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Prediction models based on pedigree and/or molecular marker information are 

now an inextricable part of the crop breeding programs and have led to increased 

genetic gains in many crops. Optimization of IRRI’s rice drought breeding 

program is crucial for better implementation of selections based on predictions. 

Historical datasets with precise and robust pedigree information have been a 

great resource to help optimize the prediction models in the breeding programs. 

Here, we leveraged 17 years of historical drought data along with the pedigree 

information to predict the new lines or environments and dissect the G × E 

interactions. Seven models ranging from basic to proposed higher advanced 

models incorporating interactions, and genotypic specific effects were used. 

These models were tested with three cross-validation schemes (CV1, CV2, 

and CV0) to assess the predictive ability of tested and untested lines in already 

observed environments and tested lines in novel or new environments. In general, 

the highest prediction abilities were obtained when the model accounting 

interactions between pedigrees (additive) and environment were included. 

The CV0 scheme (predicting unobserved or novel environments) reveals very 

low predictive abilities among the three schemes. CV1 and CV2 schemes that 

borrow information from the target and correlated environments have much 

higher predictive abilities. Further, predictive ability was lower when predicting 

lines in non-stress conditions using drought data as training set and/or vice-

versa. When predicting the lines using the data sets under the same conditions 

(stress or non-stress data sets), much better prediction accuracy was obtained. 

These results provide conclusive evidence that modeling G × E interactions are 

important in predictions. Thus, considering G × E interactions would help to build 

enhanced genomic or pedigree-based prediction models in the rice breeding 

program. Further, it is crucial to borrow the correlated information from other 

environments to improve prediction accuracy.
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Introduction

Rice (Oryza sativa L.) is one of the important cereal crops 
globally, providing food to more than 3.5 billion people. The key 
goal of rice breeding across the globe is to develop high-yielding 
rice varieties to meet the rice food demands (Xu et al., 2021). 
Conventional breeding coupled with marker-based selection has 
been successful and led to positive increase in rice productivity. 
However, the rate of genetic improvement in rice has not been at 
a pace to meet the expected rice food demands of 1.5% or above 
for the growing population (Khanna et al., 2022). For example, the 
rate of genetic gain in the International Rice Research Institute’s 
(IRRI) global rice breeding program is <1% (Juma et al., 2021; 
Kumar et al., 2021; Khanna et al., 2022), which is not sufficient to 
meet future rice demands. Thus, it is necessary to increase the rate 
of genetic gain in rice to ensure future food security (Peng et al., 
2004; Li et al., 2018). One strategy to increase the rate of genetic 
gain in rice breeding programs is to complement conventional rice 
breeding with modern tools and technologies. One such tool is the 
genomic selection which can increase rates of genetic gain by 
reducing the breeding cycle duration or by increasing the selection 
accuracy (Meuwissen et  al., 2001). In genomic selection, the 
predicted phenotypic values can be  used as alternatives to 
phenotypic values observed in field experiments, which may help 
to accelerate breeding programs by skipping field experiments for 
selections. Thus, it is expected to increase selection gains per unit 
time (Krishnappa et al., 2021).

In prediction assisted selection, genetic relationships are 
either based on pedigrees or molecular markers or both to predict 
untested genotypes’ performance. As compared to pedigrees, 
more recently, molecular markers have been found to significantly 
increase the prediction accuracy of genomic estimated breeding 
values (GEBVs), as molecular markers account for the genetic 
variations due to the Mendelian sampling (Crossa et al., 2010; 
Albrecht et al., 2011; Burgueño et al., 2012; Sukumaran et al., 2017; 
Velazco et al., 2019; Krishnappa et al., 2021). Compared to the 
estimation of GEBVs, pedigree-based breeding values of 
un-phenotyped lines account for mid-parent genetic contributions 
and not for Mendelian segregation of alleles, which are more or 
less expected due to random chance. However, researchers have 
found conclusive evidence that, in some instances, pedigree-based 
relationships may perform similarly to or even better than marker-
based relationships in terms of prediction accuracy and estimating 
breeding values (Rutkoski et al., 2016; Juliana et al., 2017; Hunt 
et al., 2018). This is particularly true when the pedigree data are 
precise and include several generations (Juliana et  al., 2017). 
Further, the implementation of pedigree-based predictions (PBP) 
without accounting for the genotype-by-environment G × E 
interaction via A × E effects may be trivial in crop breeding as 
yield, and yield-related traits are strongly influenced by 
environmental factors. PBP accounting for by A × E interaction 
effects will be  beneficial and more accurate to predict the 
performance of untested genotypes under a targeted environment 
and, finally, lead to higher genetic gains per cycle (Burgueño et al., 

2012; Jarquín et al., 2014; Pérez-Rodríguez et al., 2015; Sukumaran 
et al., 2017; Ovenden et al., 2018; Jarquin et al., 2021; Rogers et al., 
2021; Rogers and Holland, 2022).

