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LANet: Stereo matching network
based on linear-attention
mechanism for depth estimation
optimization in 3D
reconstruction of inter-forest
scene

Lina Liu, Yaqiu Liu*, Yunlei Lv and Jian Xing

College of Information and Computer Engineering, Northeast Forestry University, Harbin, China

The 3D reconstruction of forests provides a strong basis for scientific

regulation of tree growth and fine survey of forest resources. Depth estimation

is the key to the 3D reconstruction of inter-forest scene, which directly

determines the e�ect of digital stereo reproduction. In order to solve the

problem that the existing stereo matching methods lack the ability to use

environmental information to find the consistency of ill-posed regions,

resulting in poor matching e�ect in regions with weak texture, occlusion and

other inconspicuous features, LANet, a stereo matching network based on

Linear-Attentionmechanism is proposed, which improves the stereomatching

accuracy by e�ectively utilizing the global and local information of the

environment, thereby optimizing the depth estimation e�ect. An AM attention

module including a spatial attention module (SAM) and a channel attention

module (CAM) is designed to model the semantic relevance of inter-forest

scenes from the spatial and channel dimensions. The linear-attention

mechanism proposed in SAM reduces the overall complexity of Self-Attention

from O(n2) to O(n), and selectively aggregates the features of each position by

weighted summation of all positions, so as to learn rich contextual relations

to capture long-range dependencies. The Self-Attention mechanism used

in CAM selectively emphasizes interdependent channel maps by learning

the associated features between di�erent channels. A 3D CNN module is

optimized to adjust the matching cost volume by combining multiple stacked

hourglass networks with intermediate supervision, which further improves

the speed of the model while reducing the cost of inferential calculation.

The proposed LANet is tested on the SceneFlow dataset with EPE of 0.82

and three-pixel-error of 2.31%, and tested on the Forest dataset with EPE of

0.68 and D1-all of 2.15% both of which outperform some state-of-the-art

methods, and the comprehensive performance is very competitive. LANet can

obtain high-precision disparity values of the inter-forest scene, which can be

converted to obtain depth information, thus providing key data for high-quality

3D reconstruction of the forest.

KEYWORDS

forestry 3D reconstruction, depth estimation, stereo match, linear-attention,

self-attention, stacked hourglasses
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Introduction

Three-dimensional scene reconstruction is an important

research direction in the field of computer vision, which is widely

used in popular fields such as object detection and recognition,

automatic driving and robot navigation. The 3D reconstruction

of an inter-forest scene uses binocular cameras and UAVs

to take low-altitude photography from different perspectives

to realistically reproduce the 3D structure of forest objects,

effectively solving the problems of limited vision, overlapping

and obscuring trees, artificial inaccessibility, harsh conditions,

dangerous environment and other survey difficulties. The

visual forest scene clearly and comprehensively shows the

structural information of trees, such as the trunk, main

branches, side branches, tree height, crown height, and crown

width. Professionals analyze the structural characteristics, spatial

isolation degree, size differentiation degree and horizontal

distribution pattern of trees through the survey of the tree

structure and its surrounding environment, which provides a

strong basis for scientific regulation of tree growth, optimization

of forest structure and fine survey of forestry resources such as

stand volume and stand density, and plays an important role in

evaluating the economic, ecological and social value of forests.

Scene depth estimation is a key step in the 3D reconstruction

of the forest, which directly determines the effect of 3D

reconstruction.Binocular stereo matching imitates human

binocular perception by finding the corresponding points

between the left and right image planes and using the geometric

relationship of the corresponding points to obtain the disparity

value d. For the pixel point (x, y) in the left image, the

coordinates of its corresponding point in the right image are

(x-d, y), and the disparity value can be converted into the depth

information of the scene by F∗L/d, where F represents the focal

length of the camera and L is the distance between the two

camera centers. The binocular stereo matching method has high

matching accuracy and speed, and the binocular camera has the

advantages of easy portability, flexible operation and low cost.

Its non-contact and non-radiation characteristics can achieve

3D environment perception in the forest without causing any

damage to the environment, and maximize the protection of

the forest’s ecological environment. James Garforth (Garforth

and Webb, 2019), University of Edinburgh, UK, pointed

out that the use of vision sensors for 3D reconstruction of

forest scenes, and based on this, forest resource information

collection and intelligent forestry robots for navigation,

positioning and operational target identification are the most

promising methods.

Gatziolis et al. (2015) developed a system for accurately

acquiring 3D models of trees by using a small UAV with

a lightweight, inexpensive camera that moves slowly along a

predetermined trace to acquire images, and by using computer

vision methods to process the images to obtain detailed 3D

structures of the trees. Ni et al. (2016) used binocular stereo

vision to recover 3D information on tree crowns. Using

multi-view acquisition of the target images, combining the SfM

method to recover the camera calibration matrix of each image,

to achieve a sparse projection reconstruction of the target,

and using a spherical pivot algorithm for surface modeling, to

achieve a dense reconstruction of the tree crown. Finally, the

reconstruction is converted to a metric by obtaining ground

truth points in camera calibration. Zhang (2003) used an

improved SURF algorithm to find the feature points in the

two images and designed a matching strategy suitable for tree

trunk edges. Zhang then performed a 3D reconstruction of

the tree and developed a system for close-up photography and

stereo measurement of trees (FVision). Han (2003) used the

camera of a mobile phone as a device for tree image acquisition,

and reconstructed the 3D structure of trees, calculating tree-

measurement factors such as tree height, tree diameter, and

wood volume. Malekabadi et al. (2019) used a stereo vision

system to obtain tree disparity maps to analyse the potential

of geometric properties. Xu (2015) built a parallel binocular

vision platform, marked four rectangular red information points

on trees, extracted the coordinates of the information points

using the merging algorithm based on membership degree and

2D maximum entropy theory, and realized the inverse study

of tree growth such as tree height and wood volume based on

the incremental changes of each information point within a

year. Zhang et al. (2022) built a binocular vision-based shape

reconstruction and measurement system for front-end vision

information of spherical hedges, improved semi-global block

matching (SGBM) algorithm to get a disparity map of spherical

hedges, according to the disparity map and parallel structure of

the binocular vision system, the 3D point cloud of the target

is obtained.

At present, there are still relatively few studies at home

and abroad on the use of binocular vision methods for rapid

3D reconstruction of forest scenes. However, with the wide

application of deep learning in the fields of target recognition,

semantic segmentation and natural language processing, the

application of deep learning to stereo matching has explored

richer feature representation and aggregation algorithms, which

has greatly improved the performance of stereo matching

compared to traditional methods.

The application of CNNs to stereo matching was first

proposed by Zbontar and LeCun (2016), who designed a deep

twin network Siamese to compute the matching cost, using

traditional crossover-based cost aggregation and semi-global

matching methods to process the matching cost to obtain the

disparity map. Shaked and Lior (2017) proposed to replace

two steps in the traditional algorithmic process with two

deep neural networks: a highway network to calculate the

matching cost and a global disparity network to obtain the

initial disparity map and the confidence degree of the predicted

result, which would facilitate better detection of anomalies in

the subsequent disparity correction step. With the development
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of fully convolutional neural networks (FCNs) (Long et al.,

2015), it has been used in pixel-level labeling task to learn

disparity map from end-to-end and achieved good results.

