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Nutritional anti-nutritional
chemical composition and
antioxidant activities of the
leaves of the sea cliff dwelling
species Limonium spathulatum
(Desf.) Kuntze

Seria Youssef1, Luı́sa Custódio2, Maria João Rodrigues2,
Catarina G. Pereira2, Ricardo C. Calhelha3, José Pinela3,
Lillian Barros3, József Jekő4, Zoltán Cziáky4

and Karim Ben Hamed1*

1Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia,
2Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal, 3Centro de Investigação de
Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal, 4Agricultural and
Molecular Research and Service Institute, University of Nyı́regyháza, Nyı́regyháza, Hungary
This work explored the nutritional and antioxidant properties of the leaves of the

halophytic species Limonium spathulatum (Desf.) Kuntze from Tunisian sea cliffs.

Furthermore, the analysis of the total phenolics and flavonoids contents and their

individual compounds using high-performance liquid chromatography coupled

with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) were also

studied. L. spathulatum leaves had high levels of moisture, ash, neutral detergent

fiber, and acid detergent fiber, but low concentrations of crude protein, crude fat

and acid detergent lignin. It contained low carbohydrates levels, and low

energetic values. The most abundant macroelements were Cl, Na and Ca

while the microelements detected in the highest levels were Fe and Zn. No

relevant a-amylase inhibition was observed, and no toxic metals (Pb and Cd) and

phytic acid were detected. The ethanol and the hydroethanolic extracts had the

highest capacity to scavenge free radicals, to chelate iron and copper and to

inhibit lipid peroxidation. The same samples were also the most active towards

oxidative haemolysis. These extracts contained high total phenolic and flavonoid

contents. HPLC analysis, performed on ethanolic extracts identified 58 individual

compounds known for their high antioxidant actvitiy including hydroxybenzoic

acids (gallic, syringic acids), hydroxycinnamic acids (caffeic, coumaric, ferulic

acids) and flavonoids (catechin, epigallocatechin gallate and naringin).In

conclusion, the leaves of Tunisian accession of L. spathulatum were good

source of minerals and fibers useful in the human diet for attaining nutritional

sufficiency. The high in vitro and ex vitro antioxidant activities associated with

high favonoids contents and compounds suggest the possibility to use the

extracts of L. spathulatum in herbal products with the aim of improving
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general health and well-being, and/or as food additives for preventing lipid

oxidation of lipid-rich foods.
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1 Introduction

The Mediterranean basin is considered one of the world’s

biodiversity hotspots due to its high variety of plant species and

endemism’s Petropoulos et al., 2018; Bolaric et al., 2021;

Hasanbegovic et al., 2021; Curadi et al., 2022)

The Limonium genus (Plumbaginaceae) includes

approximately 370 species of perennial herbs and shrubs

belonging to a particular type of halophytes,’recretohalophytes’,

that can secrete salt from their leaves through salt bladders and salt

glands, as a mechanism of adaptation to high salinity conditions

(Yuan et al., 2016; González-Orenga et al., 2021).

Limonium species commonly known as sea lavenders are

widely distributed in the Mediterranean region, mainly in the

North-Eastern and Southern countries (Brullo, 1978; Brullo,

1980; Brullo and Erben, 1989; Brullo and Erben, 2016). In

North Africa were identified 107 species, and from these, 26

are endemic to Tunisia (Dobignard et al., 2013). Some species

are highly valued as ornamental plants (e.g., L. sinuatum (L.)

Mill., and L. latifolium (Sm.) Kuntze, L. perezii (Stapf) F.T.

Hubb. (Morgan and Funnell, 2018; González-Orenga et al.,

2021). Other species have ethnopharmacological uses against

several ailments, including cardiovascular and inflammatory

conditions, (Aniya et al., 2002; Murray et al., 2004; González-

Orenga et al., 2021), are rich in bioactive polyphenolic

compounds, in particular flavonoids (Lin and Chou, 2000; Ye

and Huang, 2006; Geng et al., 2015), and display several

functional properties, such as antioxidant, anti-inflammatory

and immunomodulation (Kandil et al., 2000; Aniya et al., 2002;

Kuo et al., 2002; Mahasneh, 2002; Murray et al., 2004; Cantrell

et al., 2007; Smirnova et al., 2009; Lee et al., 2011; Nostro et al.,

2012; Tang et al., 2012; Saidana et al., 2013; Ali et al., 2013;

Rodrigues et al., 2015; Souid et al., 2019).

Having in mind the high importance of single- country

endemic plants as sources of high added value products (Shelef

et al., 2017; Sefi et al., 2021), this work focused on the species L.

spathulatum (Desf.) kuntze which grow wild in the sea cliffs of

Tunisia (Figure 1). Despite the traditional uses and potential

commercial applications of several Limonium species,

information regarding L. spathulatum is limited and refers to

the phenolic composition and antioxidant, anti-alzheimer, anti-

diabetic, and anti-inflammatory in vitro properties of organic
02
extracts extracts from aerial parts collected from plants in

Algeria (Mazouz et al., 2020), mineral, phenolic, carotenoids

and vitamins contents, in vitro antioxidant properties,

erythrocytes cellular antioxidant activity (CAA-RBC) and

oxidative hemolysis protection of methanol extracts from

plants collected in Tunisia (Souid et al., 2019).

This work aimed to explore the use of the coastal L. spathulatum

leaves in the food industry either as food and as a source of bioactive

herbal products. For that purpose, leaves were collected in Tunisian

sea cliffs and profiled firstly for their nutritional and anti-nutritional

properties. The in vitro and ex vivo antioxidant properties and the

total levels of phenolics and flavonoids of food grade leaf extracts

were also determined. Furthermore, analysis of individual phenolics

and flavonoids compounds was carried out by HPLC-ESI-MS/MS.
FIGURE 1

General aspects of Limonium spathulatum, Tabarka rocky coast
(Tunisia), 36°57’23” N8°45’28.5” E (Photo by Seria Youssef, 2019).
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2 Material and methods

2.1 Chemicals

The chemicals used in this work were all analytical grade.

Ethylenediamine tetraacetic acid (EDTA) was purchased from

Fluka (Steinheim, Germany),while copper sulfate pentahydrate

(CuSO4.5 H2O), and ferrozine were acquired from Merck

(Darmstadt, Germany).Butylated hydroxytoluene (BHT),

quercetin, 1,1-diphenyl-2-picrylhydrazyl (DPPH), rutin

hydrate, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

(ABTS) radicals, phosphoric acid, and pyrocatechol violet

(PV). Phosphate buffered saline (PBS), trolox (6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid), thiobarbituric

acid (TBA), 2 .2 ’-azobis (2-methylpropionamidine)

dihydrochloride (AAPH), sulforhodamine B, and ellipticine

were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Ethanol was purchased from Riedel de Haën (Buchs,

Switzerland). Additional reagents and solvents were obtained

from VWR International (Leuven, Belgium).
2.2 Plant material and
extracts preparation

Leaves of L. spathulatum were collected in March of 2019

from flowering adult plants growing in coastal areas of Tabarka

in Tunis (Tunisia) (coordinates: 36°57’23” N 8°45’28.5” E). The

taxonomical classification was performed by the botanist Dr.