Several crop researchers have been very keen on using 
genomic selection (GS) and dissecting G × E by leveraging 
historical data to help build prediction models and to improve the 
current selection breeding programs (Dawson et al., 2013; Lado 
et al., 2016; Dreisigacker et al., 2021; Rogers and Holland, 2022). 
In rice, assessing the prediction accuracy including the G × E 
interaction has not been considered yet, particularly with a large 
number of environmental data sets. Further, the appropriate 
strategy for predicting trait performance of genotypes in 
challenging prediction scenarios (novel environments) has not 
been considered yet in rice breeding. Utilizing huge historical data 
sets spanning over many environments can help us to enhance the 
predictive ability of models by leveraging the G × E interaction. 
The best strategy to predict trait performance of genotypes in 
unobserved environments in rice is still unclear. Here, we leverage 
17 years of historical data with robust pedigree information 
evaluated under non-stress (normal) and reproductive stage 
drought stress conditions at IRRI. The main objective of the study 
was to utilize the large historical dataset for model calibration, and 
incorporate it in improved models to: (a) assess the prediction 
performance of lines under different cross-validation schemes of 
interest for breeders, (b) compare the predictive ability of various 
models when predicting phenotypic responses in already observed 
and novel or new environments, also varying the training set 
composition with genotypes tested in similar (stress to predict 
stress; non-stress to predict non-stress), combined (stress and 
non-stress to predict stress, stress and non-stress to predict stress), 
and different (stress to predict non-stress, non-stress to predict 
stress) conditions, and (c) dissect the genotype × environment 
interaction, through the pedigree × environment component.

Materials and methods

Description of historical phenotypic data

The study utilized the historical data from the breeding trials 
conducted under control (non-stress) and reproductive stage 
drought stress conditions from 2003 to 2019 at IRRI, Philippines. 
The trials were conducted twice a year in consecutive, dry (from 
January to April) and wet (from late June to September) seasons. 
The dataset is an aggregation of 53 trials, with 19,826 data points. 
Total number of unique genotypes evaluated was 2,490, with 33 
checks across all the trials. Further, seven checks were frequently 
used in most of the trials thereby connecting the dataset across 
years. The breeding trials were organized in varying designs 
including alpha-lattice, augmented randomized complete block, 
and randomized complete block designs (RCBD). Three major 
agronomic traits days to 50% flowering (DTF), plant height (PH), 
and grain yield (kg/ha) were retrieved and used for 
downstream analysis.
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Pedigree data extraction

The pedigree data of 2,490 unique genotypes were retrieved 
from IRRIs “Breeding 4 Results” database (Breeding 4 Results 
(B4R), 2021, https://b4r.irri.org). The pedigree data of immediate 
parents as well as grandparents upto seven generations was 
retrieved (Hussain et al., 2022; Khanna et al., 2022). The number 
of parental lines was reduced from 2,490 lines to 361 lines by the 
seventh generation. Additionally, the cross-type information was 
extracted from IRRI’s genealogy management system using the 
standard R pedigree retrieval pipeline (McLaren et  al., 2005; 
Collard et al., 2019). The R package AGHMatrix was used for 
constructing the pedigree A-matrix (Amadeu et al., 2016).

Statistical analysis

Pre-processing and quality check of data
Before the statistical modeling, the data was pre-processed, 

and the quality of phenotype data was thoroughly checked to 
ensure only high-quality data trials and phenotypes were 
forwarded for downstream analysis. The pre-processing and 
quality procedure followed is thoroughly described in Khanna 
et al. (2022). Briefly, the trials with lack of proper experimental 
design, replications, and having more than 20% of missing data 
for grain yield were discarded. Phenotypic data was also checked 
for extreme values and outliers using the Bonferroni-Holm test for 
studentized residuals test (Bernal-Vasquez et al., 2016; Philipp 
et  al., 2019). After quality check, 53 trials harboring 19,828 
phenotypic data points with 2,490 unique lines were retained for 
phenotypic data analysis for estimating the breeding values.

Statistical modeling of phenotypic data
For the analysis, a two-stage approach of mixed-model was 

used to analyze the data for grain yield, DTF, and PH (Piepho 
et  al., 2008, 2012; Smith and Cullis, 2018) under non-stress, 
drought, and by combined analyses of drought and non-stress 
together. The two-stage approach was adopted to account for 
different experimental designs across the environments (Damesa 
et al., 2017).