Mayer et al. (2016) proposed the first end-to-end network,

DispNet, which outputs a predicted disparity map by feeding

a pair of binocular image pairs through an hourglass-type

“encoder-decoder” architecture. Pang et al. (2017) extended the

basis of DispNet by proposing a two-stage composition of the

stacked network (CRL) cascaded residual learning: the first

stage is used to regress the initial disparity, and the second

stage corrects the initial disparity generated from the first

stage to form multi-scale residuals, and finally the outputs of

the two stages are summed to form the final disparity map.

Recent research study has mostly used end-to-end disparity

maps regression based on a series of feature volume and 3D

aggregation networks for better contextual aggregation. GC-

Net (Kendall et al., 2017) innovatively proposed the form of

cost volume based on the end-to-end network architecture

of DispNet, where the cost volume of 4D is obtained by

concatenating the left feature with their corresponding right

feature from across each disparity level. The 3D convolution

network is the first used to learn the global context information

from neighbor pixels and disparities to predict the disparity

probability. PSMNet (Chang and Chen, 2018) uses a pyramidal

pooling layer, SPP, and a 3D CNN to replace the feature

extraction and cost matching modules in GC-Net, SPP canmake

full use of global environmental information by aggregating

environmental information at different scales and locations

to build a matching cost volume. The 3D CNN adjusts the

matching cost volume by combining multiple stacked hourglass

networks with intermediate supervision, which enables the

PSMNet to make fuller use of contextual information compared

to the GC-Net approach.

However, the above methods all have their own

shortcomings. The stereo matching algorithm of CNN is

limited by the perceptual field of the convolutional network and

still has a large number of incorrect matching results in such

ill-posed regions as weak textures and reflection. DispNet does

not combine different scales and different location information

to construct matching costs and lacks contextual information

features. GC-Net uses a 4D cost volume to represent the

correspondence between left and right images, and uses 3D

CNNs to learn global contextual information in both the

spatial dimension and the disparity dimension, but does not

consider the correlation between contexts. PSMNet uses average

pooling to compress features to four scales, up-sampling

by bilinear interpolation, and expanding the receptive field

by dilated convolution, but increasing the receptive field

size is not equivalent to capturing the correlation between

contexts, and it ignores the contribution of distant pixels

to the current region, thus lacking the interaction between

local information and the long-range dependence of global

network information.

The attention mechanism (Zhang et al., 2019) is able

to capture rich contextual relevance by learning contextual

information and adaptively integrating local and global

information, which compensates well for the limitations of

convolutional operations. DANet (Fu et al., 2019) uses a Self-

Attention mechanism to integrate contextual information to

achieve good results for the segmentation task of scenes.

Combining the experience of scene segmentation with the

idea of making full use of local and global environmental

information on the whole image, we apply it to the depth

estimation of complex forest scenes and propose a stereo

matching network LANet based on the Linear-Attention

mechanism. Our main contributions can be summarized

as follows.

(1) An innovative forestry application is proposed for fine

surveying in the forest: LANet, an end-to-end stereo

matching network is proposed to obtain disparity maps

for forest scenes. An AM attention module including SAM

and CAM is designed to obtain a rich representation of

pixel-level features of forest scenes.

(2) A Linear-Attention mechanism is proposed in SAM,

which captures long-range dependencies by learning

rich contextual relationships while reducing the overall

complexity of Self-Attention from O(n2) to O(n) in both

time and space. Self-Attention is used in CAM to selectively

emphasize interdependent channel maps by learning the

correlation between different channel features, thereby

improving feature discrimination.

(3) Optimizing stacked 3D hourglasses reduces the

computational cost and improves inference speed

by combining multiple stacked hourglass networks

with intermediate supervision to adjust matching cost

volumes, and using 1× 1×1 3D convolutions in shortcut

connections within each hourglass module, removing

shortcut connections between different output modules of

the hourglass.

Methodology

The LANet that we propose for depth estimation

optimization in the 3D reconstruction of the inter-forest

scene consists of five parts: ResNet, Attention Module (AM),

Construction of Matching cost, 3D CNN Aggregation, and

Disparity Prediction, as illustrated in Figure 1. Details of this

model are provided as follows.

Details of the network structure

Table 1 lists the layers of eachmodule and the corresponding

parameter settings. H, W denotes the height and width of

the image, C denotes the number of channels, D denotes the
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FIGURE 1

Architecture overview of proposed LANet.

maximum disparity, and S1 and S2 denote convolution stride.

Each 3D convolution by default contains batch normalized

BN and linear activation ReLU,∗ indicate that ReLU is not

included. ∗∗ indicate that ReLU and BN are not included,

only convolution.

ResNet is adopted as the backbone network for feature

extraction, and its construction is similar to PSMNet, with the

half dilation settings and without the SPP pooling module. The

first stage convolution layers conv0_1, conv0_2, and conv0_3

use three 3×3 convolution filters to cascaded to obtain shallow

features, and the output feature map size is 1/2 of the original

image. The second stage convolution layers conv1_x, conv2_x,

conv3_x, and conv4_x basic residual blocks are used to learn

to extract deep semantic features. Downsampling with stride 2

was used in conv0_1 and conv2_1, and dilated convolution is

applied to enlarge the receptive field in conv3_x and conv4_x.

The output feature map size is 1/4 of the original size after

ResNet processing.

The AM attention module adaptively aggregates long-

range contextual information to enhance the representation

of features. It consists of two parts: SAM and CAM. SAM

contains three parallel 1×1 2D convolutions for calculating Q,

K, and V, and two linear projection layers E and F are used

for dimensional-reduction processing of K and V. The size and

channels of the calculated feature based on the Linear-Attention

mechanism remain unchanged, then the number of channels

is halved by a 1×1 2D convolution. CAM is calculated on the

original feature map, and the size and channel of the feature

after calculation based on the Self-Attention mechanism remain

unchanged, then the number of channels is also halved by a 1×1

2D convolution.

The construction of a matching cost module cascades

conv2_16, conv4_3, SAM, and CAM with low-level structural

information, high-level semantic information, and global and

local information to construct a 1/4H × 1/4W ×320 feature

map. Two 2D convolution layers shared by weights were used

to fuse the feature map and compress its channel to 32. A 4D

matching Cost-volume of 1/4D× 1/4H×1/4W×64 was formed

by connecting the left feature map of 2D and the right feature

map under each disparity correspondence.

The 3D CNN Aggregation module aggregates semantic

and structural feature information in the disparity dimensions

and spatial dimensions to predict refined cost volumes, which

contains two structures: basic structure and stacked hourglass

structure. The basic structure is used to test the performance of

each module. It consists of six 3D convolutional groups, each

consisting of two 3D convolutional layers with stride 1, kernel

size 3×3×3, BN and ReLU, and the output of each group is
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TABLE 1 Layers and parameter settings of the proposed LANet.