Abderrazek Smaoui (Center of Biotechnology of Borj Cedria,

Tunisia) and a voucher specimen is kept in the herbarium of the

Laboratory of Extremophile Plants (voucher code LPEH01).

Depending on the analysis, two drying methods were used.

For the nutritional analysis, samples were lyophilized, ground

in liquid nitrogen, and stored at -20°C. For the preparation of the

extracts, leaves were dried at 37°C for one week, milled and

stored in the dark at 4°C. For extract’s preparation, dried powder

was mixed with ethanol (100 % and 50 %, w/w) and water (1:40,

w/w), and extracted overnight, at room temperature (RT) with

stirring. The extracts were then filtered (Whatman paper no. 4),

and dried in a rotary evaporator under reduced pressure at

40 °C. The water extracts were freeze dried. The resulting dried

extracts were weighed, dissolved in the corresponding solvent at

the concentration of 50 mg/mL, and stored at −20°C

until analysis.
2.3 Nutritional properties

2.3.1 Proximate composition
Moisture was determined as the difference of the weight of

the fresh leaves before and after drying at 90°C for 2 d. Ash was
Frontiers in Plant Science 03
determined by incineration of dried biomass at 500°C in a muffle

furnace for 7 h. Crude protein content was estimated by the

Kjeldahl method and was obtained by multiplying by 6.25 the

evaluated nitrogen. Crude fat was determined by a modified

protocol of the Bligh and Dyer method (Bligh and Dyer, 1959).

Total sugar content was determined using the Anthrone method

of Yemm andWillis (1954), while neutral detergent fibre (NDF),

acid detergent fibre (ADF) and acid detergent lignin (ADL) were

determined in agreement with the International Organization

for Standardization (ISO) directives 16472:2006, 13906:2008 and

13906:2008, respectively). Metabolizable energy (ME) was

calculated using the Atwater specific factor for vegetables

(FAO, 2003) according to the following equation: ME (kcal) =

2.44 × (g protein) + 3.57 × (g carbohydrate) + 8.37 × (g lipid).

2.3.2 Minerals
Dried leaf samples were ground into fine powder. 10 mg of

leaf powder were mixed in sulfuric acid (H2SO4, 1N) for 1 h at

80°C to extract the different minerals (Zorrig et al., 2010). The

extract samples were prepared by filtration with a 0.45 µm pre-

syringe filter. Sodium (Na), potassium (K) and calcium (Ca)

were assayed by flame emission photometry. Iron (Fe), zinc

(Zn), magnesium (Mg), cadmium (Cd) and lead (Pb) were

determined through atomic absorption spectrophotometry.

Different standard solutions were used : 0-20 µg/ml for Na, K,

Ca, Mg and Fe, 0-2 µg/ml for Zn, Cd and Pb, Phosphorous (P)

was measured by spectrophotometry at 430 nm. Chloride (Cl)

was determined by chloride analyzer model 926. Iodine

determination was performed according to the European

S tandard EN 15111 :2007 . Br i efly , d r i ed sample s

(approximately 100 mg) were weighed directly in borosilicate

glass tubes (16×125 mm) to which ultrapure water (> 18.2 MW.

cm at 25°C) and TMAH (25 wt. % in H2O) were added. The glass

tubes were capped and placed in a drying oven adjusted to 90 ±

3°C. Iodine was analyzed by inductively coupled plasma mass

spectrometry (ICP-MS) using an iCAPTM Q instrument

(Thermo Fisher Scientific, Bremen, Germany). The elemental

isotope 127I was monitored for quantitative purposes. The

elemental isotope 125Te was used as internal standard (IS).
2.4 Anti-nutritional properties and toxic
factors

Trypsin inhibition was assessed by the method of (Bacon

et al., 1995) adapted to 96-well microplates. In brief, samples (60

µL at 1 mg/mL), were mixed with the enzyme (60 µL; 0.02 mg/

mL of bovine in 0.001 M of HCL) and incubated in the dark, for

15 min at 41°C. Then, 150 µL of the substrate solution (BAPNA

in 20 mM CaCl2 and 50 mM Tris-HCl pH 8.2), were added and

incubated for 10 min, at RT. The reaction was stopped by adding

30 µL of 30 % acetic acid, and the absorbance was measured at
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410 nm. Results were expressed as inhibition (%) relative to a

blank containing the solvent of the extraction. Inhibition

towards a-amylase was evaluated by the method described by

(Xiao et al., 2006) using extracts at the concentration ranging

from 0.009 to 5 mg/mL. The results were expressed as inhibition

(%) relative to a blank containing the solvent of the extraction.

The phytic acid content of the extracts was determined

according to the protocol described by (Lorenz et al., 2007), in

extracts at the concentration of 150 mg/mL. Results were

calculated in relation to a calibration curve made with

different concentrations of phytic acid.
2.5 Determination of in vitro antioxidant
activity by radical based methods

The radical scavenging activity (RSA) of the extracts was

tested towards DPPH and ABTS according to the methods

described previously (Rodrigues et al., 2015). Leaf samples (22

µL, at concentrations ranging from 0.009 to 5 mg/mL) were

mixed with 200 µL of DPPH solution (120 µM) in methanol in

96-well microplates, and incubated in darkness at RT for 30 min.

The absorbance was measured at 517 nm (EZ read 400,

Biochrom). For RSA determination on ABTS radical, a stock

solution of ABTS•+ (7.4 mM) was diluted with ethanol to obtain

an absorbance of at least 0.7 at 734 nm (EZ read 400, Biochrom).

The samples (10 µL at concentrations between 0.009 and 5 mg/

mL) were mixed in 96-well microplates with 190 µL of ABTS•+

solution. After an incubation for 6 min, the absorbance was

measured at 734 nm (EZ read 400, Biochrom). RSA was

expressed as percentage relative to the negative control

containing the corresponding solvent, and as half-maximal

effective concentration (EC50 values, mg/mL) when possible.

