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Macroalgae provide food and habitat to a diversity of organisms in marine 

systems, so structural damage and breakage of thallus tissue can have 

important ecological consequences for the composition and dynamics 

of marine communities. Common sources of macroalgal damage include 

breakage by hydrodynamic forces imposed by ambient water currents and 

waves, tissue consumption by herbivores, and injuries due to epibionts. 

Many macroalgal species have biomechanical designs that minimize damage 

by these sources, such as flexibly reconfiguring into streamlined shapes in 

flow, having either strong or extensible tissues that are tough, and having 

chemical and morphological defenses against herbivores and epibionts. If 

damage occurs, some macroalgae have tissue properties that prevent cracks 

from propagating or that facilitate tissue breakage in certain places, allowing 

the remainder of the thallus to survive. In contrast to these mechanisms of 

damage control, some macroalgae use breakage to aid dispersal, while others 

simply complete their reproduction prior to seasonally-predictable periods of 

damage (e.g., storm seasons). Once damage occurs, macroalgae have a variety 

of biomechanical responses, including increasing tissue strength, thickening 

support structures, or altering thallus shape. Thus, macroalgae have myriad 

biomechanical strategies for preventing, controlling, and responding to 

structural damage that can occur throughout their lives.
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Introduction

Macroalgae play critical roles in marine ecosystems (Steneck et al., 2002; Schiel and 
Foster, 2015), so damage that alters their size or morphology can have serious ecological 
consequences. For example, large macroalgae provide more habitat space and resources 
for the diverse organisms that live on or amongst their fronds than do small seaweeds 
(Steneck et al., 2002; Graham et al., 2007; Christie et al., 2009). Large, highly-branched 
macroalgae also shape surrounding benthic communities by intercepting light, changing 
sedimentation patterns, and scouring nearby organisms off the substratum (Kennelly, 
1989; Arkema et al., 2009; Hughes, 2010). Furthermore, aggregations of macroalgae alter 
ambient water flow (slowing currents, attenuating waves, altering turbulence spectra), 
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thereby protecting organisms and shorelines from 
hydrodynamic damage (Denny, 2021; Zhu et  al., 2021b; 
Koehl, 2022).

The ecological effects of damage to macroalgae depend on 
which species are injured, which parts of their thalli are harmed, 
and the scale of the damage. For instance, herbivores may eat only 
certain species (e.g., Toth and Pavia, 2002), life stages (e.g., Van 
Alstyne et  al., 2001; Chenelot and Konar, 2007), or specific 
macroalgal structures (e.g., Fralick et al., 1974), while seasonal 
storms rip away some species and sizes of macroalgae more than 
others (Black, 1976; Koehl, 1999, 2022). Minor damage to 
macroalgae diminishes provision of food and habitat, whereas 
major damage disrupts community structure (Johnson and Mann, 
1986; Chenelot and Konar, 2007; Poore et al., 2014). However, 
periodic breakage of competitively-dominant macroalgae 
enhances local biodiversity (Sousa, 1979). Furthermore, broken 
macroalgae become organic detritus that enriches benthic 
communities (Duggins and Eckman, 1997; Krumhansl and 
Scheibling, 2012; de Bettignies et al., 2013b).

We consider damage to macroalgae through the lens of 
ecological biomechanics. Biomechanics is the study of how 
biological structures perform mechanical functions. The 
integration of biomechanics and ecology (“ecological 
biomechanics,” Koehl, 1999; “ecomechanics,” Denny, 2012; 
Higham et  al., 2021; “mechanical ecology,” Bauer et  al., 2020) 
provides an ideal framework to study macroalgal damage that 
incorporates sources of injury in the environment, structural 
design and tissue material properties that resist or compensate for 
damage, and effects of morphological changes caused by breakage 
on the performance of the macroalgae in natural habitats, and 
thus on their survival and reproduction.