Module Layer Setting Output size

ResNet conv0_1 3× 3,32,S2 1/2H× 1/2W× 32

conv0_2 3× 3,32,S1 1/2H× 1/2W× 32

conv0_3 3× 3,32,S1 1/2H× 1/2W× 32

conv1_x





3× 3, 32

3× 3, 32



× 3 1/2H× 1/2W× 32

conv2_x





3× 3, 64

3× 3, 64



× 16 1/4H× 1/4W× 64

conv3_x





3× 3, 128

3× 3, 128



× 3, dila = 2 1/4H× 1/4W× 128

conv4_x





3× 3, 128

3× 3, 128



× 3, dila = 4 1/4H× 1/4W× 128

Attention module SAM Linear-attention 1/4H× 1/4W× 128

Q:1× 1,16,S1

K:1× 1,16,S1

V:1× 1,128,S1

E:Parameter(torch.Tensor(k,1/4H× 1/4W))

F:Parameter(torch.Tensor(k,1/4H× 1/4W))

1× 1,64,S1 1/4H× 1/4W× 64

CAM Self-Attention 1/4H× 1/4W× 128

1× 1,64,S1 1/4H× 1/4W× 64

Construction of matching cost Concat [conv2_16,conv4_3,SAM,CAM] 1/4H× 1/4W× 320

Fusion 3× 3,128,S1 1/4H× 1/4W× 32

1× 1,32,S1

Concat Left and shifted right 1/4D× 1/4H× 1/4W× 64

3D CNN aggregation Preprocess

conv1 [3× 3× 3,32,S1]× 2 1/4D× 1/4H× 1/4W× 32

conv2 [3× 3× 3,32,S1]× 2 1/4D× 1/4H× 1/4W× 32

output ADD[conv1,conv2] 1/4D× 1/4H× 1/4W× 32

Hourglass Module 1,2,3

3Dstack x_1 3Dstack1a:3× 3× 3,64,S2 1/8D× 1/8H× 1/8W× 64

3Dstack1b:3× 3× 3,64,S1 1/8D× 1/8H× 1/8W× 64

3Dstack x_2 3Dstack2a:3× 3× 3,128,S2 1/16D× 1/16H× 1/16W× 128

3Dstack2b:3× 3× 3,128,S1 1/16D× 1/16H× 1/16W× 128

3Dstack x_3 deconv1*:3× 3× 3,64,S2 1/8D× 1/8H× 1/8W× 64

shortcut1*:1× 1× 1,64,s1,3Dstack1b 1/8D× 1/8H× 1/8W× 64

ADD[deconv1*,shortcut1*],ReLU 1/8D× 1/8H× 1/8W× 64

3Dstack4 x_4 deconv2*:3× 3× 3,32,S2 1/4D× 1/4H× 1/4W× 32

shortcut2*:1× 1× 1,32,s1,conv2 1/4D× 1/4H× 1/4W× 32

ADD[deconv2*,shortcut2*],ReLU 1/4D× 1/4H× 1/4W× 32

Disparity prediction conv1 3× 3× 3,32,S1 1/4D× 1/4H× 1/4W× 32

conv2** 3× 3× 3,1,S1 1/4D× 1/4H× 1/4W× 1

Upsample Bilinear interpolation D×H×W

disparity Soft Argmin H×W

∗Indicate that ReLU is not included. ∗∗Indicate that ReLU and BN are not included, only convolution.

summed with the result of the next group, while the last group is

not summed. The stacked hourglass structure is used to optimize

the network. The pre-hourglass network in a stacked hourglass

structure consists of four 3D convolutions with BN and ReLU.

Three stacked 3D hourglass networks in stacked hourglass

structures have the same architecture: 3Dstack x_1, 3Dstack ×

Frontiers in Plant Science 05 frontiersin.org

https://doi.org/10.3389/fpls.2022.978564
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.978564

_2, 3Dstack x_3, and 3Dstack x_4. Two downsamplings are

performed during the 3D convolution encoding process, and

two upsamplings are performed during the 3D deconvolution

decoding process accordingly i.e., the 3D deconvolution with a

convolution filter of 3×3×3 is used to recover the dimensions,

while the number of channels is halved.

The disparity prediction module performs two 3D

convolutions with a convolution kernel of 3×3×3 on each

output unit of Output1, Output2, and Output3 to obtain

a 4D volume of 1/4D×1/4H×1/4W×1, applying trilinear

interpolation to recover the same dimension H×W×D as the

input image size, which is converted to a probability volume

using a softmax function along the disparity dimension.

Attention module

The SPP spatial pyramid pooling module in PSMNet

expands the receptive field by using different scales of

convolution to capture the global context information, but

it does not further integrate and interact with the extracted

features and lacks long-distance dependencies between

information, so it cannot exploit the correlation between pixels

to capture scene information. We designed an attention module

AM, whichmodels semantic relevance in the spatial and channel

dimensions, respectively, captures long-range dependencies

between global contexts, and adaptively integrates local and

global information after feature extraction to obtain a better

feature representation at the pixel level.

Spatial attention module

Spatial attention module encodes broader contextual

information into local features from a global view of the

entire feature map, adaptively aggregates information from the

spatial environment, finds correlations between pixel features at

different positions, and similar semantic features promote each

other to improve intra-class cohesion and semantic consistency.

Self-Attention in Transformer (Vaswani et al., 2017) is calculated

as follows.

headi = Attention
(

QW
Q
i ,KW

K
i ,VW

V
i

)

= softmax





QW
Q
i

(

KWK
i

)T

√

dk



 · (VWV
i ) (1)

where P = softmax

[

QW
Q
i

(

KWK
i

)T

√
dk

]

, P ∈ R
n×n is a context

mapping matrix which represents the correlation of pixels at

different positions. Q,K ∈ R
n×dk ,V ∈ R

n×dv are the

query matrix, key matrix and value matrix of input embedding,

respectively, Q = XWQ,K = XWK , V = XWV , X ∈ R
n×dm is

the input sequence, n is sequence length, dm is the embedding

dimension, WQ, WK ∈ R
dm×dk , WV ∈ R

dm×dv are three

FIGURE 2

Linear-Attention architecture.

learnable matrices and dm, dk, dv are the hidden dimensions of

the projection subspaces, for the rest of this article, we will not

differentiate between dk and dv and just use d.

Self-Attention first calculates the dot product with Q ∈
R
n×d and K ∈ R

n×d, after scaling and normalization the

attention matrix P ∈ R
n×n is obtained, and then fuses the

values of V with the values of P. Since both Q and K are n×d

dimensional matrices, the time complexity of multiplying the

two is O(n2), and since the matrix P is an n×n dimensional

matrix, the space complexity is also O(n2). Therefore, the cost

of training and deploying the model when using Self-Attention

on large size images is very high, even if the input image size is

brought down by CNN, the time and space overhead it entails

can significantly slow down the network. Therefore, A Linear-

Attention is proposed, which can reduce the overall complexity

of Self-Attention in time and space from O(n2) to O(n), without

degrading performance and criteria, and at the same time with

greater memory and time efficiency.

Linear − Attention
(

QWQ,KWK ,VWV
)

= softmax





QWQ
(

EKWK
)T

√
d



 · (FVWV ) (2)

Where
−
P = softmax

[

QWQ
(

EKWK
)T

√
d

]

, P ∈ R
n×k. The

contextual mapping P in Self-Attention is low-rank, and most

of the information of matrixP is concentrated in the few largest

singular values, P can be approximated by a low-rank matrix
−
P,

thus we can reduce the complexity of Self-Attention by changing

its architecture. The main idea of the proposed Linear-Attention
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FIGURE 3

Linear mapping layers.

(Figure 2) is a low-rank approximation method, specifically

adding two (k× n)-dimensional linear projectionmatrices E and

F, respectively, when calculating Key and Value, which reduces

the original Key and Value layer KWK and VWV from (n×d)-

dimensional to (k×d)-dimensional. as in Figure 3. The (n×k)-

dimensional contextual mapping matrix
−
P is then calculated by

scaled dot-product, as in Equation (2).