Butylated hydroxytoluene (BHT) was used as a positive control

at concentrations up to 1 mg/mL.
2.6 Determination of in vitro antioxidant
activity by metal-based methods

The ferric reducing antioxidant power (FRAP), the metal

chelating activity on copper (CCA) and iron (ICA) were

determined according to previously described protocols

(Rodrigues et al., 2015). FRAP determines the ability of the

extracts to reduce Fe3+. Samples (50 µL at concentrations from

0.009 to 5 mg/mL), distilled water (50 µL) and 1% potassium

ferricyanide (50 µL) were mixed and incubated at 50 °C for 20

min. Then, 50 µL of 10% trichloroacetic acid (w/v) and ferric

chloride solution (0.1 %, w/v) were added, and absorbance was

measured at 700 nm (EZ read 400, Biochrom).
Frontiers in Plant Science 04
The CCA estimates the ability of the extracts to chelate Cu2+.

30 µl of samples (30 µL at concentrations ranging from 0.009 to 5

mg/mL), 200 µL of Na acetate buffer 50 mM (pH 6), 6 µL of

pyrocatechol violet (4 mM) dissolved in Na acetate buffer, and

100 µL of CuSO4 5H20 (50 µg/mL in water) were mixed in 96-

well microplates. Aborbance was measured at 632 nm using a

microplate reader (EZ read 400, Biochrom). BHT (1 mg/mL)

was used as a positive control.

The ICA chelating activity was determined by measuring the

formation of the Fe2+ ferrozine complex according to (Rodrigues

et al., 2015). 30 µl of the samples were mixed with 200 µL of

dH20 and 30 µL of a FeCl2 solution (0.1 mg/mL in water) in 96-

well microplates. After 30 min, 12.5 µL of ferrozine solution (40

mM in water) was added. Aborbance was measured at 562 nm

using a microplate reader (EZ read 400, Biochrom).

EDTA (1 mg/ml) was used as the positive control.

For all the above mentionned methods, increased

absorbance of the reaction mixture indicated increased

reducing power. Results were expressed as (%) of inhibition,

relative to the positive control, (FRAP) and to the negative

control (CCA and ICA) and as EC50 values.
2.7 Determination of ex vivo
antioxidant activity

The ex vivo antioxidant activity of the extracts were

evaluated by their ability to inhibit lipid peroxidation of

porcine brain cells by the thiobarbituric acid reactive

substances (TBARS) assay, and by the oxidative haemolysis

inhibition assay (OxHLIA), using a sheep erythrocyte solution

and AAPH as a free radical generator, according to the methods

described in (Rodrigues et al., 2021). For TBARS assay, a porcine

brain cell solution (1:2, w/v; 100 µL) was incubated with 200 µL

of sample or trolox, 100 µL of FeSO4 (10 µM) and 100 µL of

ascorbic acid (0.1 mM) at 37°C for 1 h. Then, 500 µL of

trichloroacetic acid (28 % w/v) and 380 µL of thiobarbituric

acid (TBA; 2 % w/v) were added and the mixture was heated at

80 °C for 20 min. After centrifugation, the color intensity of the

malondialdehyde (MDA)-TBA complexes formed in the system

was measured at 532 nm.

For OxHLIA, a sheep erythrocyte solution (2.8 %, v/v; 200

µL) prepared in phosphate-buffered saline (PBS, pH 7.4) was

mixed with 400 µL of either: Sample, PBS, distilled water or

trolox. After pre-incubation at 37°C for 10 min with shaking,

200 µL of AAPH (160 mM) were added and absorbance was

measured kinetically at 690 nm (EZ read 400, Biochrom) until

complete haemolysis. The extracts were tested at concentrations

ranging from 0.0625 to 2 mg/mL, and trolox (3.125 – 100 µg/

mL) was used as the positive control. Results were expressed as
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EC50 values (µg/mL), considering a 60 min Dt in OxHLIA.
2.8 Total phenolic (TPC) and flavonoid
(TFC) contents

The TPC and TFC were determined in the extracts at the

concentration of 5 mg/mL. TPC was determined by the Folin-

Ciocalteu (F-C) assay, and TFC by the aluminum chloride

colorimetric method adapted to 96-well microplates. In brief,

the extracts (5 µl at a concentration of 5 mg/ml) were mixed with

100 µl of tenfold diluted F-C reagent and incubated at RT for 10

min. Subsequently, 100 µ l of Na2 CO3 (75 g/1, w/v) were added

and the absorbance was measured on a microplate reader (EZ

read 400, Biochrom) at 725 nm after a 90 min incubation period

at RT. TPC was expressed as gallic acid equivalents (GAE) in

milligrams per gram of dry extract using a calibration curve

plotted from gallic acid standard solutions (0 – 2 mg ml -1).

The total flavonoid content (TFC) of the extracts was

estimated by the aluminium chloride (AlCl3) colorimetric

method according to (Akrout et al., 2011). 1 ml of diluted

sample was mixed with 1 ml of 2% aluminium trichloride

(AlCl3) methanolic solution. After incubation at room

temperature for 15 min, the absorbance of the reaction

mixture was measured at 430 nm with a microplate reader (EZ

read 400, Biochrom). Results were expressed as milligrams of

quercetin equivalents per gram of dried sample (mg QE/g DW)

using a calibration curve produced with quercetin

concentrations between 0.01 and 2.5 mg/mL.
2.9 High-performance liquid
chromatography coupled with
electrospray ionization mass
spectrometry (HPLC-ESI-MS/MS) analysis
of phenolic and flavonoid compounds.

The chemical composition of the extracts was determined

using a Dionex Ultimate 3000RS UHPLC instrument. Samples

were filtered (0.22 mm PTFE filter membrane, Labex Ltd,

Hungary) before HPLC analysis, and injected onto a Thermo

Accucore C18 (100 mm x 2.1, mm i. d., 2.6 mm) column

thermostated at 25 °C (± 1 °C). The solvents used were water

(A) and methanol (B), acidified with 0.1% formic acid, and the

flow rate was maintained at 0.2 mL/min. A gradient elution was

used: 5% B (0–3 min), a linear gradient increasing from 5% B to

100% (3–43 min), 100% B (43–61 min), a linear gradient

decreasing from 100% B to 5% (61–62 min) and 5% B (62–

70min). The column was coupled with a Thermo Q-Exactive

Orbitrap mass spectrometer (Thermo Scientific, USA) equipped

with electrospray ionization source. Spectra were recorded in

positive and negative-ion mode, respectively. The trace finder 3.1

(Thermo Scientific, USA) software was applied for target
Frontiers in Plant Science 05
screening. Most of the compounds were identified based on

previously published work or data found in the literature. The

exact molecular mass, isotopic pattern, characteristic fragment

ions and retention time were always used to identify

the molecules.
2.10 Statistical analysis

Experiments were conducted at least in triplicate and results

were expressed as mean ± standard deviation (SD). Differences

in significance (p< 0.05) were evaluated by one-way analysis of

variance (ANOVA), pursued by the Tukey HSD test. Statistical

analyses were performed using XLStat2014®. The EC50 values

were determined by sigmoidal fitting of the data in the

GraphPad Prism v. 5.0 software.
3 Results

3.1 Nutritional and anti-
nutritional properties

The proximate composition (moisture, crude protein, crude fat,

carbohydrates, metabolizable energy), fiber (NDF, ADF, ADL) and

iodine were determined in L. spathulatum leaves and results are

summarized in Table 1. Limonium spathulatum had high levels of

moisture (77.7 %), ash (7.10 %), NDF (35.7 %), and ADF (25.5 %),

but low concentrations of crude protein (9.93 %), crude fat (0.36 %)