In the first stage, BLUEs per environment for each genotype 
were estimated for the drought and non-stress trials separately. 
The mixed model utilized is as follows:

 
y g r b sijkl i j k l ijkl= + + + + +µ ε

 
(1)

where, yijkl  represents adjusted mean for ith observation in 
jth replication, kth block and lth season, μ is the overall mean, gi 
is the fixed effect of ith genotype, rj is the random effect of 
replications in each trial, bk is the random block effect, sl is the 
random effect for season and εijkl  is the residual error. Random 
effects were assumed to be  independently and identically 
distributed following normal densities. In the above model, DTF 

was used as a covariate for reducing the error on yield caused due 
to the presence of different maturity genotypes. Further, the above 
model was used for the trials which were performed using an 
alpha-lattice breeding design.

Regarding the combined analysis, a linear mixed model was 
used to extract a single value for each genotype (BLUE) across the 
non-stress and drought treatments. The model utilized is 
as follows:

 
y g r b s tijklm i j k l m ijklm= + + + + + ε

 
(2)

all the terms are similar to those described in Equation (1), 
except the tm  which is the fixed effect of mth treatment (either 
non-stress or reproductive stage drought stress). In the above 
model different variances across non-stress and drought 
treatments were assumed.

Heritabilities under non-stress and drought for grain yield 
were calculated as per Cullis et al., 2006 and Piepho and Möhring, 
2007. Heritability was calculated as follows:

 
H VBLUP

g

2

2
1

2

= −
σ  

(3)

where, VBLUP is the mean–variance difference of two BLUPs 
and σ2g is the variance of genotypes.

In the second stage analysis, a pedigree-based mixed model 
approach was used to perform predictions in non-stress, drought, 
and combined data. The pedigree-based models (Models 1 and 2) 
for main additive effects and the inclusion of interaction with 
environments are described. Then the models were extended to 
incorporate the general combining ability (GCA) and specific 
combining ability (SCA) terms (Models 3–7). The purpose to 
introduce GCA and SCA based models in this study was to 
leverage the phenotypic information of the parents involved in 
more than one cross combination (Jarquin et  al., 2021). For 
instance, if we consider a hypothetical cross P_W × P_Z derived 
from the cross between parent 1 (P_W) and parent 2 (P_Z), it 
might be the case that parent P_W was also partially observed in 
other hypothetical crosses P_W × P_A, P_D × P_W, P_W × P_H, 
and P_N × P_W while parent P_Z in crosses P_B × P_Z, P_J × P_Z, 
and P_Z × P_S. In these cases, both parents were part of other 
cross combinations for which there is also phenotypic data. Thus, 
for leveraging the phenotypic information of the parents involved 
in other crosses, we proposed a set of models based on pedigree 
data that also allow the inclusion of the GCA and SCA terms. In 
this section, we describe these models.

Model 1: E + A
Suppose that the performance of the ith (i  = 1, 2, …, L) 

genotype in the jth (j  = 1, 2, …, J) environment yij( )  can 
be explained by a model that accounts for the main effect of the 
environments E j( ) , the additive effect of the genotypes based on 
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pedigree information ai( )  and an error term capturing the non 
explained variability εij( )  as follows.

  
y E aij j i ij= + + ε

 
(4)

where E j  is assumed to follow identically and independent 
distributed (IID) normal densities such that E Nj E~ 0

2
,σ( ), σE

2  
is the corresponding variance component; the vector of additive 
effects a ={ }ai  follows a multivariate normal density with mean 
on zero and a co-variance matrix cov a A( ) = σa

2 , where A is the 
pedigree matrix and its entries describe genetic similarities 
between pairs of lines, and σa

2  is the corresponding variance 
component such that ( )2~ , aN A σ⋅0a , and ε σij N~ 0

2
,( ) .

Model 2: E + A + A × E
Model 2 is an extension of Model 1 that includes the 

interaction between genotypes based on pedigree information 
and environments.

 
y E a aEij j i ij ij= + + + ε

 
(5)

The interaction term was included by considering the 
Hadamard product between two co-variance structures (Jarquín 
et  al., 2014; Pérez-Rodríguez et  al., 2015). Suppose that aEij  
represent the interaction between the ith genotype and the jth 
environment such that the vector of interactions 

{ } ( )2~ , #ij g g E E aEaE N σ′ ′= ⋅0aE Z AZ Z Z  and with σaE2  as 
the corresponding variance component, and Z Zg E,  are the 
incidence matrices that connect phenotypes with lines and 
environments, respectively.