According to the above operation, Linear-Attention has a

value
−
P · (FVWV ) and its time and space complexity is mainly

O(nk) of
−
P. If we choose a very small projected dimension k,

such that k≪ n, the overall complexity can be reduced to linear

O(n). It can be proved that when k = O
(

d/ε2
)

,
−
P · (FVWV ) of

Linear-Attention can be approximately equivalent to P · (VWV )

of Self-Attention and the error is not greater than ε.

Proof. We first proof Self-Attention is low rank and then

there exists matrices E, F ∈ R
n×k that make Self-Attention

linear complexity.

Proof 1.We define S and DS as follows

S =
QWQ

(

KWK
)T

√
d

(3)

(DS)ii =
N
∑

j=1

exp
(

Sji
)

(4)

where DS is an n × n diagonal matrix, the context mapping

matrix P is defined as

P = softmax

[

QWQ (KW K )T√
d

]

= exp(S) · D−1
S (5)

define
−
P as follows with approximation error ε > 0

−
P = exp(S) · D−1

S RTR = PRTR (6)

Let R ∈ R
n be a k × n matrix, 1 ≤ k ≤ n, with independent

and identically distributed entries from N(0, 1/k), the rank of
−
P

satisifies rank(
−
P) ≤ rank(R) = k.

According to the Johnson-Lindenstrauss lemma (JL, for

short) (Arriaga and Vempala, 2006).

Pr((1− ε) ‖u− v‖2 ≤
∥

∥

∥
u
′ − v

′∥
∥

∥

2
≤ (1+ ε) ‖u− v‖2)

≥ 1− 2e−(ε2−ε3) k4 . (7)

For any row vector x ∈ R
n of matrix P and any column vector

y ∈ R
n of matrix VWV , we can obtain

Pr(
∥

∥

∥
xRTRyT − xyT

∥

∥

∥
≤ ε

∥

∥

∥
xyT

∥

∥

∥
) > 1− 2e−(ε2−ε3) k4 . (8)

furthermore, we have

Pr

(
∥

∥

∥

∥

−
PyT − PyT

∥

∥

∥

∥

≤ ε

∥

∥

∥
PyT

∥

∥

∥

)

= Pr
(
∥

∥

∥
PRTRyT − PyT

∥

∥

∥

≤ ε

∥

∥

∥
PyT

∥

∥

∥

)

= 1− Pr
(
∥

∥

∥
PRTRyT − PyT

∥

∥

∥
> ε

∥

∥

∥
PyT

∥

∥

∥

)

(I)
≥ 1−

∑

xǫP

Pr
(
∥

∥

∥
xRTRyT − xyT

∥

∥

∥
> ε

∥

∥

∥
xyT

∥

∥

∥

)

≥ 1−
∑

xǫP

[

1− Pr
(
∥

∥

∥
xRTRyT − xyT

∥

∥

∥
≤ ε

∥

∥

∥
xyT

∥

∥

∥

)]

(II)
≥ 1−

∑

xǫP

[

1−
(

1− 2e−(ε2−ε3) k4
)]

> 1− 2ne−(ε2−ε3) k4 (9)
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The above step (I) utilizes Boole’s inequality

Pr
(
∥

∥

∥
PRTRyT − PyT

∥

∥

∥
> ε

∥

∥

∥
PyT

∥

∥

∥

)

≤
∑

x∈P
Pr
(
∥

∥

∥
xRTRyT − xyT

∥

∥

∥
> ε

∥

∥

∥
xyT

∥

∥

∥

)

(10)

Step (II) is based on the JL Lemma (8).

Therefore, we prove that for any Q,K,V ∈ R
n×d,

WQ,WK ,WV ∈ R
d×d and any column vector y ∈ R

n of matrix

VWV , when k = 5log(n)/
(

ε2 − e3
)

, there exists a low-rank

matrix
−
P ∈ R

n×n, such that

Pr

(
∥

∥

∥

∥

−
PyT − PyT

∥

∥

∥

∥

< ε

∥

∥

∥
PyT

∥

∥

∥

)

> 1− o(1)and rank(
−
P) = 2

(

log(n)
)

(11)

Proof 2.

Define E = δR and F = e−δR, where R ∈ R
k×n, 1 ≤

k ≤ n, with independent and identically distributed entries from

N(0, 1/k), δ = 1/2n is a constant, row vector x ∈ R
n of matrix P

and column vector y ∈ R
n of matrix VWV , we have

∥

∥

∥
exp

(

xET
)

Fy− exp(x)yT
∥

∥

∥

(I)
=
∥

∥

∥
exp

(

xET
)

Fy− exp(x)RTRy
∥

∥

∥

+
∥

∥

∥
exp(x)RTRy− exp(x)yT

∥

∥

∥

(II)
=

∥

∥

∥
exp

(

xδRT
)

e−δRy− exp(x)RTRy
∥

∥

∥
+
∥

∥

∥
exp(x)RTRy

−exp(x)yT
∥

∥

∥

(III)
≤ (1+ ε)

∥

∥

∥
exp

(

xδRT
)

e−δy− exp(x)RTy
∥

∥

∥

+
∥

∥

∥
exp(x)RTRy− exp(x)yT

∥

∥

∥

(IV)
≤ (1+ ε)

∥

∥

∥
exp

(

xδRT
)

e−δ − exp(x)RT
∥

∥

∥

∥

∥y
∥

∥

+
∥

∥

∥
exp(x)RTRy− exp(x)yT

∥

∥

∥

(V)
≤ o

(
∥

∥exp(x)
∥

∥

∥

∥y
∥

∥

)

+
∥

∥

∥
exp(x)RTRy− exp(x)yT

∥

∥

∥

(VI)
≤ o

(
∥

∥exp(x)
∥

∥

∥

∥y
∥

∥

)

+ ε

∥

∥

∥
exp(x)yT

∥

∥

∥
(12)

In Equation (12), step(I) is Based on the triangle inequality, step

(II) is the result of plugging in E = δR and F = e−δR, and step

(III) is based on the JL Lemma (13)

Pr

(

∥

∥

∥
u
′∥
∥

∥

2
≥ (1+ ε) ‖u‖2

)

≤ e−(ε2−e3) k4 (13)

we have

Pr
(

‖Rx‖ ≤ (1+ ε) ‖x‖
)

> 1− e−(ε2−e3) k4 (14)

Step (IV) utilizes the Cauchy inequality, the step (V) utilizes

the fact that exponential function is Lipchitz continuous in a

compact region. Thenwe can choose a small enough δ = θ(1/n),

such that

∥

∥

∥
exp(δxRT)− exp(δx)RT

∥

∥

∥
= o

(
∥

∥exp(x)
∥

∥

)

(15)

Step (VI) is based on the JL Lemma (8), we have

Pr
(
∥

∥

∥
exp(x)RTRy− exp(x)yT

∥

∥

∥
≤ ε

∥

∥

∥
exp(x)yT

∥

∥

∥

)

> 1− 2e−(ε2−e3) k4 (16)

Therefore, we prove that exist E = δR and F = e−δR, whereR ∈
R
k×n, 1 ≤ k ≤ n, with independent and identically distributed

entries fromN(0, 1/k), δ = 1/2n is a constant, for any row vector

x ∈ R
n of matrix P and any column vector y ∈ R

n of matrix

VWV , such that

Pr
(
∥

∥

∥
exp

(

xET
)