Sources of damage

Hydrodynamic forces

Macroalgae encounter currents and waves. This water motion 
benefits macroalgae by delivering nutrients, removing wastes, and 
dispersing gametes and spores (Norton et al., 1981; Koehl, 1984, 
1999; Denny, 1988; Vogel, 1996; Hurd, 2000). However, moving 
water also exerts hydrodynamic forces (drag and acceleration 
reaction) on macroalgae that can damage or dislodge them. Drag 
is proportional to the square of water velocity relative to a 
macroalga, its planform area, and the shape it takes in the flow, 
while acceleration reaction depends on water acceleration relative 
to a macroalga, its volume and shape (details in Koehl, 1976; 
Denny et  al., 1985; Vogel, 1996). Hydrodynamic forces on 
macroalgae vary over different time scales (seconds in a wave; 
hours over a tidal cycle; months as seasonal storm patterns change; 
Seymour et  al., 1989; Gaylord, 1999; Koehl, 2022) and spatial 
scales (centimeters to meters of substratum rugosity and 
neighboring organisms; kilometers of coastal topography and 
orientation; O’Donnell and Denny, 2008; Nickols et al., 2012).

Moving water damages macroalgae in several ways. 
Macroalgae are broken if the stress (force per cross-sectional area) 
imposed by hydrodynamic forces exceeds the strength (stress to 
break) of their tissues, or are dislodged if stress in the holdfast 
exceeds attachment strength (Figure  1A; e.g., Koehl, 1986). 
Moving water can tangle long, flexible algal fronds, increasing 
hydrodynamic forces and breakage (Figure  1B; Koehl and 
Wainwright, 1977; Friedland and Denny, 1995; Burnett and Koehl, 
2018). Fronds can be abraded as waves scrape them against rough 
substrata (Figure  1C). Wave-born logs and boulders damage 
macroalgae as they hit or roll across the shore (Dayton, 1971; 
Sousa, 1979; Shanks and Wright, 1986), and icebergs scrape away 
macroalgae (Conlan et al., 1998; Ronowicz et al., 2022).

Consequences of hydrodynamic damage depend on the 
location of the injury. Dislodgement by holdfast detachment often 
leads to mortality (Koehl and Wainwright, 1977; Seymour et al., 
1989). Stipe breakage removes photosynthetically-active blade 
tissue (Figure  1D; Santelices et  al., 1980; Biedka et  al., 1987; 
Carrington, 1990; Shaughnessy et al., 1996; Bell, 1999; Stewart, 
2006b), but does not necessarily cause mortality if drifting thalli 
survive or if new fronds grow from the holdfast (Lubchenco, 1980; 
Stewart, 2006b; Loffler et al., 2018; Burnett and Koehl, 2020; Koehl 
and Daniel, 2022). Biomass loss when blades are damaged is small 
compared to biomass loss when holdfasts or stipes are broken 
(Figures  1D,E; Johnson and Mann, 1986; Padilla, 1993; de 
Bettignies et al., 2013b).

Herbivores

Herbivores, such as limpets and amphipods, damage 
macroalgae by consuming tissue (Figures  2A,B; Black, 1976; 
Lowell et al., 1991; de Bettignies et al., 2012). Herbivore bites can 
lead to further damage by hydrodynamic forces because the 
cross-sectional area of tissue withstanding those forces is reduced 
at the bite, so stress is locally higher and can exceed tissue 
strength (Koehl and Wainwright, 1977; Burnett and Koehl, 2019, 
2020). Whether hydrodynamic force on a macroalga causes a 
crack to propagate across a stipe or blade from a herbivore-
inflicted wound depends on the stress-concentration at the crack 
tip, which is determined by wound shape (Mach et  al., 2007; 
Mach, 2009) sharp cuts inflicted by sea urchins (Koehl and 
Wainwright, 1977) are more likely to cause breakage than are 
blunt wounds caused by amphipods and limpets (Black, 1976; 
Santelices et al., 1980; Gutow et al., 2020). Furthermore, small 
injuries can enlarge with repeated loading (as in waves), leading 
to fatigue fracture of a thallus (Mach, 2009). Thus, macroalgal 
biomass lost due to herbivory is frequently much greater than the 
tissue consumed by the herbivores (Koehl and Wainwright, 1977; 
Padilla, 1993).