Model 3 (E + GCA): E + AP1 + AP2

This model decomposes the genetic effect as the sum of the 
paternal aP i1  and maternal aP i2  effects. In our case, we called 
these parents 1 and parent 2 only. The proposed linear predictor 
is as follows:

 
y E a aij j P i P i ij= + + +1 2 ε

 
(6)

were aP P ia1 1={ }  and aP P ia2 2={ }  represent 
corresponding vectors of additive effects from parent 1 and parent 
2 and these follow multivariate normal densities with mean on 
zero and co-variance matrices ( ) 2

1 1 1cov P P aPσ= ⋅a A and 
( ) 2

2 2 2cov P P aPσ= ⋅a A , AP1 and AP2 are the pedigree matrices 
of the parents involved in the crosses, and σaP12  and σaP2

2  are the 
corresponding variance components such that 

( )2
1 1 1~ ,P P aPN σ⋅0a A  and ( )2

2 2 2~ ,P P aPN σ⋅0a A .

Model 4 (E + GCA + SCA): E + AP1 + AP2 + AP1×P2

This model is an extension of model 3 that also includes the 
interaction effect of crossing a specific pair of parents aP P i1 2× _  

(parent 1 and parent 2). The obtained linear predictor is as 
mentioned below

 
y E a a aij j P i P i P P i ij= + + + +×1 2 1 2_ ε

 
(7)

were, aP P P P ia1 2 1 2× ×= { }_  represent the vector of interaction 
effects derived from crossing respective parents, parent 1  
and parent 2, and it follows a multivariate normal density  
with mean on zero and a co-variance matrix 

( ) 2
1 2 1 1 1 2 2 2 1 2cov #P P P P P P P P aP Pσ′ ′
× ×= ⋅a Z A Z Z A Z  such that 

( )2
1 2 1 1 1 2 2 2 1 2~ , #P P P P P P P P aP PN σ′ ′
× ×⋅0a Z A Z Z A Z  with 

σaP P1 2
2

×  as the corresponding variance component, ZP1  and 
ZP2  are the corresponding incidence matrices that connect 

phenotypes with the respective parents of the cross (1 and 2), and 
“#” represents the cell-by-cell product between two matrices also 
known as the Hadamard product.

Model 5 (E + GCA + SCA + GCA×E + SCA×E): 
E + AP1 + AP2 + AP1×P2+ AP1 × E + AP2 × E + AP1×P2 × E

This model is an extension of model 4 that also includes the 
interaction between the GCA components and the environment, 
and between the SCA component and the environment. The 
obtained linear predictor is as follows:

 

1 2 1 2 _

1 2 1 2 _ ε
×

×

= + + +
+ + + +

ij j P i P i P P i

P ij P ij P P ij ij

y E a a a
aE aE aE

 
(8)

were aEP P ijaE1 1={ }  and aEP P ijaE2 2={ } represent the 
interaction effect vectors between parent 1 and the environment, 
and between parent 2 and the environment, and these follow 
multivariate normal densities with mean on zero and a co-variance 
matrices ( ) 2

1 1 1 1 _ 1cov #P P P P E E aE Pσ′ ′= ⋅aE Z A Z Z Z  and 
( ) 2

2 2 2 2 _ 2cov #P P P P E E aE Pσ′ ′= ⋅aE Z A Z Z Z  such that 
( )2

1 1 1 1 _ 1~ , #P P P P E E aE PN σ′ ′ ⋅0aE Z A Z Z Z  and 
( )2

2 2 2 2 _ 2~ , #P P P P E E aE PN σ′ ′ ⋅0aE Z A Z Z Z , σaE P_ 1
2  and 

σaE P_ 2
2  are the associated variance components, ZE  is the 

incidence matrix that connects phenotypes with environments; 
aEP P P P ijaE1 2 1 2× ×= { }_  the interaction term between SCA 
term and environments follows a normal density such that 
aE Z A Z Z A Z Z ZP P P PN P P P P P P E E aE1 2 1 21 1 1 2 2 2

2
×

′ ′ ′
×( )~ # # ,_0, σ

and σaE P P_ 1 2
2

×  represents the associated variance component.

Model 6 (E + GCA + SCA + GCA×E + A × E): 
E + AP1 + AP2 + AP1×P2+ AP1 × E + AP2 × E + A × E

Model 6 is a combination between models 2 and 6 where the 
SCA × E (AP1×P2 × E) component was substituted by the interaction 
between genotypes and environments (A × E). The linear predictor 
is as follows:

 

1 2 1 2 _

1 2 ε
×= + + +

+ + + +
ij j P i P i P P i

P ij P ij ij ij

y E a a a
aE aE aE

 
(9)
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where, all of the terms remain as before defined.