FyT − exp(x)yT
∥

∥

∥
≤ ε

∥

∥

∥
exp(x)yT

∥

∥

∥

)

> 1− 2e−(ε2−e3) k4 (17)

Furthermore,

Pr





∥

∥

∥

∥

∥

∥

softmax





QWQ · (E · KW K
)T

√
d





(

F · VWV
)

−softmax





QWQ · (KW K
)T

√
d





(

VWV
)

∥

∥

∥

∥

∥

∥

(18)

≤ ε

∥

∥

∥

∥

∥

∥

softmax





QWQ · (KW K
)T

√
d





(

VWV
)

∥

∥

∥

∥

∥

∥



 > 1− o(1)

By setting k = 5log
(

nd
)

/
(

ε2 − e3
)

,where d = rank(S)

Based on the above analysis, Linear-Attention features are

calculated as follows. The output size of RestNet is 1/4H×1/4W

×128, which is represented as the input feature of SAM as

X ∈ R
H×W×C , feeding X into three 2D convolution layers

of 1×1 to generate new feature maps Q,K,V ∈ R
H×W×C ,

respectively, Q = XWQ,K = XWK ,V = XWV and reshape

them to Q,K,V ∈ R
n×d, where n = 1/4H × 1/4W and d=C.

E, F ∈ R
k×n, according to the experiment in Table 4, we set the

value of k to 512, and the performance of the model is the best at

this value. In order to reduce the parameters of the network, let E

and F share the parameters. We perform a matrix multiplication

between QWQ and the transpose of EKWK , after that a softmax

layer is applied to calculate the spatial attention map
−
P ∈ R

n×k.

−
Pji =

exp





QiW
Q
i

(

EjKjW
K
j

)T

√
d





n
∑

i=1
exp





QiW
Q
i

(

EjKjW
K
j

)T

√
d





(19)
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where P̄ji ∈ R
n×k indicates the influence of position i on

position j. A larger value of
−
Pji indicates a greater correlation

between the features of the two positions.

We perform a matrix multiplication between
−
P and FVWV

and reshape the result to RH×W×C , then multiply it by a scale

parameter α and perform an element-wise sum operation with

the original feature map of X ∈ R
H×W×C . Finally, we get the

spatial attention feature map Y ∈ R
H×W×C .

Yj = α

n
∑

i=1

(−
Pji FiViW

V
i

)

+ Xj (20)

Where α denotes the scale factor, which gradually learns a

weight from 0 to get more weight. Equation (20) shows that

the feature Yj at each location is a weighted sum of the

features at all locations and the original locationXj. Thus, it

has global contextual information and selectively aggregates

contextual information according to the spatial attention map,

and semantic features with high relevance promote each other

and fuse similar features in the global space, which improves the

compactness and semantic consistency within the features and

plays an important role for feature representation and extraction

in ill-posed regions.

Channel attention module

Each channel corresponds to a class-specific semantic

feature map, which models the importance of individual feature

channels and captures long-range semantic dependencies

between channel features to improve the identification of

channel features. Unlike the spatial attention mechanism, CAM

does not involve O(n2) complexity and we use Self-Attention,

the channel attention architecture is shown in Figure 1.

Specifically, we reshape the input feature X ∈ R
H×W×C to

Q′,K′,V ′ ∈ R
n×d and, where n = 1/4H×1/4W and d=C, then

perform amatrix multiplication between the transpose ofQ′ and
K′. We apply a softmax layer to obtain the channel correlation

matrix P′ ∈ R
d×d.

P′ji = softmax





Q
′T
K

′

√
d



 =
exp

(

Q
′T
i K

′
j√

d

)

C
∑

i=1
exp

(

Q′T
i K

′
j√

d

) (21)

Where P′ji denotes the influence of the ith channel on the jth

channel, the more similar the features expressed by the two

channels, the greater the response value between them. Matrix

multiplication of V ′ and P′ji yields an R
n×d feature map, which

is reshaped to R
H×W×C and then multiply the result by a scale

parameter β and performs an element-wise sum operation with

the original feature map of X ∈ R
H×W×C . Finally, we get the

channel attention feature map Z ∈ R
H×W×C .

Zj = β

C
∑

i=1

(V
′
iP

′
ji)+ Xj (22)

Where β denotes the scale factor, which is initialized to 0 and

gradually learns to assign larger weights. It can be inferred from

Equation (22), that the final feature Z of each channel is a

weighted sum of the features of all channels and the original

features, which ensures that the channel attention mechanism

is able to capture the long-range semantic dependencies

between channel features and obtain more contextual semantic

information, and helps to improve the identification of features.

The process of channel attention is similar to that of spatial

attention, except that X is not processed before calculating

the correlation matrix in the channel dimension, in order to

maintain the original relationship between different channel

maps. The feature of any two channels is directly multiplied

by dimension transformation to obtain the correlation strength

of any two channels. After softmax operation, the channel

Attention matrix is obtained. Finally, Attention is fused by

weighting, so that global correlation can be generated between

all channels and stronger semantic response features can

be obtained.

3D CNN aggregation

The 3D CNN Aggregation module aggregates semantic and

structural feature information in the disparity dimensions and

spatial dimensions to predict refined cost volumes. We use

two 3D CNN structures for cost-volume regularization: the

basic structure and the stacked hourglass structure. The basic

structure is the same as PSMNet, and the stacked hourglass

structure is optimized in this study. PSMNet uses a 3D stacked

hourglass structure to aggregate multi-scale environmental

information to achieve high matching accuracy, however,

this 3D stacked hourglass structure has a lot of redundant

information resulting in a large number of model parameters,

high runtime cache usage and inefficient learning of the network.

To solve this, the following modifications are made to reduce

the number of parameters in the network and increase the

inference speed of the network computation. The structure of

the optimized stacked hourglass structure is shown in Figure 1

and Table 1.

First, Shortcut connections between different hourglass

output modules have been removed: i.e., between output1 and

output2 and between output2 and output3, so that the auxiliary

output modules output1 and output2 can be removed during the

inference process to save computational costs.
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Second, A 1 × 1 × 1 3D convolution shortcut is used inside

each hourglass module for direct connection, compared to a

3×3×3 3D convolution, the computational parameters of the

network are reduced, and the number of calculations for its

multiplication is reduced to 1/27 of the original, at which point it

runs very fast and in negligible time, thus enabling the network

to run faster without increasing the computational cost.

The optimized 3D CNN aggregation module consists of

a pre-processing network and an hourglass network, with

the pre-processing network used to extract low-level features

and provide geometric constraints for disparity prediction.

The hourglass network learns more semantic and structural

information about the contextual environment and is able to

refine the low-texture blur and occlusion parts, which are

used to compute the final disparity map. The 3D stacked

hourglass network uses an “encode-decoder” structure to solve

the problem of over-computation caused by 3D CNNs, where

the encoder uses a 3D convolution of step 2 to downsample

and the decoder uses a step 2 deconvolution to recover size. In

order to reduce the loss of spatial information caused by the

“encoder-decoder” structure, we connect features of the same

size corresponding to the encoder and decoder allows the lost

detail information and information from the lower-level feature

maps to be added during the process of deconvolution to recover

the resolution of the feature maps.

