs can

possibly move in both directions in vascular tissues (Binenbaum

et al., 2018; Zhang et al., 2020). The transportation of GAs can be

classified into short- and long-distance movements. The short-

distance movement of GAs has been demonstrated in Cucumis

sativus (cucumber; Hu et al., 2008; Lange and Lange, 2016). GA9

(a precursor of GA4; Figure 1A) is synthesized in cucumber

ovaries where GA20ox has relatively high expression, while GA9

is converted to GA4 in sepals and petals where a relatively high

expression level of GA3ox is detected (Lange and Lange, 2016).

Thus, the short-distance movement of GA9 is essential for flower

development in cucumber.

Many studies in Arabidopsis have demonstrated that the

long-range transportation of endogenous GA12 enhances the

ability to adapt to adverse environments (Regnault et al., 2015;

Camut et al, 2019). The long-distance movement of GAs can

even be root-to-shoot and shoot-to-root transportation

(Regnault et al., 2015; Camut et al, 2019). It is generally

believed that precursors of bioactive GAs are dominating

forms of movement, although the mobility of bioactive GAs

was identified approximately 40 years ago (Katsumi et al., 1983).

A previous study showed that bioactive GA3 could be

transported in grafts between normal and mutant seedlings in

Zea mays (maize; Katsumi et al., 1983). Obviously, the

movements of GAs are involved in controlling plant growth

and development. But it is still not clear how GAs are

transported from cell to cell and what their receptors are in

cell membranes in horticultural plants and other species.

Horticultural plants include numerous species, such as

Solanum lycopersicum (tomato), Capsicum annuum (peppers),

Pisum sativum (pea), Brassica rapa L. ssp. Pekinensis (Chinese

cabbage), Lactuca sativa (lettuce), Malus pumila (apple), Vitis

vinifera (grape), Rosa chinensis (rose), and Panax ginseng

(ginseng). The products of horticultural plants are not only

served as foods, but also provide dietary intake of vitamins and

minerals. Moreover, some secondary metabolites from

horticultural plants are often used to treat human diseases.
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Horticultural plants are becoming more and more important for

human beings under population increases, global environmental

changes, and land degradation. Fortunately, genomic data of

numerous horticultural species have been published in recent

years (Sun et al., 2021), which is advantageous for horticultural

researchers. However, studies on the roles of GAs in

manipulating growth and development of horticultural plants

are lacking compared with rice and Arabidopsis. In this review,

we focus on GA biosynthesis and GA signaling in horticultural

plants and discuss how GA regulates vegetative and reproductive

growth of horticultural plants, with the purpose of helping

horticultural researchers understand the genetic and molecular

mechanisms of GA functions.
Vegetative growth

Plant stature

An ideal plant architecture is important in cereal crops but is

also critical to horticultural plants. Shoot architecture is mainly

influenced by stem elongation (Guo et al., 2020; Zhang et al.,

2020). In the 1960s, the use of semi-dwarf cereal crop varieties

contributed to great increases in crop yield (Peng et al., 1999;

Sasaki et al., 2002). Subsequently, related mutation genes

(GA20ox2 and DELLA) were identified in rice and Triticum

aestivum (wheat), and GAs were shown to be involved in the

semi-dwarf trait (Peng et al., 1999; Sasaki et al., 2002). Similar

results were also found in horticultural plants (Schrager-Lavelle

et al., 2019; Sun et al., 2020).