Population densities of algae-eating animals and the 
species composition of herbivore communities are affected by 
local biological interactions (recruitment, competition, 
predation) and physical factors (water and air temperature, 
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wave height; e.g., Gunnill, 1984; Paine, 1992; Duggins et al., 
2001; de Bettignies et al., 2013b; Burnett et al., 2021). Therefore, 
the degree and nature of herbivore damage to macroalgae 
varies geographically and seasonally. Generally herbivores 
damage macroalgae during months when storm activity is low 
(thus hydrodynamic forces are small), but macroalgae 
experience increased breakage at herbivore wounds in 
subsequent months when storms are frequent (Johnson and 
Koehl, 1994; de Bettignies et  al., 2012, 2013b; Burnett and 
Koehl, 2020).

Epibionts

Epibionts are organisms living on surfaces of other organisms. 
Some epibionts on macroalgae are herbivores, but many others do 
not consume host tissue (see examples in Figures 2C,D; e.g., algae, 
bryozoans, hydroids, tube worms, barnacles; Koehl and Daniel, 
2022). Increased pH under attached epibionts damages host tissues 
(Wahl, 1989; Harder, 2009), as do anchoring hooks of epibionts (da 
Gama et al., 2014). Epibionts also damage macroalgae by increasing 
hydrodynamic forces that their hosts bear by enlarging the 

FIGURE 1

Examples of hydrodynamic damage to macroalgae. (A) Kelp, Nereocystis leutkeana washed up on the shore, showing broken stipes (S) and 
detached holdfasts (H). (B) Tangled, abraded fronds of kelp, Egregia menziesii. (C) Abrasions on the stipe of a N. leutkeana. (D) Holdfasts of E. 
menziesii on a rocky shore after stipes have broken away. (E) Beach wrack illustrating the loss of biomass from kelp forests due to hydrodynamic 
forces on herbivore-damaged N. leutkeana (Koehl and Wainwright, 1977). (F) Gas-filled floats (pneumatocysts) ripped off at their narrow stems 
from fronds of E. menziesii by moving water and washed ashore.
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structure exposed to ambient flow (Anderson and Martone, 2014), 
or by stiffening the host, thereby interfering with its reconfiguration 
by moving water (Koehl and Daniel, 2022).

Damage prevention

Reduction of hydrodynamic forces

Flexibility reduces hydrodynamic forces in several ways. 
Flexible macroalgae in moving water bend over parallel to the flow 
and reconfigure into streamlined shapes (blades fold into compact 
forms; branches and blades collapse together into bundles) that 
reduce wake size and form drag (Koehl, 1984, 1986, 2022; Koehl 
and Alberte, 1988; Carrington, 1990; Martone et  al., 2012; de 
Bettignies et al., 2013a; Breitkreutz et al., 2022). Furthermore, 
flexible macroalgae bent close to the substratum encounter slowed 
flow in the benthic boundary layer (Koehl, 1984; Stewart, 2004, 
2006a). However, flexibility sometimes increases drag if fluttering 
in flow increases wake size (Koehl and Alberte, 1988; Koehl et al., 
2008). Species with fleshy blades are better able to reconfigure in 
flow than are highly branched species (Boller and Carrington, 
2007; Starko et  al., 2015), and ruffled blades flutter at greater 
amplitude and experience higher drag than flat blades (Koehl and 
Alberte, 1988). Many macroalgae are morphologically plastic and 

grow into drag-reducing shapes in habitats with rapid flow (Koehl 
et al., 2008). In kelps, this growth response is triggered by tensile 
stress (Coleman and Martone, 2020; Koehl and Silk, 2021).