Model 7 (E + GCA + A + GCA×E + A × E): 
E + AP1 + AP2 + A + AP1 × E + AP2 × E + A × E

Model 7 is also a combination between models, in this case 
between models 2 and 3, where the SCA (AP1×P2) and the SCA × E 
(AP1×P2  × E) are replaced by the hybrid main effect based on 
pedigree data and the interaction between hybrids and 
environments (A × E). The linear predictor is as follows:

y E a a a aE aE aEij j P i P i i P ij P ij ij ij= + + + + + + +1 2 1 2 ε
 

(10)

where, all of the terms remain as before defined.

Cross-validation schemes
For assessing the proficiency of the aforementioned seven 

regression models, three cross-validation scenarios CV2, CV1, 
and CV0 mimicking real prediction scenarios of interest for 
breeders at different stages of the breeding pipeline were 
considered in this study. A brief description of these scenarios is 
outlined below. For each cross-validation scheme, three data sets 
were considered and these correspond to lines tested under (i) 
drought, and (ii) non-stress conditions, and (iii) combined 
(non-stress and drought). In addition, a crossed validation was 
considered where the non-stress dataset was used to predict the 
grain yields under drought conditions and vice-versa. For all of the 
validation scenarios, no matter how the training sets were 
composed the correlation between predicted and observed values 
was computed within each environment-stress condition 
combination such that the results are comparable across data sets 
(drought stress, non-stress, and combined). In addition, extra care 
was taken to have same partitions in testing sets across cross-
validation schemes for the different ways to compose training sets 
(only stress, only non-stress, and combined) when predicting crop 
performance in stress and non-stress conditions.

 i. CV2: Predicting the performance of incomplete trials, lines 
tested in some environments/years but not in others. A 
random five-fold cross-validation was followed wherein 
one-fold was used for validation and the remaining four 
folds were used for model training/calibration, i.e., 
performance of 20% of the lines in environments 
(phenotypes) were predicted using remaining 80% of the 
observed phenotypes. Here, the performance of 20% of the 
phenotypes is observed in few environments but not 
others. After integrating the predicted values into a single 
vector, the values derived from the five-fold cross-
validation, the correlation between the predicted and the 
observed values was computed within environments and 
the weighted average correlation was reported as the 
prediction accuracy (Jarquín et al., 2014). In this study, 10 
replicates of randomly assign phenotypes to folds were 
considered, and the mean weighted average prediction 

accuracy across the 10 replicates was reported in tables 
and plots.

 ii. CV1: Predicting newly developed lines that have not been 
evaluated in any environment (Jarquín et al., 2017) yet. As 
in CV2, a five-fold cross-validation was considered with 
one-fold used for validation and the remaining four folds 
for training the model. However, in this case around 20% 
of the lines in the testing set are not observed in any of the 
environments. In this scenario, also 10 replicates for 
randomly assign genotypes to folds were considered and 
the mean weighted average correlation was reported 
as well.

 iii. CV0: Predicting the performance of already observed 
genotypes but in a new/novel/unobserved environment/
year (prediction leaving-one-year-out) where these have 
not been observed yet. The crop performance in a given 
year is predicted using the performance of lines from all the 
available years. To form the training set, the data from all 
the years are combined except for 1 year that is excluded, 
and the left-out year was used as a validation/testing set. 
For example, the data from 2003 to 2018 was combined to 
form the training set while the year 2019 was used as a 
validation set. Similarly, data from 2003 to 2017 and 2019 
was used as training set while the year 2018 was used as a 
validation set, and so on.

Results

The study was undertaken to assess the usefulness of using 
historical data for improving predictive ability of rice by 
considering a series of proposed models having interaction effects 
of their components with the environment. For this, three cross-
validation scenarios (CV0, CV1, and CV2) were considered 
together with the crossed validation between groups of 
environmental stress management/water availability (stress, and 
non-stress). In this study, 17 years of historical data of IRRI’s 
drought breeding program including phenotypic and pedigree 
data were used for analysis. The purpose of using pedigree-based 
relationship matrix was to allow the borrowing of information 
between genotypes by accounting for the additive genetic 
covariance and the interaction with the environments for 
enhancing the precision of breeding value estimation (Piepho 
et al., 2008).