By bulked segregant analysis (BSA) and mapping, the gene

responsible for ‘w106 (dwarf)’ in Citrullus lanatus (watermelon)

was identified as Cla015407 encoding ClGA3ox (Sun et al.,

2020). Similar results were found at the same time by

Gebremeskel et al. (2019). The tomato internode elongated-1

(tie1) mutants exhibit the internode elongation phenotype and

this is a loss-of-function mutation of SlGA2ox7 (a GA catabolic

gene; Schrager-Lavelle et al., 2019). Paclobutrazol (PAC), a GA

biosynthesis inhibitor, can restore the tie1 defective phenotype

(Schrager-Lavelle et al., 2019). The mutation of Non-Heading

Mutant (NHM1; encoding KS enzyme) leads to the non-heading

phenotype in Chinese cabbage (Gao et al., 2020). Reverse genetic

screening results also verify that GAs positively control

internode elongation. Editing PROCERA/SlDELLA in tomato

and MaGA20ox2 in Musa acuminate (banana) using CRISPR-

Cas9 results in shortened internodes (a dominant mutation and

a loss-of-function mutation; Tomlinson et al., 2019; Shao et al.,

2020). Overexpression of PsGA3ox1 and PpGA2ox1 lead to

longer and more compact internodes in pea and Nicotiana

tabacum (tobacco), respectively (Reinecke et al., 2013; Cheng

et al., 2021). GAs and PAC application also obviously change the

internode length of two commercial grapevine cultivars

(Acheampong et al., 2015).
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All of the genes discussed above (Cla015407, TIE1, NHM1,

MaGA20ox2, PsGA3ox1, and PROCERA) are classified into GA

synthesis or signal genes directly influencing endogenous GA in

tissues, and abnormal concentrations of endogenous GAs affect

development of tissues, such as stem. We assume that this is also

a conservative mechanism of horticultural species as in model

plants where GAs positively regulate stem elongation

(Tomlinson et al., 2019; Shao et al., 2020; Cheng et al., 2021;

Kou et al., 2021; Liu et al., 2022). Internode/stem is made up of

millions of cells, and cell fate determines internode elongation.

Endogenous GAs influence cell fate (elongation or/and

cell proliferation). Studies of shade avoidance syndrome

provided solid evidence of how GAs precisely regulate cell

fate (Roig-Villanova and Martıńez-Garcıá, 2016; Lee et al.,

2018). When endogenous GAs were elevated, Xyloglucan

endotransglucosylase/hydrolases (XTHs), Expansins (EXPs), and

Cyclin-dependent kinases (CDKs) were subsequently up-

regulated. These genes acidize and soften cell walls,

benefiting stem cell elongation and proliferation. In other

words, internode elongation or shortening in horticultural

plants are determined by cell development (elongation,

division, and expansion), and cell fate is accurately regulated

by fluctuations in endogenous GAs.

Although a few GA synthesis and metabolism genes have

been verified to be involved in internode length, regulatory

factors of GA synthesis and signal transduction are still poorly

understood at present for horticultural plants. For example,

MCMl AGAMOUS DEFICIENS SRF4 (MADS)-box and basic

helix-loop-helix (bHLH) TFs, which have been frequently found

in Arabidopsis and rice, are still lacking in horticultural

plants. Identifying regulatory factors in GA biosynthesis and

signaling pathways is a necessary future research topic in

horticultural plants.
Axillary bud outgrowth

Axillary bud outgrowth also significantly affects the quality

and quantity of the products of horticultural plants, as it is

another core factor determining plant architecture (Wang et al.,

2018a; Zhang et al., 2020; Feng et al., 2021). The lateral axillary

meristem in the axil of leaves of horticultural species first

develops into axillary buds (namely, axillary bud initiation),

and then the axillary bud develops into dormant buds, shoot

branching/branch crown, or specialized tissues (runners etc.;

Wang et al., 2018a; Zhang et al., 2020; Guo et al., 2021).