and ADL (12.6 %). Limonium spathulatum also had a low

carbohydrates level (1.79%), and a low energetic value (33.7 kcal/

100 g, dw). The iodine level of L. spathulatum was 0.629 mg/Kg

(dw). Minerals were also determined, and results are depicted in

Table 2. The most abundant macroelements were Cl- (42.4 mg/g,

dw), Ca (7.1 mg/g, dw) and Na (16.2 mg/g, dw), while the

microelements detected in the highest levels were Fe (422 µg/g,

dw) and Zn, (25.3 µg/g,dw). The toxic elements Pb and Cd were

not detected.

The presence of antinutritional and toxic factors in the

extracts was evaluated in terms of trypsin and amylase

inhibition, and levels of phytic acid (Table 3). A high trypsin

inhibition was observed with the water extract (82.8%), followed

by the hydroethanolic (75.1%) and ethanol (72%) extracts. No

relevant a-amylase inhibition was observed, and no phytic acid

was detected.
3.2 Antioxidant properties

The antioxidant potential of the extracts was evaluated by

five in vitro methods, namely two radical-based assays (RSA on

DPPH and ABTS radicals), and three metal-related methods

(FRAP and metal chelation of iron and copper). As can be seen
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in Table 4, the ethanol and the hydroethanolic extract had the

highest capacity to scavenge free radicals, with EC50 values of

0.04 and 0.08 mg/mL for DPPH and 0.10 and 0.05 mg/mL for

ABTS, respectively. For those extracts, the EC50 values were

similar or even lower than those obtained with the positive

control (BHT, 0.11 and 0.141 mg/mL for the DPPH and ABTS

assays, respectively). Samples had no capacity to chelate iron, but

exhibited significant copper chelating properties, and again, the

best results were obtained with the ethanol and hydroethanolic

extracts, with similar EC50 values (0.48 mg/mL). Samples also

had the capacity to chelate iron, with the ethanol and

hydroethanolic samples exhibiting the lowest EC50value (0.04

mg/mL).

To gain further knowledge on the antioxidant properties of the

extracts, samples were tested by two ex vivo antioxidant assays,

which allowed to evaluate their capacity to inhibit lipid peroxidation

(by the TBARS formation) and oxidative haemolysis (OxHLIA)

(Figure 2). The hydroethanolic and the ethanol extracts displayed

the highest capacity to inhibit lipid peroxidation, with EC50 values
Frontiers in Plant Science 06
of 126 and 247 mg/mL, respectively. The same samples were also the

most active towards oxidative haemolysis, with EC50 values of 138

and 146 mg/mL for the ethanol and the hydroethanolic

extract, respectively.
3.3 Total phenolic and flavonoid
quantification and HPLC identification

The total levels of phenolics (TPC) and flavonoids (TFC) were

quantified in the extracts, and results are shown in (Figure 3). The

TPC peaked in the water (334.85 mg GAE/g, dw) and

hydroethanolic extracts (324.0 mg GAE/g, dw), followed by the

ethanol extract (251.7 mg GAE/g, dw). In the contrary, the ethanol

extract had the highest level offlavonoids (49.3 mg QE/g,), followed

by the hydroethanolic (19.8 mg GAE/g, dw) and the water (11.6 mg

GAE/g, dw) extracts.

To gain a deeper knowledge on the individual chemical

components of the extracts, an analysis was made by HPLC-ESI-

MS/MS, and results are summarized in Table 5. The ethanolic

extract was used for this HPLC analysis because of its high

antioxidant activities. HPLC analysis identified 58 individual

compounds (Table 5) including mainly hydroxybenzoic acids

(gallic, syringic acids), hydroxycinnamic acids (caffeic, coumaric,

ferulic acids) and flavonoids (catechin, epigallocatechin gallate

and naringin).
4 Discussion

This study appraised the nutritional profile of L.

spathulatum leaves aiming to evaluate its suitability for human

consumption. Its moisture level was like the values reported for

other halophytes species, such as Polygonum maritimum L.

cultivated with saline water containing up to 100 mM of

sodium chloride (NaCl) (sea knotgrass, 70 – 80%; Rodrigues

et al., 2019) and L. algarvense Erben cultivated in greenhouse

conditions and irrigated with freshwater (79.8%; Rodrigues et al.,

2020). However, moisture was lower than the values reported for

edible halophytes characterized by its succulence, such as

Sarcocornia and Salicornia species, which moisture levels are

usually higher than 85% (Custódio et al., 2021), and of some

common vegetables, including Lactuca sativa L. (lettuce, 94.7%)

(Custódio et al., 2021; USDA, 2021). A high moisture content is

usually related to a higher tendency for food spoilage, as

observed for example in lettuce (Barg et al., 2008; Kyere et al.,

2020), therefore having a high influence on the product shelf life

and in the consumers’ acceptance of a product. Therefore, L.

spathulatum with a lower moisture level than other common

edible succulent halophytes may result in a greater

consumer acceptability.

The ash content of a plant biomass is related to its total

mineral level. Halophytes thrive in saline conditions, have a high
TABLE 1 Nutritional profile of leaves of Limonium spathulatum.

Proximate composition Value

Moisture (%) 77.7 ± 0.53

Ash (%) 7.10 ± 0.06

Crude protein (%) 9.93 ± 0.11

Crude fat (%) 0.36 ± 0.08

Carbohydrates (%) 1.79 ± 0.06

Metabolizable energy (kcal/100 g DW) 33.6

Neutral detergent fibre (NDF) (%) 35.7 ± 2.64

Acid detergent fiber (ADF) (%) 25.5 ± 1.66

Acid detergent lignin (ADL) (%) 12.6 ± 1.25
Values represent the mean ± SD of at least three repetitions (n = 3).
DW, dry weight; nd, not detected.
TABLE 2 Mineral composition of leaves of Limonium spathulatum.