Characteristic features of the data

The major agronomic trait of interest was grain yield under 
reproductive stage drought stress, non-stress and combined 
conditions. The descriptive statistics of the data is detailed in 
Khanna et al. (2022). Huge difference in grain yield was observed 
in the grain yield (kg/ha), between the drought and non-stress 
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conditions (Figure 1A). The adjusted means for grain yield varied 
between 184.75 and 7,834.19 kg/ha in non-stress conditions, and 
18.26–5430.72 kg/ha under drought stress. Low grain yield 
observed under drought conditions indicates the impact of 
drought on the final grain yield. Heritability for grain yield across 
the drought stress trials ranged between 0.2 and 0.94 (Figure 1B). 
However, under the non-stress conditions it varied between 0.43 
and 0.83. Among the total 17 trials, eight trials executed under 
reproductive stage drought stress conditions depicted extremely 
lower heritabilities in comparison to the non-stress trials. The 
reduced heritability values of the stress trials have been evident 
owing to compromised grain yields of the genotypes under 
reproductive stage drought stress conditions (Henry et al., 1997; 
Kumar et al., 2007).

Pedigrees and data connectivity

The A-matrix was formulated using pedigree information of 
the parental lines upto seven generations to ensure appropriate 
pedigree-depths which would in turn help estimate true kinship 
coefficients (Amadeu et al., 2016). The pedigree matrix explaining 
the clustering and relatedness of 2,490 unique individuals is 
depicted in Figure 1C. In terms of data connectivity across years 
for reliable estimates or predictions, we  observe good data 
connectivity of genotypes across the years. The good connectivity 
in the data was a consequence of having long-term checks (IR64, 
Swarna, Sahbhagi Dhan, IRRI 154) used across the years in the 
breeding program. Additionally, in the breeding program, the 
selected superior genotypes were forwarded and re-evaluated in 
the succeeding years establishing good connectivity in the data 
(Figure 1C). Further, to enhance the connectivity of the lines and 
have reliable estimates of the breeding values, the kinship matrix 
based on pedigrees of 2,490 unique lines was used in the second 
stage of the prediction analysis. The purpose of using the 
relationship matrix based on pedigrees was to connect the lines 
across years by borrowing information from parents and 
grandparents (Khanna et al., 2022).

Predictions using three cross-validation 
schemes

Three cross-validation schemes and seven models were 
used for assessing the prediction performance for grain yield 
(kg/ha) using the drought stress and non-stress datasets. The 
three cross-validation scenarios imitate real prediction 
problems of interest for breeders, and hence would contribute 
in addressing the prediction problems that breeders might face 
at different stages of the breeding pipeline (Persa et al., 2021). 
In general, it was found that in the CV2 scenario, the 
predictive abilities were the highest when using both 
non-stress and drought stress data sets for model calibration. 
Models 6 (E + G1 + G2 + G12 + G1E + G2E + AE) and model 7 

(E + GCA + A + GCA × E + A × E) performed superior to the other 
models in all the three considered datasets: stress, non-stress and 
combined data of drought stress and non-stress. Amongst the 
three scenarios, predictive abilities were poor in the CV0 scenario 
when predicting stress environments with non-stress datasets and 
vice versa. However, for CV1 and CV2 minimal differences in the 
predictive abilities were observed under this crossed validation. 
Overall, as expected the average correlation values for the scenario 
CV2 were highest followed by CV1 and CV0. Tables 1, 2 present 
the results for CV2 and CV1 schemes. Detailed results for three 
scenarios CV0, CV1, and CV2 with seven different models using 
the stress, non-stress and combined datasets are depicted in 
Figures 2–4, respectively.

Prediction with cross-validation scenario 
CV2

The CV2 cross-validation scheme was created to assess the 
prediction performance of the incomplete trials. It was observed 
that the prediction performance of incomplete trials was marginally 
lower in predicting under non-stress conditions using the 
non-stress dataset (~0.348) compared to those obtained for 
predicting drought grain yields with the drought stress datasets 
(~0.354; Tables 1, 2; Figure  2) with the corresponding most 
successful model (M6). Similarly, the higher prediction accuracies 
for predicting grain yield occurred when combining data of stress 
and non-stress conditions (CNS) in calibration sets (~0.360 for  
NS and 0.388 for S). Overall, models 5 (E + GCA +  
SCA + GCA × E + SCA × E), model 6 (E + GCA + SCA + GCA ×  
E + A × E) and model 7 (E + GCA + A + GCA × E + A × E) gave 
similar prediction accuracies when using data from both stress 
and non-stress datasets for model calibration. Most importantly, 
the inclusion of pedigree information and their interaction with 
the environment improved the prediction accuracy. This is evident 
from the prediction accuracies obtained for predicting the grain 
yields under stress and non-stress conditions using models 2 
(0.328 and 0.381), model 5 (0.352 and 0.374), model 6 (0.352 and 
0.371) and model 7 (0.360 and 0.388). Further, the models 
involving GCA and SCA effects and their interactions with the 
environment had a slight edge in improving the prediction 
performance over the basic interaction models, however, the 
pattern was not consistent across all the years. Furthermore, 
details of the non-stress and stress datasets for predicting each 
dataset and also their counterparts are elaborated below.