Clonal propagation (runners) produces offspring with the

same genetic background (Tenreira et al., 2017) as their parents

in Fragaria vesca (a diploid model plant of strawberry) or

Fragaria × ananassa (a cultivated strawberry). It is important

to analyze how the runners form. This process includes axillary

bud initiation and outgrowth, which are both strictly controlled

by internal factors such as GAs and TFs and external factors
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such as photoperiod (Mouhu et al., 2013; Tenreira et al., 2017;

Caruana et al., 2018; Li et al., 2018b; Andrés et al., 2021; Feng

et al., 2021; Guo et al., 2021; Liang et al., 2022). LOSS OF

AXILLARY MERISTEMS (LAM, a GRAS gene) is highly

expressed in axillary meristem. Mutation of LAM leads to

decreased runner number due to a failure of axillary bud

formation, indicating that LAM can provoke bud initiation in

F. vesca (Feng et al., 2021). GA application only stimulates the

remaining axillary bud outgrowth in lam plants but fails to

recover the defect of axillary bud decrease, indicating that GAs

exclusively induced runner development instead of bud

initiation in F. vesca (Feng et al., 2021). A previous study

demonstrated that FveGA20ox4 is exclusively expressed in

axillary meristem and the developmental runners (Tenreira

et al., 2017). Mutation of GA20ox4 leads to reduced runner

number and the defective phenotype of the r mutant is rescued

by exogenous GA3 in F. vesca (Tenreira et al., 2017). Apart from

GA synthesis genes, GA signal transduction genes are also

involved in axillary bud outgrowth. Loss of function or

downregulation of RGA1 (one of the five DELLAs in

strawberry) increases runner number in F. vesca, which has

been demonstrated by different research groups (Caruana et al.,

2018; Li et al., 2018b).

In addition, TFs are also essential in runner formation.

FaHANABA TARANU (FaHAN; a GATA TF) promotes

runner development via enhancing GA concentration in F.

ananassa (Liang et al., 2022). Surprisingly, the GA20ox1

transcript is accumulated in FaHAN-OE transgenic lines, but

the GA20ox4 gene is not in F. ananassa (Liang et al., 2022).

Long-day and 18°C are also beneficial to runner development in

F. vesca (Mouhu et al., 2013; Andrés et al., 2021). Long-day

positively regulates the FvFlowering Locus T (FT)–

FvSUPPRESSOR OF OVEREXPRESSION OF CONSTANS1

(SOC1) cascade, and FvSOC1 directly up-regulates FvGA20ox4

expression in F. vesca. These processes lead to increased

bioactive GA concentration, and therefore promote runner

development. Andrés et al. (2021) further found that there

may be a FvSOC1-indpendent way in F. vesca, which controls

runner development at temperature of 22°C.

In contrast, silencing the SlGA2ox gene inhibits shoot

branching, and the role of GAs is verified by application of

GAs and PAC in tomato, which proves that GAs play a negative

role in shoot branching in tomato (Martıńez-Bello et al., 2015).

In garlic bulb, however, GAs promote axillary meristem

initiation and determine the number of cloves (Liu et al., 2019;

Liu et al., 2020). Application of GA3 results in downregulation of

AsGA20ox and upregulation of AsHistidine kinase (AsAHK),

which positively regulate the initiation of axillary meristem (Liu

et al., 2020).

In conclusion, GAs positively regulate runner development

in strawberry, whereas they negatively control shoot branching

in tomato. In these species, GAs determine axillary bud

outgrowth without influencing axillary bud initiation. Unlike
Frontiers in Plant Science 05
the functions in strawberry and tomato, GAs promote axillary

meristem initiation in garlic bulb. In addition, GAs act as

pleiotropic regulators in two developmental stages of axillary

meristem in many other horticultural species. TEOSINTE

BRANCHED1/BRANCHED 1 (TB1/BRC1) is the key hub in

repressing axillary bud development in different species (Zhang

et al., 2020). GAs and FaHAN can reduce this gene expression,

leading to runner outgrowth in strawberry (Liang et al., 2022),

while GAs possibly stimulate this gene expression via the

cytokinin (CK) signal pathway, increasing shoot branching

number in tomato (Xia et al., 2021). These results indicate that

BRC1 may be regulated differently in strawberry and tomato,

and that the functions of GAs are also different in strawberry and

tomato. Lateral Suppressor/LATERAL SUPPRESSOR/

MONOCULM 1 (Ls/LAS/MOC1) determine axillary bud

initiation (Feng et al., 2021). We predict that GAs maybe

directly or indirectly influence the ortholog Ls/LAS/MOC1

expression level in garlic bulb, and thus axillary bud initiation.
Compound leaf

Leaf is the main plant photosynthetic organ (Du et al., 2018).