Disparity prediction

The three hourglasses correspond to three outputs and three

losses. During the training phase, the total loss is obtained

from the weighted sum of the three losses. During the testing

phase, each hourglass output generates a disparity map, and

the final disparity map is obtained from the last output. First,

each value in the cost volume is transformed into a probability

value p along the disparity dimension by using Softmax, then

the disparity value k for each pixel is multiplied by the

corresponding probability pk and cumulative summed. Finally,

the disparity estimation d̂ is obtained by regression method

using a differentiable Soft Argmin function (Kendall et al., 2017).

d̂ =
Dmax−1
∑

k=0

k · pk (23)

Where Dmax indicates the maximum disparity. For each pixel,

we have a Dmax -length vector which contains the probability p

for all disparity levels. k and pk denote a possible disparity level

and the corresponding probability.

Since the smoothed L1 loss function is more robust and

less sensitive to abnormal values than the L2 loss function,

the L1 loss function is widely used in object detection for

bounding box regression, and the disparity calculation can also

be considered as a regression problem, so we use the L1 loss

function (Goodfellow et al., 2016). The total loss was calculated

as follows.

L =
3
∑

i=1

λi · SmoothL1

(

d̂i − di

)

(24)

in which

SmoothL1 (x) =
{

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(25)

Where λi denotes the coefficient of the ith disparity prediction,

di denotes the i
th ground truth disparity map and d̂i denotes the

ith prediction disparity map.

Data and performance evaluation
metrics

The Scene Flow dataset (Mayer et al., 2016) is a large-scale

public dataset of synthetic non-real scenes applied to binocular

stereo matching, which is created through computer graphics

rendering techniques and provides dense ground-truth disparity

maps for all image pairs. As shown in Figure 4. It contains three

sub-datasets: Flyingthings 3D, Monkaa and Driving, with a total

of 39,049 pairs, of which 34,801 training image pairs and 4,248

test image pairs. In this study, 90% of the training image pairs

are used as the training set, and 10% are used as the validation

set. The details are listed in Table 2.

Figure 4 is a display of four samples. The images in the

first row are the left images of the Scene Flow dataset, the

images in the second row are the right images of the Scene Flow

dataset, and the images in the third row are the disparity images

corresponding to the left images.

Forest is a dataset of real Forest scenes that we created

ourselves, which were collected from the forestry field of

Northeast Forestry University. As shown in Figure 5. The

acquisition device is a ZED2 binocular depth camera with a pixel

resolution of 1,280∗720, which can acquire binocular image

pairs and their corresponding disparity maps simultaneously.

The original image pairs and their corresponding disparity

maps are cropped into images with a resolution of 1240∗426 to
form the forest dataset, of which 80% are used as the training

set, 10% as the validation set, and 10% as the test set. Forest

dataset contains a total of 400 pairs of binocular image pairs

and their corresponding dense disparity maps of five types

of forest vegetation, including Larix gmelinii, Pinus sylvestris

var. mongolica, Pinus tabulaeformis var. mukdensis, Fraxinus

mandschurica Rupr, and Betula platyphylla Suk. The details are

listed in Table 3.

The recognized performance evaluation metrics in the

binocular stereo matching task are as follows.
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FIGURE 4

Visualization of scene flow dataset.

TABLE 2 Details of scene flow dataset.

Subset Training set Test set Total Resolution Sparse/Dense Synthetic/Real

Flying things 3D 21,818 4,248 26,066 960∗540 Dense Synthetic

Driving 4,392 — 4,392 960∗540 Dense Synthetic

Monkaa 8,591 — 8,591 960∗540 Dense Synthetic

FIGURE 5

Visualization of forest dataset.

TABLE 3 Layers and parameter settings of the proposed LANet.

Variety Training set Validation set Test set Total Resolution Sparse/Dense Synthetic/Real

Larix gmelinii 72 9 9 90 1,240*426 Dense Real

Pinus sylvestris var. mongolica 72 9 9 90 1,240*426 Dense Real

Pinus tabulaeformis var. mukdensis 64 8 8 80 1,240*426 Dense Real

Fraxinus mandschurica Rupr 56 7 7 70 1,240*426 Dense Real

Betula platyphylla Suk 56 7 7 70 1,240*426 Dense Real

(1) End-point-error

End-point-error (EPE) represents the average Euclidean

distance between the predicted disparity and the true disparity

of a pixel.

EPE = 1

N

∑

iǫN

√

(

di − d̂i

)2
(26)

where N denotes the total number of pixel points, di denotes

the true disparity of the ith pixel, and d̂i denotes the predicted

disparity of the ith pixel.

(2) T-pixel-error

T-pixel-error indicates that the absolute value of the

difference between the predicted disparity and the true disparity

exceeds the number of t pixel points as a percentage of

Frontiers in Plant Science 11 frontiersin.org

https://doi.org/10.3389/fpls.2022.978564
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.978564

TABLE 4 Ablation experiments on scene flow.

Model >1px(%) >2px(%) >3px(%) EPE(px) Runtimes(s)

Res_Base 12.78 8.11 6.41 1.65 0.12

Res_CAM_Base 11.12 7.02 5.36 1.21 0.14

Res_SA_Base 10.24 6.48 4.91 1.03 0.24

Res_SAM_k128_Base 10.47 6.65 5.04 1.10 0.16

fRes_SAM_k256_Base 10.38 6.58 4.98 1.07 0.17

Res_SAM_k512_Base 10.29 6.52 4.93 1.05 0.18

Res_CAM_SAM_k512_Base 9.26 5.56 3.95 0.95 0.19

Res_CAM_SAM_k512_Hourglass 7.22 3.71 2.31 0.82 0.25

the number of pixels in the whole image, the higher the

percentage the more false matching points and the lower the

matching accuracy.

(3) D1-all

D1-all is the percentage of pixels with errors of more than

three pixels or 5% of disparity error from all test images.

(4) Parameter

The parameter is the total number of parameters for model

training, in millions.

(5) Runtime

Runtime is the average running time to generate a disparity

map, in seconds.

Experimental results and discussion

Experimental detail setting

The current mainstream training method for binocular

stereo matching algorithms is to pre-train on Scene Flow and

then fine-tune on the target dataset, which can achieve better

results on the target dataset. In this study, the pre-training

dataset uses the clean pass in Scene Flow and its corresponding

disparity map of the left image, and the target dataset uses

Forest and its corresponding disparity map of the left image, the

detailed setup of the experiment is shown below.

The network was based on Python 3.9.7, the PyTorch 1.11.0

framework, and the optimizer used Adam (Diederik and Ba,

2015) with β1= 0.9 and β2= 0.999. The network model was

trained on an Nvidia TITAN Xp GPU 3090 with batch size set

to 8 and the coefficients for the three outputs set to λ1= 0.5, λ2=

0.7, and λ3 = 1.0, respectively.

The model was trained from scratch on the Scene Flow

dataset for 16 epochs, with an initial learning rate of 0.001. After

the 10th epoch, the learning rate decayed by half every 2 epochs,

ending at 0.000125, and the training process took about 19 h.

During training, images were randomly cropped to size H = 256

and W = 512. The maximum disparity (D) was set to 192. The

model trained on Scene Flow was used directly in the ablation

experiments. A full image of size 960×540 was directly fed to

the network for disparity prediction, and during the network

evaluation, we removed “invalid” images with less than 10% of

valid pixels (0 ≤ d < Dmax) from the test set, only “valid”

images were tested. The pre-trained model on Scene Flow was

fine-tuned on Forest for 800 epochs, with the initial learning rate

of 0.001 and the learning rate decaying by half every 200 epochs,

ending at 0.000125. The fine-tuning took about 12 h to obtain

the final model, which was used to evaluate the final accuracy

and effectiveness of the model.