Predictions (CV2) under non-stress 
conditions using data from non-stress 
and combined data sets

The non-stress and combined dataset was utilized to predict 
the genotype performances for grain yield under the non-stress 
conditions using seven models. The predictive abilities obtained 
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for the non-stress conditions using the models 2 to 7 (0.328, 0.304, 
0.338, 0.347, 0.348, 0.341) depicted a significant improvement in 
comparison to the conventional model 1 (E + A) (0.286), however 

the prediction abilities were minimally different amongst each 
other with model 6 (E + GCA + SCA + GCA × E + A × E) and model 
5 (E + GCA + SCA + GCA × E + SCA × E) showing slightly higher 

A B

C

FIGURE 1

(A) Boxplot projecting adjusted mean values for the grain yield (kg/ha) under non-stress and reproductive stage drought stress conditions from the 
year 2003 to 2019. The x-axis depicts the years, which are considered as environments. The yield penalty owing to drought stress imposition led 
to the reduction of the grain yields of the genotypes. (B) The plot represents the heritability of the trials in each year from 2003 to 2019 under 
stress and non-stress conditions. The violet bars represent drought stress trials and cyan represents the non-stress trials. (C) Pedigree relationship 
matrix of the genotypes tested across years from 2003 to 2019. The connectivity of the genotypes is evident from the matrix, checks and 
reproductive stage drought tolerant varieties were tested in the successive years, thereby connecting the dataset across years. The violet color 
depicts the higher connectivity, marginalizing towards cyan depicting moderate to low relationship.

TABLE 1 The predictive abilities for the three selection criterion’s; CV2, CV1 and CV0 analyzed to predict grain yields under non-stress conditions 
with calibration sets viz., non-stress (NS) and Combined [All (stress and non-stress)] (CSN) datasets using seven models.

Mixed models
Cross-validation scenarios

CV2 CV1 CV0

Calibration sets CSN NS CSN NS CSN NS S → NS

M1: E + A 0.276 0.286 0.184 0.227 0.200 0.171 0.127

M2: E + A + AE 0.348 0.328 0.292 0.290 0.209 0.176 0.132

M3: E + GCA 0.272 0.304 0.204 0.247 0.159 0.153 0.095

M4: E + GCA + SCA 0.304 0.338 0.225 0.277 0.188 0.193 0.106

M5: E + GCA + SCA + GCA × E + SCA × E 0.352 0.347 0.306 0.305 0.197 0.190 0.112

M6: E + GCA + SCA + GCA × E + A × E 0.352 0.348 0.304 0.309 0.184 0.187 0.086

M7: E + GCA + A + GCA × E + A × E 0.360 0.341 0.298 0.299 0.206 0.182 0.126

Also the extreme right column of the table contains the predicted grain yield under non-stress conditions using the stress (S) dataset in CV0 scenario. The highlighted values represent 
models harboring highest predictive abilities in each of the cases.
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predictive abilities of 0.348 and 0.347, respectively. The results 
were slightly different when predicting the grain yield using 
combined datasets, in which model 7 (E + GCA + A + GCA ×  
E + A × E) depicted the highest predictive ability (0.360), with 
significant increase with respect to model 1 (E + A) and model 3 
(E + GCA) with predictive abilities of 0.276 and 0.272; and 
comparable predictive abilities of 0.348, 0.304, 0.352, 0.352 
obtained using the model 2 (E + A + A × E), model 4 
(E + GCA + SCA), model 5 (E + GCA + SCA + GCA × E + SCA × E) 
and model 6 (E + GCA + SCA + GCA × E + A × E) respectively.

When we  compare the average correlation values from 
predicting crop performance from years 2005 to 2019, the average 
correlation values for the years 2010 and 2016 were the highest 
amongst the others. The grain yield of the genotypes for the year 
2016 when predicted using the cut-out years, model 2 
(E + A + A × E) gave higher average correlation values of 0.55 when 
the calibration set was composed of the non-stress and combined 
datasets for predicting the non-stress conditions, followed by 
model 5 (E + GCA + SCA + GCA × E + SCA × E) and model 1 
(E + A) with minor differences in the correlation values. Similarly, 

TABLE 2 The predictive abilities for the three selection criterions; CV2, CV1 and CV0 analyzed to predict grain yields under stress (S) conditions 
using the calibration sets viz., stress dataset alone and Combined [All (stress and non-stress)] (CSN) datasets using seven models.