There are three steps in leaf development: leaf primordium

initiation, differentiation, and morphogenesis (Bar and Ori,

2015). Tomato has been used as a model species to study

compound leaf development for decades and some progress

has been achieved. Hormones are key factors regulating

compound leaf development, and numerous studies have

shown that GAs promote leaf differentiation, decreasing leaf

complexity in tomato (Jasinski et al., 2008; Israeli et al., 2021; Su

et al., 2022). For example, application of exogenous GAs or

mutation of PROCERA/DELLA reduces the number of leaflets

and makes leaf margins smoother and petioles longer (Jasinski

et al., 2008; Fleishon et al., 2011; Yanai et al., 2011). However,

CKs promote leaf morphogenesis and maintenance of

organogenic activity, increasing leaflet number in tomato

(Fleishon et al., 2011; Shwartz et al., 2016; Israeli et al., 2021).

Overexpression of ISOPENTENYL TRANSFERASE 7 (IPT7; a

CK synthetic gene) increases leaf complexity (Fleishon et al.,

2011). Compound leaf development is a complex process, so it is

interesting to see how these two hormones maintain balance

during compound leaf development.

Class I KNOX (KNOXI) helps to maintain meristem activity,

and delays leaf differentiation in many species (Hake et al., 2004;

Cruz et al., 2020; He et al., 2020). Mutation of TKN2 (a KNOXI

gene) decreases leaf complexity in tomato, and the balance

between GAs and CKs (organogenesis and differentiation) in

leaflet formation is elaborately regulated by TKN2 (Figure 2). In

this model, KNOXI changes endogenous GA concentration by

down-regulating GA20ox1 and up-regulating GA2ox (Bolduc

and Hake, 2009; Fleishon et al., 2011; Israeli et al., 2021). KNOXI

also activates IPT7, leading to accumulation of CKs (Jasinski
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et al., 2005; Yanai et al., 2005; Fleishon et al., 2011; Israeli

et al., 2021).

The MicroRNA319 (miR319)-LANCEOLATE (LA; a CIN-

TCP TF) cascade also controls compound leaf development

through coordinating GAs and CKs (Figure 2), in which

miR319 promotes morphogenesis and LA promotes

differentiation (Ori et al., 2007; Jasinski et al., 2008; Yanai

et al., 2011; Challa et al., 2019; Israeli et al., 2021). LA is

negatively controlled by miR319 during the early stages of leaf

development, and overexpression of miR319 causes an

indeterminate growth phenotype of compound leaf (Ori et al.,

2007; Jasinski et al., 2008; Yanai et al., 2011; Challa et al., 2019).

The expression levels of GA20ox1 and GA2ox4 are respectively

increased and decreased in the semi-dominant mutant La,

indicating that LA increases GA levels (Yanai et al., 2011;

Israeli et al., 2021). In addition, LA limits CK activity based on

genetic experiments (Israeli et al., 2021).

In conclusion, early leaflet origination is a complex and

dynamically balanced process. GAs interact antagonistically

with CKs during this process, and promote the differentiation

stage and shorten the morphogenetic stage, decreasing leaflet

number. In contrast, CKs prolong morphogenesis and delay

differentiation, increasing leaflet number. Multiple TFs such as

TKN2 and LA delicately and fully alter concentrations of these

hormones, changing the ratio of differentiation/morphogenetic

stages and eventually influencing leaflet formation (Figure 2).