In the oscillatory flow at wave-swept habitats, flexible 
macroalgae move back and forth with the water motion in waves. 
When moving with the flow, water velocities and accelerations 
relative to their surfaces are low, so hydrodynamic forces are small 
(Koehl, 1984, 1986, 1999, 2022; Burnett and Koehl, 2017). 
However, when macroalgae reach the end of their tethers, they 
experience large inertial forces if they were moving rapidly right 
before being jerked to a halt (Gaylord and Denny, 1997; Denny 
et  al., 1998; Gaylord et  al., 2008). Once macroalgae are fully 
extended, they encounter ambient flow relative to them. Therefore, 
very long flexible macroalgae in waves may not experience flow 
past their surfaces or high forces, while shorter macroalgae can 
reduce hydrodynamic forces if they become fully extended at 
some point in the wave cycle when water velocities and 
accelerations are low (Koehl, 1984, 1999, 2022; Wolcott, 2007). 
Since force on a macroalga in waves depends on its length relative 
to the distance the water in a wave travels before reversing 
direction, breakage that shortens a thallus can have profound 
effects on subsequent damage.

Macroalgae often grow in aggregations (kelp forests, intertidal 
algal beds). These canopies decrease water speeds, damp wave 
action, and alter turbulence, so macroalgae in the middle of 

FIGURE 2

Examples of epibionts on macroalgae. (A) Damage of Egregia menziesii by herbivorous limpets, Discurria insessa. (B) Damage of E. menziesii by a 
burrowing, herbivorous amphipod. (C) Suspension-feeding encrusting bryozoans, Membranipora membranacea (M), and stoloniferous hydroids, 
Obelia longissima (O), growing on the blades of the red alga, Mazzaella splendens. (D) Barnacles encrusting a frond of E. menziesii.
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aggregations experience smaller hydrodynamic forces than isolated 
macroalgae or those at aggregation edges (Koehl and Alberte, 1988; 
Johnson, 2001; Gaylord et al., 2007; Zhu et al., 2021a; Koehl, 2022).

Morphological features and tissue 
mechanical properties that resist damage

Macroalgae avoid breaking in ambient flow if stresses in their 
tissues due to hydrodynamic forces are lower than their tissue strength 
(e.g., Koehl and Wainwright, 1977; Johnson and Koehl, 1994). The 
distribution of mechanical stresses in macroalgae are calculated using 
engineering structural analysis (Wainwright et  al., 1982), which 
reveals that macroalgae loaded in tension by ambient flow experience 
much lower stresses for a given force than do seaweeds bent by the 
flow, and that wider regions of a thallus experience lower local stresses 
than do narrow ones (Koehl, 1984, 1999).

Whether local stresses in a macroalga cause damage depends 
on the mechanical properties of its tissues, which are composite 
materials composed of cells with fiber-reinforced walls (calcified 
in some species) and polymeric intercellular matrix (Koehl, 1999; 
Martone, 2006). Tissue mechanical properties (e.g., strength, 
extensibility, toughness, resilience) are measured using techniques 
from materials science (Koehl and Wainwright, 1985). One 
defense against breakage is having tissues strengthened by 
calcification or by thick fiber-reinforced cell walls aligned with the 
directions of highest imposed stresses in the thallus (Padilla, 1993; 
Koehl, 1999; Martone, 2006; Janot and Martone, 2016; Starko 
et al., 2018). Another defense against breakage for macroalgae 
exposed to transient high forces is having very extensible, resilient 
tissues that do not have time to be stretched to breaking extension 
during a pulse of force, and that bounce back to their unstretched 
length before the next pulse (Koehl and Wainwright, 1977). Cells 
in such tissues are separated by a deformable intercellular matrix, 
and fibers in their thin walls are oriented at high angles relative to 
their long axes (Koehl and Wainwright, 1977; Koehl, 1999). Both 
strategies (strength or extensibility) render a macroalga tough 
(work/volume to break is high; Koehl, 1999).