Macroelements mg/g DW mg/100 g FW

Sodium (Na) 16.20 ± 1.08 361.60

Potassium (K) 9.18 ± 0.82 204.90

Magnesium (Mg) 10.50 ± 0.56 234.30

Calcium (Ca) 17.10 ± 1.52 381.60

Chloride (Cl) 42.40 ± 1.28 946.40

Phosporous (P) 2.28 ± 0.21 50.80

Microelements µg/g DW mg/100 g FW

Iron (Fe) 422 ± 2.51 9.41

Zinc (Zn) 25.30 ± 1.86 0.57

Copper (Cu) 12.20 ± 0.06 0.27

Iodine (I) 0.62 ± 0.04 0.14

Cadmium (Cd) nd Nd

Lead (Pb) nd Nd
Values represent the mean ± SD of at least three repetitions (n = 3).dw, dry weight; nd,
not detected.
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capacity to absorb and retain minerals without toxic effects to the

plant, and therefore, usually have higher ash contents than

glycophyte plants (Borah et al., 2008; Dıáz et al., 2013). The

ash content of L. spathulatum similar to that of the halophyte

Cladium mariscus L. (Pohl.) It was however lower than the ash

levels of related species, including L. axillare (Forssk.) Kuntze

(Al-Easa, 2003) and L. pruinosum (L.) Chaz (El-Amier and

Ejgholi), and also than other edible halophytes, including

Sarcocornia and Salicornia Custódio et al., 2021). The ash level

of L. spathulatum was however higher than that of lettuce

cultivated in hydroponics and in the soil (Lei and Engeseth,

2021). Such differences may be dependant on the species and/or

on the mineral level of the soils from which the plants

were collected.

Halophytes usually have a high content in dietary fibre (Dıáz

et al., 2013). In this work, NDF was determined to estimate the

quantities of fibres including cellulose, hemicellulose, and lignin,

and also cutin (Dhingra et al., 2012). While being normally used

to appraise feed quality, NDF is considered a valuable tool to

estimate the insoluble portion of dietary fibre in food

(McDougall et al., 2009; Dhingra et al., 2012). The level of

NDF of L. spathulatum leaves is higher than that reported for

other vegetables, including Lens culinaris Medik (McDougall

et al., 2009; Dhingra et al., 2012), and other edible halophytes,
Frontiers in Plant Science 07
such as Sarcocornia perennis subsp. alpini (Mill.)and Salicornia

ramosissima J.Woods (Barreira et al., 2017). It was however

lower than Bassia hyssopipifolia (Pall.) Kuntze (Dıáz et al., 2013).

Our results suggest that L. spathulatum is a good source of fiber,

which has relevant health advantages including prevention of

cardiovascular diseases and diabetes, besides contributing to

weight loss, due to its low caloric content (Whelton et al.,

2005; Yao et al., 2014).

The crude protein of L. spathulatum was as expected low but

higher than that of L. axillare, Sarcocornia and Salicornia

(Custódio et al., 2021), and C. mariscus Oliveira-Alves et al.,

2021). It was however lower than other Limonium species, such

as L. pruinosum and other common vegetables, including lettuce

and spinach (USDA, 2021), thus suggesting that the

consumption of L. spathulatum can contribute to a higher

input of protein that these latter species.

Similar to protein, the crude fat content of L. spathulatum

was also low, and lower than the levels detected in other

Limonium species, such as L. pruinosum (0.92%) and L.

axillare, and also than other edible halophytes, including S.

perennis perennis and S. perennis alpini (Akyol et al., 2020),

and some common vegetables, such as raw lettuce (Lactuca

sativa var. logifolia and spinach (USDA, 2021). Moreover, L.

spathulatum also had low levels of carbohydrates level, which

resulted in a low energetic value (33.7kcal/100 g, dw,

corresponding to 7.49 kcal/100 g, fw), lower than the values

reported for common vegetables, includings lettuce (20 kcal/100

g, fw), spinach (27 kcal/100 g, fw) (USDA, 2021) and Salicornia

bigelovii (3.8 MJ kg−1, dw, corresponding to 20.17 kcal/100 g, fw)

(Dıáz et al., 2013). Such a low energy value, combined with the

low-fat and carbohydrates content, suggests that consuming L.

spathulatum leaves can contribute to weight loss, and therefore,

to prevent relevant non communicable diseases.

Dietary minerals have vital roles in the human body,

including bone formation and muscle function (Gharibzahedi

and Jafari, 2017), and can be obtained from different food
TABLE 3 Antinutrients and toxic factors in leaves of Limonium
spathulatum.

Extract Trypsin
inhibition (%)

a-Amylase
inhibition(%)

Phytic acid

Ethanol 72.0 ± 1.80 9.37 ± 1.7 Nd

Water 82.8 ± 1.63 10.2 ± 1.13 Nd

Hydroethanolic 75.1 ± 1.11 29.6 ± 1.22 Nd
Values represent the mean ± SD of at least three repetitions (n = 3).
The extracts were tested for trypsin and amylase inhibition at 1 mg/mL, for phytic acid
quantification up to 150 mg/mL.
nd, not detected.
TABLE 4 Radical scavenging activity (RSA) on DPPH and ABTS, metal chelating activity on copper (CCA) and iron (ICA) and ferric reducing activity
power (FRAP) of different extracts of Limonium spathulatum.

Sample DPPH ABTS ICA CCA FRAP

Ethanol 0.04 ± 0.00a 0.10 ± 0.01a Nr 0.48 ± 0.02b 0.04 ± 0.00a

Water 0.32 ± 0.01c 0.15 ± 0.03a Nr 0.56 ± 0.07b 0.09 ± 0.00b

Hydroethanolic 0.08 ± 0.00ab 0.05 ± 0.01a Nr 0.48 ± 0.02b 0.04 ± 0.00a

Positive controls

BHT* 0.11 ± 0.00b 0.141 ± 0.00a Nt nt nt

EDTA* nt Nt 0.06 ± 0.00 0.17 ± 0.00a nt
fro
Results are expressed as effective maximal inhibitory concentration (EC50) values in mg/mL.
Values represent the mean ± SD of at least three experiments performed in triplicate (n = 9). Comparison was made between extract, for the same assay, and values followed by letters are
significantly different referring to the Tukey HSD test (p < 0.05).
DPPH, 2, 2-diphenyl-1-picrylhydrazyl; ABTS, 2, 2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.
nr, the EC50 value was not reached.
nt, not tested.
*Butylated hydroxytoluene (BHT, E320) and ethylenediaminetetraacetic acid (EDTA), positive control.
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A B

FIGURE 2

Ex vivo antioxidant activity (A: TBARS, B: OxHLIA), of ethanol, water and hydroethanolic extracts of Limonium spathulatum. Values represent the mean ±
SD of at least three repetitions (n = 3). For each assay bars marked with different letters are significantly different at p< 0.05 (Tukey HSD test).
A

B

FIGURE 3

Total levels of phenolics (TPC) (A) and flavonoids (TFC) (B) of ethanol, water and hydroethanolic extracts of Limonium spathulatum. Values
represent the mean ± standard deviation (SD) of at least six repetitions (n = 6), expressed as equivalents GAE/g for TPC and QE/g for TFC, DW
For each group of compounds, bars marked with different letters are significantly different at p< 0.05 (Tukey HSD test).
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TABLE 5 High-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) tentative
identification of metabolites present in the ethanolic extracts of Limonium spathulatum.