The current model is a simple framework derived from limited

existing data. Other TFs and hormones may also function in leaf

development. A good example is CLAUSA (CLAU; a MYB TF),

which works as LA in a mostly parallel pathway (Israeli et al.,
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2021). Overexpression of CLAU can rescue LA deficiency and

vice versa. CLAU also medicate CK-GA balance in compound

leaf development (Israeli et al . , 2021). Auxins and

brassinosteroids (BRs) can also coordinate with GAs,

regulating compound leaf development in tomato. SlBES1.8, a

key regulator of BR signaling, directly represses SlGA2ox2,

SlGA2ox6 and SlGID1b-1, influencing leaf morphogenesis (Su

et al., 2022). Moreover, the specific molecular mechanism

underlying compound leaf development may be different

among different species (Bar and Ori, 2015). In pea, GAs

prolong the morphogenetic stage, promoting leaf formation,

which is different from the situation in tomato (Goliber et al.,

1999). Current related studies have mostly focused on tomato;

thus, it is important to study compound leaf development using

other horticultural plants.
Reproductive growth

Flowering time

Transformation from vegetative to reproductive growth,

which is one of the most important events in the plant life

cycle, is a complex process regulated by many internal and

external factors. The molecular mechanism underlying flowering

has been studied extensively for decades, and there are five main

pathways controlling floral induction in Arabidopsis (Fornara

et al., 2010; Jin and Ahn, 2021). Among these five pathways, GAs

accelerate floral induction via up-regulating SOC1 in

Arabidopsis, which is the so-called GA pathway (Mutasa-
FIGURE 2

Model for compound leaf development regulated by GAs in tomato (Jasinski et al., 2005; Bolduc and Hake, 2009; Israeli et al., 2021). In this
model, GAs promote differentiation and delay morphogenesis, decreasing leaf complexity, while CKs promote morphogenesis and delay
differentiation, increasing leaflet number in tomato. GAs interact antagonistically with CKs during early leaflet origination. LANCEOLATE (LA) and
TKN2 (a Class I KNOTTED1-LIKE HOMEOBOX protein) coordinate the balance between GAs and CKs during leaf development. LA is negatively
regulated by MicroRNA319 (miR319). LA increases GA concentration by up-regulating GA20ox1 and down-regulating GA2ox4, meanwhile this
protein decreases CK concentration. TKN2 increases CK concentration by stimulating expression of ISOPENTENYL TRANSFERASE 7 (a CK
biosynthetic gene), and reduces GA concentration by motivating GA2ox1 (a GA deactivated gene) expression. ↓ represents positive regulation. ⊥
represents negative regulation.
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Gottgens and Hedden, 2009). This hormone is also involved in

floral transition in horticultural plants. The difference in

flowering time directly influences yield and quality of

horticultural species (Randoux et al., 2012; Ghosh and Halder,

2018). Hence, it is important to explore the mechanism

underlying how GAs regulate flowering transition of

horticultural plants.

In tomato, DELLA coordinates microRNA156 (miR156)-

SQUAMOSA PROMOTER BINDING–LIKE (SPL/SBP) cascade

and miR319-LA cascade in determining flowering time through

changing SINGLE FLOWER TRUSS (SFT) expression level in

leaves and APETALA1 (AP1) expression level in shoot meristem

(Silva et al., 2019). Silva et al. (2019) showed that DELLA

promotes flowering in tomato. In other words, GAs delay

floral induction via reducing DELLA accumulation.

Application of bioactive GAs decreases the expression levels of

AP1 and FT (known as a florigen gene) in Citrus reticulata

Blanco × Citrus temple Hort. Ex Y. Tanaka (citrus) (Goldberg-

Moeller et al., 2013), delaying flowering time. Once treated with

GAs, RoTERMINAL FLOWER1 (RoTFL1) transcripts are

accumulated in once-flowering rose, down-regulating

expression of RoFT, RoSOC1, and RoAP1, and inhibiting floral

induction (Randoux et al., 2012). GAs also stimulate expression

of MdTFL1 in apple (Zhang et al., 2019). In contrast, the

expression levels of RsFT and RsSOC1-1 are up-regulated after

GA treatment in early-flowering (NH-JS2) Raphanus sativus

(radish; Jung et al., 2020). Recently, a GA-DELLA (SLR1)-

VvmiR159c-VvGIBBERELLIN MYB GENE (GAMYB) cascade

was reported to modulate grape floral development (Wang et al.,

2018b). This result indicates that GAs also have a negative role in

floral development in grape. In Brassica campestris L. ssp.

chinensis var. utilis Tsen (flowering Chinese cabbage), GA

treatment accelerates flowering and uniconazole (GA

biosynthetic inhibitor) inhibits floral induction (Song

et al., 2019).