Macroalgal tissue strength differs between species (Koehl, 
2000; Harder et al., 2006; Krumhansl et al., 2015), within species 
between habitats (Johnson and Koehl, 1994), and within an 
individual between support, photosynthetic, and reproductive 
structures (Demes et al., 2013). Tissue mechanical properties also 
change with age, growth rate, and season (Johnson and Koehl, 
1994; Koehl, 1999; Burnett and Koehl, 2019; Sirison and Burnett, 
2020; Koehl and Silk, 2021; Millar et  al., 2021). Because flow 
conditions also vary with time, environmental stress factor (ESF) 
is used to characterize the resistance of a macroalga to breaking at 
a defined stage in its life. ESF is the ratio of the season-dependent 
stress required to break a macroalga to the maximum flow-induced 
stress it experiences in its habitat during that season (Johnson and 
Koehl, 1994). Many macroalgae have high ESF’s during the calm 
summer growth and reproduction season, but low ESF’s during 
winter, as they accumulate damage and experience storms (Johnson 
and Koehl, 1994; Koehl and Daniel, 2022). Some species develop 

similar ESF’s in rapid-flow habitats as in calm sites by increasing 
tissue strength or cross-sectional area of support structures, and/or 
by growing into low-drag morphologies (Johnson and Koehl, 1994; 
Sirison and Burnett, 2020; Koehl and Daniel, 2022).

Defenses against herbivores and 
epibionts

Macroalgae use chemical and mechanical defenses against 
herbivores and epibionts (Padilla, 1989, 1993; Wahl, 1989; Paul, 
1992; Steinberg and De Nys, 2002; Walters et al., 2003; Amsler and 
Fairhead, 2005; da Gama et al., 2014; Koehl and Daniel, 2022). 
However, epibionts can avoid defended surfaces by preferentially 
settling in wounds (Black, 1974).

Several hydrodynamic mechanisms remove epibionts from 
macroalgae. Flowing water can rip epibionts off macroalgae (Fralick 
et al., 1974; Duggins et al., 2001; Toth and Pavia, 2002; Chenelot 
and Konar, 2007; Anderson and Martone, 2014). Some macroalgae 
enhance this removal by shedding their cuticle or surface cell layers 
(Wahl, 1989; Wahl et al., 1998; Walters et al., 2003; Harder, 2009). 
As macroalgae with extensible tissues are stretched and bent by 
ambient flow, stiff animals (e.g., encrusting bryozoans, calcareous 
tubeworms) crack and pop off their surfaces (Walters et al., 2003; 
Koehl and Daniel, 2022). Flexible seaweeds flapping in waves can 
sweep herbivores off the surrounding substratum (Santelices et al., 
1980; Kennelly, 1989; Hughes, 2010). When flow breaks off injured 
parts of macroalgae infested with herbivores, those animals are 
removed and cannot damage the remaining thallus (Black, 1976; 
Wahl, 1989, 2008; Wahl and Hay, 1995).

The role of tissue strength and toughness in herbivore 
deterrence can be  determined if mechanical properties of the 
tissues attacked by herbivores are measured on the spatial scale of 
herbivore biting or rasping structures (Padilla, 1985). Studies 
measuring mechanical properties and chemical deterrents showed 
that tissue toughness is not always a defense against herbivory 
(Padilla, 1985, 1989; Martone et al., 2021). Similarly, puncture 
resistance correlates with reduced grazing rates for some 
macroalgae (Taylor et al., 2002), but not others (Steinberg, 1985).