Formula RT [M + H]+ [M – H]-

Quinic acid C7H12O6 2,11 191,05557

Shikimic acid C7H10O5 2,16 173,04500

Galloylhexose C13H16O10 2,87 331,06653

Gallic acid (3,4,5-Trihydroxybenzoic acid) C7H6O5 3,18 169,01370

Gallocatechin (Gallocatechol) C15H14O7 5,63 305,06613

Coumaroylhexose sulfate isomer 1 C15H18O11S 7,79 405,04916

Caffeoylhexose sulfate isomer 1 C15H18O12S 9,00 421,04408

Uralenneoside or isomer C12H14O8 11,03 285,06105

Caffeoylhexose C15H18O9 11,81 341,08726

Coumaroylhexose sulfate isomer 2 C15H18O11S 12,22 405,04916

Caffeoylhexose sulfate isomer 2 C15H18O12S 12,80 421,04408

Epigallocatechin (Epigallocatechol) C15H14O7 13,45 305,06613

Chlorogenicacid (3-O-Caffeoylquinic acid) C16H18O9 14,42 355,10291

Coumaroylhexose isomer 1 C15H18O8 14,46 325,09235

Caffeic acid C9H8O4 14,60 179,03444

Biflorin C16H18O9 14,78 355,10291

Digalloylhexose C20H20O14 14,98 483,07749

Coumaroylhexose isomer 2 C15H18O8 15,16 325,09235

Isobiflorin C16H18O9 15,56 355,10291

Epigallocatechin-3-O-gallate (Teatannin II) C22H18O11 16,25 457,07709

Dihydrokaempferol-O-hexoside C21H22O11 17,18 449,10839

4-Coumaric acid C9H8O3 17,99 163,03952

Coumaroyl-hexosylglycerate C18H22O11 18,09 413,10839

Isololiolide C11H16O3 18,63 197,11777

Ferulic acid C10H10O4 19,36 193,05009

Unidentified alkaloid C13H12N2O3 19,55 245,09262

Loliolide C11H16O3 19,84 197,11777

Myricetin-O-hexoside C21H20O13 20,37 479,08257

Myricetin-3-O-rutinoside C27H30O17 21,05 625,14048

Myricetin-O-pentoside C20H18O12 21,50 449,07201

Myricitrin (Myricetin-3-O-rhamnoside) C21H20O12 21,68 463,08765

N-cis-Feruloyltyramine C18H19NO4 22,35 314,13924

Hyperoside or Isoquercitrin C21H20O12 22,31 463,08765

Rutin (Quercetin-3-O-rutinoside) C27H30O16 22,60 609,14557

Coatline A or isomer C21H24O10 22,74 435,12913

Methoxy-pentahydroxy(iso)flavone-O-hexoside C22H22O13 22,87 493,09822

Myricetin (3,3’,4’,5,5’,7-Hexahydroxyflavone) C15H10O8 23,80 317,02974

Kaempferol-7-O-glucoside C21H20O11 23,84 447,09274

Phlorizin C21H24O10 24,05 435,12913

Quercitrin (Quercetin-3-O-rhamnoside) C21H20O11 24,21 447,09274

Astragalin (Kaempferol-3-O-glucoside) C21H20O11 24,41 447,09274

Kaempferol-3-O-rutinoside (Nicotiflorin) C27H30O15 24,54 593,15065

N-trans-Feruloyltyramine C18H19NO4 24,60 314,13924

Dimethoxy-tetrahydroxy(iso)flavone isomer 1 C17H14O8 25,79 345,06104

Afzelin (Kaempferol-3-O-rhamnoside) C21H20O10 26,19 431,09782

Dihydroactinidiolide C11H16O2 26,66 345,09743

Quercetin (3,3’,4’,5,7-Pentahydroxyflavone) C15H10O7 26,71 301,03483

Naringenin (4’,5,7-Trihydroxyflavanone) C15H12O5 27,23 271,06065

(Continued)
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sources, including vegetables, fruits, and animal products.

Halophytes have a high capacity to accumulate minerals

without toxicity and are therefore indicated as very interesting

sources of such elements. In this work, the most abundant

macroelements detected in L. spathulatum leaves were Cl-, Ca

and Na, while the most abundant microelements were Fe and

Zn. Although Cl- was previously considered harmful to

conventional crops due to its impairment effects on nitrate

(NO–
3) nutrition and consequent crop yield reduction, new

findings show its beneficial properties, including improvement

of the overall plant growth, tissue water balance, plant water

relations, photosynthetic performance, and water-use efficiency

(Raven, 2016; Rosales Miguel et al., 2020). Most glycophytes

contain 1 - 20 mg Cl− g (dw) (Marschner, 2011), while in

halophytes Cl− is only toxic at concentrations higher than 50

mg/g (dw) (Geilfus, 2018), which is a higher value than that

detected in L. spathulatum.

The Na content of L. spathulatum leaves were lower than the

level detected in the same species collected in different locations,

in Tunisia (Souid et al., 2019), and than the values reported for

different edible halophytes, such as Sarcocornia and Salicornia

species (Custódio et al., 2021). It was however higher than the

levels detected in the leaves of drought-resistant amaranth

(Sarker et al., 2022a), A. tricolor (Sarker and Oba, 2020a) and

the leaves of Cladium. mariscus Oliveira-Alves et al., 2021), and

in the range of the levels reported for common green vegetables,

including (Kim et al., 2016) and seaweed (El-Said and El-Sikaily,

2012). According to theWorld Health Organization (WHO), the

Na daily intake should not exceed 2 g. Therefore, to achieve the

maximum daily intake of Na it would be necessary to consume

as much as 553.08 g of fresh leaves of L. spathulatum.

The Ca concentration detected in L. spathulatum was higher

than those of the leaves of danta (Sarker et al., 2022b), A. lividus

(Sarker et al., 2022c), stem amaranth (Sarker et al., 2022d),

Salicornia perennis, S. ambigua, and S. neii (Bertin et al., 2014;

Riquelme et al., 2016; Barreira et al., 2017), but lower than the Ca

level S. fruticosa (Castañeda-Loaiza et al., 2020a). Limonium
Frontiers in Plant Science 10
spathulatum leaves can be considered good source of Ca when

compared with vegetables considered rich sources of this

element, such as kale, (USDA, 2021). The daily recommended

dietary allowances (RDA) for Ca are age and country dependent

(Rose and Strombom, 2019), and usually peak in the adolescence

(1300 mg) and in the elderly (1000 – 1200 mg) (Rose and

Strombom, 2019). The consumption of 100 g of fresh L.

spathulatum leaves would cover 38 and 29% of the RDA for

the elderly and adolescents, respectively. The intake of vegetables

rich in Ca is especially important in vegetarians and vegans,

where no dairy products are consumed. While absorption of Ca

from vegetables is often better than from dairy products,

bioavailability issues may arise related with the oxalate levels

of plant tissues, since Ca absorption is inversely proportional to

the oxalic acid content of the food (Rose and Strombom, 2019).