Overall, GAs work as a negative factor in flowering

transformation for tomato, rose, apple, and citrus, whereas

they are a positive regulator in flowering Chinese cabbage,

radish, and grape. GAs possibly influence, directly or

indirectly, the expression of some core downstream floral

integrator genes such as AP1, SOC1, and FT, determining the

transformation of flowering (negative or positive). GAs thus

have different roles in flowering transition among different

horticultural species.

Some horticultural species, for example radish, are

evolutionarily similar to Arabidopsis in effects of GAs on

flowering time, while others such as tomato have evolved

different or specific characteristics in regulation of flowering

time. Because floral transition is controlled by a precise

regulatory network, the difference in the effects of GAs on

flowering time among different horticultural species may be

associated with their different natural habitats and experimental

conditions (Wang et al., 2021a). For example, GA treatment
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inhibits flowering in once-flowering rose in mid-March (short-

day), but not in summer (long-day; Randoux et al., 2012). The

seasonal differences in light period and temperature may be the

reasons for the different role of GAs. These results provide clues

for further study of the role of GAs on flowering time using

different horticultural plant species. Tomato, citrus, and

flowering Chinese cabbage are all short-day plants, while

Arabidopsis is a long-day plant, which may be one of the

reasons for the interspecific difference in the role of GAs. The

mechanism underlying the effects of GAs on flowering time is

largely unknown in various horticultural species, and thus more

studies on flowering regulatory networks are needed, especially

in economically important species.
Parthenocarpy

Early fruit development of horticultural plants is a complex

process, which is regulated by multiple phytohormones (Hu

et al., 2018; Tyagi et al., 2021; Zhou et al., 2021; He and

Yamamuro, 2022; Sharif et al., 2022). This process can be

divided into three consecutive stages: fruit initiation stage, cell

division stage controlled by auxins, and cell expansion stage

regulated by GAs (Shinozaki et al., 2015). After fertilization, the

developing seeds induce accumulation of GAs and auxins. Then,

ovary or other tissues will receive GA and auxin signals from the

immature seeds and activate the fruit initiation process (Hu

et al., 2018).

Fruit formation without fertilization is also a common

phenomenon, namely parthenocarpy. Parthenocarpy is an

ideal agronomic trait for many horticultural species, and is

popular with consumers. Recent studies show that numerous

hormones are involved in parthenocarpic fruit formation

(Martıńez-Bello et al., 2015; Shinozaki et al., 2015; Hu et al.,

2018; Liu et al., 2018; Zhou et al., 2021). A mass of cell cycle and

cell expansion genes are continuously expressed in the ovary

walls after treatment with phytohormones (Bermejo et al., 2016;

Mesejo et al., 2016; Liu et al., 2018). Application of auxins or

GAs can induce parthenocarpic fruit in tomato, cucumber,

strawberry, and grape (Kang et al., 2013; Lu et al., 2016; Hu

et al., 2018; Qian et al., 2018). These results demonstrate that

auxins and GAs positively control parthenocarpy.

As parthenocarpic fruit growth is complicated, it is

important to know how auxins coordinate with GAs during

this process. AUX/IAA (IAA) proteins interact with AUXIN

RESPONSE FACTOR (ARF) proteins to repress auxin signaling.