Results

Results of experiments on scene flow

(1) Ablation experiments on Scene Flow

In this section, ablation experiments are conducted on the

Scene Flow dataset to verify the performance of each key

module and key parameters in LANet. In Table 2, Res is the

ResNet module, CAM is the channel attention module, SA is

a spatial attention module using the Self-Attention mechanism,

SAM is a spatial attention module using the Linear-Attention

mechanism, kx is the dimension of E in the model and E and F

share parameters, Basic is the basic structure and Hourglass is

the stacked hourglass network. The performance of the CAM

and SAM modules is evaluated by using the basic structure

since Basic does not learn additional contextual information

through an “encoder-decoder” process. The performance of

each module was evaluated by one-pixel-error (>1px), two-

pixel-error (>2px), and three-pixel-error(>3px) errors and EPE

and Runtime, respectively, and the experimental results are

shown in Table 4.

It can be seen from Table 4 that CAM and SAM were added

to significantly reduce the error rate compared to Res_Base, the

EPE decreased from 1.65 to 1.21 and 1.10 of k128, respectively,

and three-pixel-error (>3px) decreased from 6.41 to 5.36

and 5.04 of k128, respectively. It is demonstrated that the

attention modules CAM and SAM help to reduce the false

match rate. In order to examine the performance of Linear-

Attention, the Res_SA_Base module is added for comparison,
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and k is set to different values. When k=128, the EPE of

Res_SAM_k128_Base is 1.10 higher than 1.03 of Res_SA_Base,

but the inference time of Res_SAM_k128_Base is 0.16s, which

is much lower than 0.24s of Res_SA_Base. When the value of k

increases, the EPE of Res_SAM_kx_Base gradually approaches

that of Res_SA_Base. When k=512, the EPE of the two is

almost the same, while the inference time of Res_SAM_kx_Base

does not change much and is significantly faster than that

of Res_SA_Base. This verifies that when the error rates of

TABLE 5 Comparison experiments on scene flow.

Method >3px EPE Parameter

(%) (px) (106)

MC-CNN (Zbontar and LeCun, 2015) 13.70 3.79 —

GCNet (Kendall et al., 2017) 9.34 2.51 3.50

iResNet (Liang et al., 2017) 4.64 2.46 43.11

DispNet (Mayer et al., 2016) 9.27 1.68 42.00

CRL (Pang et al., 2017) 6.20 1.32 78.77

SegStrreo (Yang et al., 2018) 4.74 1.77 —

EdgeStereo (Song et al., 2020) 4.35 1.45 —

PSMNet (Chang and Chen, 2018) 2.43 1.09 5.20

LANet(Ours) 2.31 0.82 4.50

the two are close, the speed of linear-attention is significantly

faster than that of self-attention. Res_CAM_SAM_k512_Base

has obvious advantages over Res_CAM_SAM_k512_Hourglass,

which reduces the three-pixel-error of the overall network from

3.95 to 2.31 and EPE from 0.95 to 0.82.

(2) Comparison experiments with other methods on

Scene Flow

In order to examine the performance of the model, LANet is

compared with the state-of-the-art methods such as Edgestereo,

GC-Net, and PSMNet on the Sceneflow test set from the

three performance evaluation metrics of three-pixel-error, EPE

and Parameter.

As listed in Table 5, the three-pixel-error of each model

is basically in proportion to its EPE, but there is no direct

relationship with the number of parameters. The number of

parameters in GCNet is 3.5M, which is small, but its error rate

is higher. Due to a large number of convolution layers in the

CRL, the number of parameters is up to 78.77M, and themodel is

bloated and inefficient. The PSMNet shows a good performance

in all metrics, while LANet shows better.

(3) Visualization of Scene Flow

Figure 6 illustrates some examples of the disparity maps

estimated by the proposed LANet and PSMNet on Scene Flow.

Where the first column is the left images of Scene Flow, the

second column is the ground truth, the third column is the

FIGURE 6

Visualization on scene flow. (A) Left images, (B) ground truth, (C) LANet, and (D) PSMNet.
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TABLE 6 Setting of weighting factors.

Loss weight Forest Scene flow

λ1 λ2 λ3 val EPE(px) val EPE(px)

0.0 0.1 1.0 1.25 1.53

0.1 0.3 1.0 1.06 1.34

0.3 0.5 1.0 0.91 1.01

0.5 0.7 1.0 0.68 0.82

0.7 0.9 1.0 0.85 0.93

1.0 1.0 1.0 0.94 1.04

disparity maps estimated by LANet, and the fourth column is

the disparity maps estimated by PSMNet.

The red rectangle in Figure 6 is all fine structure areas. It

can be observed that the disparity effect is more obvious in the

complex and precise areas of the “wheels” in the first group and

the repetitive texture areas of the “tool” in the fourth group.

LANet performs relatively well in these areas, not only retaining

the complex and fine features of the “wheel” but also obtaining

more reliable disparity maps in the “tool” repetitive texture area

and the “shelf ” occluded area. For objects with large and regular,

more accurate matching can be achieved.

Results of experiments on Forest

(1) Setting of loss function weights

Properly setting the loss weights for each output module

enables effective error return from the front to back of the

entire network, which helps to improve network performance

effectively. The stacked hourglass of the 3D CNN has three

training outputs out1, out2, and out3 corresponding to three loss

of weights λ1, λ2, and λ3, which are assigned a value between 0

and 1. In order to find the best loss weight, experiments with

different weight combinations are designed and applied to the

verification set of Scene Flow and Forest, as shown in Table 6.

The loss weights nearer to the end of the network are

more important to the training of the network, so we set

them relatively large, and the outputs of other modules play

a supporting role in the training of the network. The best

performance is obtained when the weights of λ1, λ2, and λ3 are

0.5, 0.7, and 1.0, respectively when the EPE is 0.82 on Scene Flow

and 0.68 on Forest. For the basic structure, we treat these three

loss weights equally and set them to 1.

(2) Comparison of model performance on Forest

In this group of experiments, three performance evaluation

metrics, D1-all, EPE and Runtime, were used to examine the

performance of each method on the Forest dataset. The results

are shown in Table 7.

After fine-tuned on Forest, LANet showed better

performance than that on the SceneFlow dataset, with an

TABLE 7 Comparison experiments on Forest.

Method D1-all(%) EPE(px) Runtime(s)

MC-CNN (Zbontar and LeCun, 2015) 4.08 3.96 67.09

GCNet (Kendall et al., 2017) 3.65 2.79 1.01

iResNet (Liang et al., 2017) 3.58 2.73 0.20

DispNet (Mayer et al., 2016) 3.08 1.96 0.14

CRL (Pang et al., 2017) 2.75 1.54 0.55

SegStrreo (Yang et al., 2018) 3.12 2.01 0.68

EdgeStereo (Song et al., 2020) 2.81 1.68 0.40

PSMNet (Chang and Chen, 2018) 2.61 1.25 0.48

LANet (Ours) 2.15 0.68 0.35

EPE reduction from 0.82 to 0.68. LANet was tested on a 3090

GPU and Forest dense test set, with an image resolution of

1240*426. The runtime was closely related to the performance

of the experimental device and the size and density of the

image, under our experimental conditions, the D1-all, EPE and

runtime of PSMNet are 2.61, 1.25 and 0.48, respectively, while

those of LANet are 2.15, 0.68 and 0.35, respectively, which are

better than the baseline model PSMNet. In terms of Runtime,

iResNet is 0.2 and DispNet is 0.14, which is better than our 0.35,

but their accuracy is very low, which D1-all is 3.58 and 3.08,

respectively, while ours is 2.15.