Therefore, future studies should consider determining the

oxalate levels of L. spathulatum leaves.

Iron was the major micro element in L. spathulatum, in

similar or lower levels than those detected in Sarcocornia species

(Riquelme et al., 2016; Barreira et al., 2017). It was however

higher than and in Fe rich vegetables, such as parsley

(Petroselinum crispum (Mill.) Fuss) (USDA, 2021). Therefore,

consuming 84 g and 191 g of fresh L. spathulatum could

contribute to fulfill the recommended daily Fe intake of 8 - 18

mg/day for adults (Trumbo et al., 2001). The Zn levels of L.

spathulatum were in the range than those in different

Sarcocornia and Salicornia species (Custódio et al., 2021).

These were however higher than and spinach (USDA, 2021).

The consumption of 1.4 and 1.9 g of fresh L. spathulatum could

contribute to fulfill the recommended daily Zn intake of 8 - 11

mg/day for adults (Trumbo et al., 2001).

The iodine level of L. spathulatum was lower than that found

in some edible halophytes, such as Crithmum. maritimum,

grown in a hydroponic system (Sarroua et al., 2019) and Inula

crithmoides L. cultivated in a controlled environments under

irrigation with different salinities (Zurayk and Baalbaki, 1996). It

was however higher than lettuce and asparagus (Asparagus
TABLE 5 Continued

Formula RT [M + H]+ [M – H]-

Quercetin-3-O-methyl ether C16H12O7 28,10 315,05048

Phloretin (Dihydronaringenin) C15H14O5 28,23 273,07630

Dimethoxy-tetrahydroxy(iso)flavone isomer 2 C17H14O8 28,34 345,06104

Trihydroxy-trimethoxy(iso)flavone isomer 1 C18H16O8 30,37 359,07670

Trihydroxy-trimethoxy(iso)flavone isomer 2 C18H16O8 31,10 359,07670

Malyngic acid or isomer C18H32O5 32,30 327,21715

Trihydroxy-trimethoxy(iso)flavone isomer 3 C18H16O8 32,63 359,07670

Dimethoxy-trihydroxy(iso)flavones C17H14O7 32,85 329,06613

Dihydroxy-tetramethoxy(iso)flavones C19H18O8 33,26 373,09235

Pinellic acid C18H34O5 33,61 329,23280
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officinalis L.) (WHO, 2018), and therefore, could be an

interesting source of iodine, when compared with common

vegetables, especially for pregnant woman.

Halophytes can accumulate toxic metals, including Pb and

Cd, when growing in contaminated soils (Caetano et al., 2008).

However, the accumulation of such elements generally occurs in

the roots, since its translocation to aboveground organs is

limited, as observed in different halophytic species, such as S.

fruticosa, S. ramosissima and A. macrostachyum (Caetano et al.,

2008; Moreira da Silva, 2008; Redondo-Gómez et al., 2010). In

this work, Pb and Cd, were not detected in the leaves of L.

spathulatum. Some other molecules exhibit toxicity and/or

antinutrient activity may be present in halophytes. This is the

case of tannins, phytic acid, trypsin and alpha-amylase inhibitors

which are considered antinutritional factors since they might

interfere with the bioavailability and/or digestibility of some

nutrients, including proteins and minerals (Samtiya et al., 2020).

In this work, the extracts of L. spathulatum were phytic acid free

and presented a high capacity to inhibit trypsin, but reduced a-
amylase inhibition, when tested at 1 mg/mL.

In this work, the antioxidant potential of L. spathulatum

leaves was evaluated by different in vitro methods, covering

different mechanisms of action, namely those involving free

radicals and metal ions. The ethanol and the hydroethanolic

extracts had in general the highest capacity to scavenge free

radicals when compared to water extracts, thus suggesting that

such extracts contain primary antioxidant compounds with the

capacity to neutralize free radicals and prevent the initiation and

propagation of oxidative chain reactions (Loganayaki and

Manian, 2010). Such activity was similar or higher than that of

the tested standard (BHT), which is one of the most used

synthetic antioxidant additives to food stuffs In general,

Limonium species are acknowledged as sources of strong

antioxidants. For example, a free radical scavenging activity

guided fractionation of a methanol root extract and obtained

fractions of L. brasiliense Kuntze resulted in the isolation of five

active antioxidant compounds, namely gal l ic acid ,

epigallocatechin 3-O-gallate, epigallocatechin, gallocatechin

and myricetin 3-O-a-rhamnoside (myricitrin) (Murray et al.,

2004). Myricitrin exhibits relevant antioxidant properties, with

stronger free radical scavenging activity than other flavonol

rhamnosides or quercetin (Wu et al., 2008); all detected in the

L. spathulatum extracts. Methanol leaf extracts of L. algarvense

also had a strong capacity to scavenge the DPPH radical, with an

EC50 value of 0.54 mg/mL (Rodrigues et al., 2015), although less

effective than L. spathulatum.

The strong antioxidant potential of L. spathulatum is most

probably related with its high content in polyphenolic

compounds, since such molecules are recognized antioxidant

agents (Granato et al., 2018; Stanković et al., 2019).
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Since a high antioxidant activity was obtained in the in vitro

assays, L. spathulatum was evaluated for the first time for their

ability to reduce lipid peroxidation in porcine brain cell

membranes (TBARS) and oxidative hemolysis of sheep

erythrocytes (OxHLIA). Such assays are appropriate ex vivo

models for evaluating inhibition of lipid peroxidation by the

presence of antioxidants (Takebayashi et al., 2009; Takebayashi

et al., 2012). Similar to the observed in the free radical and metal-

based assays, the upmost activity was observed after the

application of the hydroethanolic and ethanol extracts, which

may be related with the highest levels of polyphenolics and

flavonoids detected in such extracts, as stated before. A relevant

inhibition of lipidic peroxidation was also detected in a water

extract from leaves of L. algarvense (Rodrigues et al., 2015).

Lipids are highly vulnerable to peroxidation, which is linked

with the onset of several degenerative disorders, including

cardiovascular (Gianazza et al., 2021) and neurodegenerative

diseases (Angelova et al., 2021). In addition, lipid peroxidation

alters the composition, structure, and function of the lipids

present in cellular membranes, that may result in DNA and

proteins damage. The use of natural products from limonium

species such as L. spathulatum capable to decrease cellular lipid

peroxidation is therefore considered an important therapeutical

tool to prevent the occurrence of degenerative and chronic

disorders linked to oxidative stress. There is an increasing

interest in the use of these natural extracts to improve

foodstuff stability (Da Silva et al., 2021). The high activity

detected in the ethanolic extract may be related with its higher

level of total polyphenolic compounds, while the activity of the

ethanol extract is most probably related with its richness

in flavonoids.