Damage management

Controlling patterns of breakage

Macroalgae can reduce tissue loss via structural designs that 
direct where breakage occurs, and tissue properties that 
determine how cracks propagate across thalli. For example, some 
species localize where bending occurs by having joints (narrow 
regions with flexible tissues; Koehl, 1999; Martone, 2006; Janot 
and Martone, 2016; Janot et al., 2022). If breakage occurs at such 
localized regions of high stress, a macroalga can be pruned by 
ambient flow (Figure  1F) rather than ripped off the shore 
(Martone, 2006; Martone and Denny, 2008). When cracks 
propagating through macroalgal tissues are diverted at interfaces 
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between the intercellular matrix and cell walls, more mechanical 
work is needed to drive the cracks across the structure (Vincent, 
2012). Distribution and orientation of fibers and calcification also 
determines the direction of tears in algae (like rip-stop fabric; 
Padilla, 1993), for example, causing blades to rip longitudinally 
without tissue loss.

Growth and healing in response to 
damage

After damage occurs, some macroalgae increase the strength 
of tissue around the wound (Lowell et al., 1991; Toth and Pavia, 
2006), while others increase the cross-sectional area of the 
damaged structure (Burnett and Koehl, 2019). Some damaged 
macroalgae grow new fronds, becoming bushier (Black, 1974; Fox, 
2013). Damage that prunes macroalgae to smaller size reduces 
their danger of washing away in some cases (Black, 1976; Wolcott, 
2007; de Bettignies et al., 2012), but not in others (Burnett and 
Koehl, 2020). However, excessive damage may leave macroalgae 
less able to heal or grow (Poore et al., 2018), leading to stunted size 
or death (Toth and Pavia, 2006; O’Brien and Scheibling, 2016; 
Pfister and Betcher, 2018; Burnett and Koehl, 2020).

Life history strategies that compensate 
for or utilize damage

Some perennial macroalgae persist in rapid-flow habitats by 
putting their resources into producing strong thalli (thus growing 
slowly and delaying reproduction), while other species are 
successful at such sites by growing rapidly and reproducing before 
seasonally-predictable storms rip their weak thalli off the shore 
(Santelices et al., 1980; Johnson and Koehl, 1994; Koehl, 1999; 
Wolcott, 2007). Some macroalgae with “bad” mechanical designs 
regrow from perennial holdfasts (Bell, 1999), and some recruit 
opportunistically year-round (Santelices et al., 1980).

Some macroalgae increase the strength of reproductive 
tissues so they are not prematurely damaged (Demes et al., 2013), 
whereas others use damage to enhance reproduction and 
dispersal. For example, Turbinaria ornata are weaker and more 
buoyant when reproductive, so hydrodynamic forces break their 
stipes and they form floating aggregations where they release 
gametes and are transported to new sites by currents (Stewart, 
2006b). Similarly, drifting in ocean currents by broken-off 
reproductive kelp aids long-distance dispersal (Bernardes Batista 
et al., 2018; Fraser et al., 2020, 2022).

Discussion

Studying the biomechanics of damage to macroalgae from 
an ecological perspective reveals some surprises. For example, 
the assumption that an increase in size leads to larger 

hydrodynamic forces and greater risk of breakage is not 
necessarily true for macroalgae in waves. Furthermore, while 
biomechanical analyses show why certain macroalgae have “bad” 
engineering designs prone to damage, ecological studies reveal 
how such breakable organisms survive and reproduce in 
mechanically-stressful environments. Damage can play positive 
roles in the survival, reproduction, and dispersal of macroalgae. 
Moreover, damage to macroalgae that outcompete other 
organisms for space and light can have positive consequences for 
the local community, enhancing the diversity, growth rates, and 
abundance of other organisms (Sousa, 1979; Hughes, 2010; 
Clements et al., 2018).

There are gaps in our current knowledge of macroalgal damage. 
Little is known about pathways by which cells recognize damage and 
initiate repairs, whole-thallus signaling that initiates the formation 
of new fronds when old ones break, or cellular mechanisms that 
transduce mechanical stresses experienced in nature into patterns of 
cell division, enlargement, and cell wall construction. Future research 
should also explore the ecological biomechanics of damage across a 
greater diversity of macroalgal species, habitats, and life stages to 
identify ecological patterns and evolutionary histories of mechanisms 
of damage prevention and management, and to gain insights about 
the sensitivities of these processes to environmental stress.
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