(3) Model visualization of Forest

Figure 7 shows the visualization of disparity maps generated

by LANet, PSMNet, and GCNet on Forest, with color

representing the different disparity values and black indicating

points where the disparity values are very small and can be

ignored at longer distances.

The yellow and green rectangular are areas of poor model

matching, usually found in locations containing delicate and

intricate structures such as branches, tree trunks, leaf edges,

and weakly textured areas such as the rear glass of a car and

obscured locations. In column A, the pink part of the yellow

rectangular area shows the trees in the distance and the dark

red part show the sky, with significant differences in predictions

between models at the borders of the trees and the sky. PSMNet

and GCNet can keep the main outline of the edge, but the

matching of the delicate and intricate structure is not accurate

enough, while LANet can keep the delicate and intricate features

of the edge better and the prediction is closer to the true value.

In column B, the yellow rectangular area is the distant tree trunk

and the rear glass of the car. For the prediction of the red trunk,

PSMNet and GCNet appear pixel missing, while the prediction

of LANet is more accurate. For the pink rear glass of the car,

LANet has a slight depth color deviation, while PSMNet has

more depth color deviation and GCNet has more depth color

error. In column C, the green rectangular area is the trunks and

leaves in the distance. With LANet showing pixel discontinuities

and a little missing for the red trunks, PSMNet and GCNet
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FIGURE 7

Visualization on forest.

show larger pixel missing or even trunks missing. For the purple

leaf part, LANet can better retain edge features, while PSMNet

lacks some small edge features, and GCNet has too many edge

predictions, resulting in a mismatch.

Discussion

The proposed network was evaluated on two stereo-matched

datasets, Scene Flow and Forest. Ablation experiments are

conducted to verify the performance of each key module and

key parameters in LANet. The results in Table 4 demonstrated

that CAM and SAM significantly help to reduce the false match

rate, and SAM performs better than CAM. The performance

of the hourglass is significantly better than that of the

Basic, indicating that the stacked hourglass module can better

aggregate the feature information of disparity dimension and

spatial dimension than the basic module, thus further improving

the matching accuracy. The comparison between Res_SA_Base

and Res_SAM_kx_Base verifies that when the error rates of

the two are close, the speed of linear-attention is significantly

faster than that of self-attention. Through the three sets of

experiments of Res_SAM_kx_Base, it is found that when the

k value becomes larger, their EPE gradually approaches that of

Res_SA_Base, while the inference time does not change much,

and is significantly faster than that of Res_SA_Base. When k =

512, the effect is the best, therefore, we choose k = 512 as the

subsequent experimental parameters.

In order to investigate the overall performance of LANet, we

also conducted experimental comparisons with other state-of-

the-artmodels. As shown in Table 5, benefiting from the effective

design of the attention mechanism and the refinement of the

matching cost aggregation stage, with a three-pixel-error of 2.31,

EPE of 0.82 and parameter number of 4.5M on Scene Flow,

LANet achieves higher accuracy than PSMNet in the case of

fewer parameters. The results in Table 7 show that the EPE of

LANet is reduced from 0.82 to 0.68 after fine-tuning on Forest,

and the accuracy is further improved, making it outperform

the comparison model in terms of accuracy. The D1-all and

running time of LANet are 2.15 and 0.35, respectively. Although

its speed is not the fastest, combined with the above metrics, the

comprehensive performance of LANet is very competitive.

Four testing examples on Scene Flow are illustrated in

Figure 6 to demonstrate that LANet obtains relatively accurate

disparity maps for delicate and intricate objects and overlapping

occlusion objects. LANet can not only retain the delicate and

intricate features of the “wheel” but also obtain more reliable

disparity maps in the “tool” repetitive texture area and the

“shelf ” occluded area. Three testing examples on Forest shown

in Figure 7 illustrate that LANet achieves more robust results
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in ill-posed regions. By comparison with PSMNet and GCNet,

LANet performs relatively well, not only retaining the salient

information of the object (e.g., branches, leaf edges, edge regions

of tree trunks) but also still being able to extract valid features

for more accurate matching in large weakly textured regions

(e.g., glass, sky, roads) and obscured regions. The comparison

model, however, has insufficient ability to identify valid features

in these ill-posed regions due to the lack of interaction between

global and local information, which can produce some false

matches and affect the matching accuracy of the model. In

addition, Although the comparison methods achieved high

performance metrics on the target test set, they generally use

fewer dataset samples during fine-tuning (e.g., KITTI only

used 200 pairs), and many methods suffered from severe

overfitting and poor generalization performance, resulting in an

unsatisfactory performance on the Forest dataset.

Figures 6, 7 are the visualization results of the experimental

comparison of various methods. The clarity of Figure 6 is high,

andmany details can be seen clearly, while Figure 7 is not as clear

as Figure 6. The reasons for that are analyzed as follows. Figure 6

is an artificially synthesized close-up dataset, and the author has

done some optimization processing on the dataset for binocular

stereo matching to make the clarity of the figure higher, so we

can see many details clearly. In contrast, Figure 7 is our own

dataset of real inter-forest scenes. Because of the long distance

and complex object structure of the field scenes, coupled with the

fact that the authors did not optimize the dataset, Figure 7 does

not look as clear as Figure 6, but this does not affect the accuracy

of the model.

The results further show that the proposed attention

mechanism can effectively identify salient features and fine

structure features of different objects by capturing global long-

range dependencies and aggregating rich global and local

information, so as to extract more comprehensive and effective

features to reduce matching errors and improve the disparity

prediction accuracy. Robust results can still be obtained in some

delicate and intricate regions, overlapping occlusion regions and

other ill-posed regions, generating dense and reliable disparity

maps for Forest scenes.

Conclusion

This research makes full use of the global and local

information of the forest scene environment to find consistent

correlations in the ill-posed areas and proposes an end-

to-end stereo matching network LANet, which uses the

attention mechanism to better compensate for the shortage

of convolutional receptive field and the lack of long-distance

dependence of context information in PSMNet. The proposed

Linear-Attention can significantly enhance the representation of

contextual semantic features while reducing the computational

complexity of Self-Attention from O(n2) to O(n), which will

help improve the accuracy and speed of the network. The

optimized 3D stacked hourglass aggregation network reduces

the inference time and further improves the speed of the

network. LANet achieves better accuracy than some state-of-

the-art methods on SceneFlow and Forest, and obtains more

robust results in delicate and intricate regions, overlapping

occlusion regions and other ill-posed regions, generating dense

and reliable disparity maps of the inter-forest scene, which will

provide key data for 3D reconstruction of forest scenes. While

the generalization performance of LANet on other datasets is

to be further tested. In addition, in order to make the model

have stronger learning ability and better robustness so that it can

better adapt to the complex outdoor forest operation scenes, the

number and variety of samples in the Forest dataset need to be

expanded, and the quality of original disparity maps requires to

be further improved, which will be an important study in the

future research.
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