In tomato, concentrations of bioactive GAs in parthenocarpic

fruits increase in iaa9 mutants (Serrani et al., 2008; Mignolli

et al., 2015). Moreover, the numbers of transcripts of SlGA20ox1

and SlGA3ox1, two GA synthesis genes, are increased in SlARF7

RNAi transgenic plants (Hu et al., 2018). SlARF7 can directly

bind to the promotors of SlGA20ox1 and SlGA3ox1, and

negatively regulate expression of these genes. PROCERA
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(DELLA) can also positively control expression of these genes

(Hu et al., 2018). These results indicate that the interaction

among PROCERA, SlARF7, and SlIAA9 coordinates the

functions of auxins and GAs during parthenocarpic fruit

growth. In strawberry, application of auxins also stimulates

expression of FveGA20ox and FveGA3ox during growth of the

parthenocarpic fruit formed from receptacle (Liao et al., 2018).

Based on these results, we can conclude that auxins lead to GA

accumulation by changing expression of GA biosynthesis genes

in early stages of fruit development (Serrani et al., 2008; Mignolli

et al., 2015; Hu et al., 2018; Zhou et al., 2021).

Although both auxins and GAs can stimulate parthenocarpic

fruit formation, there are still some differences in the

development process of the parthenocarpic fruits. For

example, compared with normal fruits of strawberry the

parthenocarpic fruits induced by auxins and GAs are rounder

and longer, respectively (Liao et al., 2018). Auxins and GAs may

regulate different genes related to cell division and expansion

during parthenocarpic fruit development, leading to different

fruit shapes (Liao et al., 2018; Chen et al., 2020).

Apart from auxins and GAs, CKs and ethylenes (ETHs) have

also been reported to be involved in parthenocarpic fruit

formation (Fos et al., 2000; Pascual et al., 2009; Shinozaki

et al., 2015). CKs increase auxin concentrations, leading to

parthenocarpic fruit in Pyrus spp. (pear) (Cong et al., 2020),

while ETH decreases bioactive GA concentrations, inhibiting

parthenocarpic fruit formation in tomato (Fos et al., 2000;

Pascual et al., 2009; Shinozaki et al., 2015). However, a clear

and systematic framework underlying the effects of various

hormones on parthenocarpic fruit growth is still lacking. A

recent review concluded that auxins may have a core role

during this process (Sharif et al., 2022), but more evidence is

needed to support this viewpoint in horticultural plants.
A view to the future

Although some significant progress has been achieved

regarding the roles of GAs in horticultural species, there are

still many problems to be studied. Efficient genetic

transformation and plant regeneration systems are still lacking

for most horticultural species, limiting studies on the molecular

mechanisms underlying the effects of GAs on growth and

development in horticultural plants. It is worth constructing

systems in multiple horticultural species in the future, which will

certainly promote progress in relevant studies.

There are many GA synthetic or signaling mutants in

horticultural plants, which is helpful not only to explore the

roles of GAs, but also alter plant stature or other economic

traits. However, unfavorable traits such as male sterility, poor
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germination, or low nitrogen-use efficiency are also found in some

mutants (Zhang et al., 2014; Li et al., 2018a; He et al., 2019b),

reducing their commercial value. There are two strategies for

breeders to solve this challenge for horticultural species. First, cis-

regulatory or coding sequences of a target GA synthetic or

signaling gene can be edited using the CRISPR-Cas9 technique

(Park et al., 2014; Wang et al., 2021b), and a series of alleles from

weak to strong effects could be obtained (Zhang et al., 2020). The

mild allele in plant height and other traits may be useful in altering

agronomic traits of horticultural plants. Second, promoters with

development stage- or tissue-specificity are urgently needed. A

target GA synthetic or signaling gene can be driven by a stem-

specific promoter, which may improve stem-related traits without

effects on stamen or lateral roots development (Gupta et al., 2020).

That is probably regarded as a prerequisite for the precision

technique of manipulating traits of horticultural plants. In

addition, the results obtained from laboratories should be tested

in greenhouses or even in crop fields, accelerating use in practice.
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