This hypothesis was conformed by the study of TPC and

TFC and the identification of their individual compunds in the

most active ethanol extracts of L. spathulatum. TPC of L.

spathulatum leaves of all extracts were greater than the leaves

of drought-tolerant leafy vegetable amaranth (Sarker and Oba,

2020b), Amaranthus gangeticus (Sarker and Oba, 2020a). Such

levels are higher when compared to other medicinal halophytes

species with confirmed pharmacological properties such as

Limoniastrum monopetalum (L.) Boiss, Trabelsi et al., 2012),

Tamarix gallica L. and Mesembryanthemum edule L. (syn.

Carpobrotus edulis L.) (Ksouri et al., 2008), and also higher

than the levels detected in water extracts made from different

medicinal herbs and spices, Rosmarinus officinalis L., Salvia

officinalis L., Thymus vulgaris L. and Origanum vulgare L.

(Ulewicz-Magulska and Wesolowski, 2019). The TPC of L.

spathulatum was similar than that detected in a methanol

extract of the same species from Algeria (Mazouz et al., 2020),

but higher than that detected in a ethanol extract from L.

boitardii (Sefi et al., 2021), and of a methanol extract from
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leaves from L. algarvense (Rodrigues et al., 2015). In plants,

phenols are responsible for pigmentation (Sarker and Oba,

2020a; Sarker and Oba, 2021) and astringency, serve as

protective agents against abiotic (e.g.,UV light), and biotic

(e.g., parasites and insects) stress (Caleja et al., 2017; Durazzo

et al., 2019). Such molecules also have important human health

implications, since they exhibit relevant health improvement

properties, including antioxidant, anti-diabetic, anti-

inflammatory and anti-tumor (Albuquerque et al., 2020; Diasa

et al., 2021).

More interestingly, flavonoids peaked in the ethanol extract,

similar to the total flavonoids found in a methanol extract from

L. algarvense (Rodrigues et al., 2015), but in lower amounts than

those detected in a hydroethanolic leaf extract from L. boitardii

(Sefi et al., 2021). Such differences are highly dependent on

several factors, includings the type of extraction used, plant

species, as well as biotic and abiotic stresses (Do et al., 2014;

Karoune et al., 2015; Cujic et al., 2016; Bakhouche et al., 2021).

Flavonoids exhibit important biological properties potentially

associated with multiple health benefits to the antioxidant

system of the human body. They are also considered as an

important element in dietary supplements, pharmaceutical,

medicinal and commercial applications. (Panche et al., 2016;

Castañeda-Loaiza et al, 2020b).

The major molecules identified in the ethanolic extracts were,

mainly hydroxybenzoic acids (gallic, syringic), hydroxycinnamic

acids (caffeic, coumaric, ferulic acids) and flavonoids (catechin,

epigallocatechin gallate and naringin). Some compounds were

already been described in a related species, L. boitardii (Sefi et al.,

2021), namely gallic acid,epigallocatechin-3-O-gallate (Teatannin

II), rutin (quercetin-3-O-rutinoside), myricetin (3,3’,4’,5,5’,7-

Hexahydroxyflavone) , and querce t in (3 ,3 ’ , 4 ’ , 5 , 7 -

Pentahydroxyflavone). Quinic acid is a chlorogenic acid

metabolite, and was already reported in methanol extracts from

aerial parts of L. tubiflorum (Delile) Kuntze var tubiflorum (El-

Kousy et al., 2021). Quinic acid is an organic acid mediating the

‘‘shikimate pathway’’ (shikimic acid pathway), which is a chief

aromatic amino acid synthesis metabolic route exclusive to plants

and microorganisms resulting in the formation of tryptophan

(TRP), tyrosine (TYR), and phenylalanine (PHE) (Averesch and

Krömer, 2018). Quinic acid has important biological properties,

including antioxidant (Bursal et al., 2018), antimicrobial (Lu et al.,

2021; Bai et al., 2022) and anti HIV-1 (Yazdi et al., 2019), and is a

building block for the synthesis of several valuable secondary

compounds, including coumaroyl and caffeoylquinic acid

derivatives with significant biological activity in several drug-

target areas (Cheynier et al., 2012). A related compound of

quinic acid, shikimic acid, was also detected in the ethanolic

extract from L. spathulatum, is also key intermediate of the

‘ ‘shikimate pathway ’’ and has a high pharmaceutical
Frontiers in Plant Science 12
importance, such as being a precursor for the synthesis of

oseltamivir (Tamiflu), the only drug against avian flu caused by

the H5N1 virus (Quiroz et al., 2014; Bai et al., 2022). Myricetin-O-

galloylhexoside, myricetin-O-(di-O-acetyl)rhamnoside isomer 1,

and myricetin-O-(di-O-acetyl)rhamnoside isomer 2, previously

identified in ethanol extracts from aerial parts of L. caspium

(Willd) (Gadetskaya et al., 2015), and isolated from L. sinuatum

(L.) Mill and L. meyeri (Boiss.) Kuntze (Ross, 1984; Movsumov

and Garaev, 2005), whileMyricetin-3-O-rutinoside was previously

identified in L. algarvense’s water extracts (Rodrigues et al., 2021).

Myricetin, and its derivatives, exhibit important biological

properties, including antioxidant, anticarcinogenic, antiviral and

antimicrobial (Baysal et al., 2021; Sinan et al., 2021).

Prodelphinidin A gallate and ethyl gallate were previously

detected in L. bondueli organs (Breant et al., 2010). Chlorogenic

acid, gallic acid and rutin were identified in the shoot extracts of L.

delicatulum (Baysal et al., 2021). High amounts of epigallocatechin

gallate, phlorizin, phloretin and quercetin were also detected in

aqueous extracts of L. contortirameum and L. virgatum (Foddai

et al., 2014), while tannic acid and hyperoside were quantified in

high levels in the ethyl acetate fractions of aerial organs L. effusum

and L. sinuatum (Baysal et al., 2021).

In conclusion, the leaves of L. spathulatum collected from

Tunisian sea cliffs were good source of minerals and fibers useful

in the human diet for attaining nutritional sufficiency. The high

in vitro and ex vivo antioxidant activities associated with high

phenolics and favonoids contents and compounds suggest the

possibility to use extracts of L. spathulatum in herbal products

with the aim of improving general health and well-being, and/or

as food additives for preventing lipid oxidation of lipid-

rich foods.
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