Mixed models
Cross-validation scenarios

CV2 CV1 CV0

Calibration sets CSN S CSN S CSN S NS → S

M1: E + A 0.242 0.254 0.170 0.230 0.185 0.073 0.171

M2: E + A + AE 0.381 0.355 0.340 0.349 0.165 0.047 0.141

M3: E + GCA 0.254 0.281 0.197 0.256 0.157 0.060 0.140

M4: E + GCA + SCA 0.274 0.328 0.209 0.306 0.162 0.125 0.138

M5:E + GCA + SCA + GCA × E + SCA × E 0.374 0.364 0.345 0.359 0.146 0.108 0.122

M6: E + GCA + SCA + GCA × E + A × E 0.371 0.364 0.339 0.355 0.149 0.114 0.118

M7: E + GCA + A + GCA × E + A × E 0.388 0.362 0.344 0.355 0.176 0.073 0.149

Also, the extreme right column of the table contains the predicted grain yield under stress conditions using the non-stress (NS) dataset in CV0 scenario. The highlighted values represent 
models harboring highest predictive abilities in each of the cases.

A B

FIGURE 2

(A) The average correlation values obtained from predicting the grain yield for incomplete trials (CV2) for non-stress conditions with the non-
stress (NS) and combined [All (S and NS)] calibration datasets. The plot depicts the correlations between the predicted and estimated values across 
the years 2005–2019, using model 1 (E + A), 2 and 5, respectively. (B) The average correlation values obtained from predicting the grain yield for 
incomplete trials (CV2) under the stress conditions using the stress (S) and combined [All (S and NS)] calibration datasets. The plot depicts the 
correlations between the predicted and estimated values across the years 2003–2019, using model 1 (E + A), 2 and 5, respectively.
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the average correlation values of the genotypes for the year 2010 
using model 5 (E + GCA + SCA + GCA × E + SCA × E) gave higher 
average correlations of 0.55 (Figure  2A). Therefore, we  can 
conclude that models 2 and 5 helped in predicting better results 
in comparison to the other five models.

Predictions (CV2) under stress conditions 
using data from stress, and combined 
data sets

In predicting the performance of lines tested under stress 
conditions during some years but not in others, model 5 
(E + GCA + SCA + GCA × E + SCA × E) and model 6 (E + GCA +  
SCA + GCA × E + A × E) performed equally superior over other 
models with predictive abilities of 0.364 each. However, when 
predicting the grain yield using the combined information of stress 
and non-stress environmental conditions for calibration, model 7 
(E + GCA + A + GCA × E + A × E) performed better than other 
models with the predictive abilities of 0.388. Under this scenario, 
the conventional model 1 (E + A) gave the lowest predictive abilities 
of 0.242 and 0.254, followed by model 3 (E + GCA) with predictive 
abilities of 0.254 and 0.281, respectively. Overall, incorporating the 
pedigree and pedigree by environment interactions, genotype by 
genotype, genotype by environment interactions, along with the 
GCA and SCA components in the model 2 (E + A + A × E), model 
4 (E + GCA + SCA), model 5 (E + GCA + SCA + GCA × E + SCA × E), 
model 6 (E + GCA + SCA + GCA × E + A × E) and model 7 
(E + GCA + A + GCA × E + A × E) improved the predictive abilities 
significantly. Conversely when analyzed for predicting the grain 
yields combining stress and non-stress datasets as calibration sets 
the model 2 (E + A + A × E), model 5 (E + GCA + SCA +  
GCA × E + SCA × E), model 6 (E + GCA + SCA + GCA × E + A × E) 
and model 7 (E + GCA + A + GCA × E + A × E), harboring pedigree 
and pedigree by environment interactions; genotype and genotype 
by environment interactions along with GCA and SCA components 
gave improved predictive abilities of 0.381, 0.374, 0.371, 0.388, 
respectively.

When we  compare the average correlation values from 
predictions of the genotypes for the year 2005 to 2019, the average 
correlation values for the years 2016 and 2010 were highest 
amongst the others (Figure 2B). The data for the genotypes of the 
year 2016 when predicted using the cut-out years, model 2 gave 
higher average correlation values of 0.55 with both non-stress and 
combined calibration sets, followed by Model 5 (E + GCA + SCA +  
GCA × E + SCA × E) and Model 1 (E + A) with minor differences 
in the correlation values. Similarly, the average correlation values 
of the genotypes for the year 2010 using Model 5 gave higher 
average correlations of 0.55 (Figure 2B).

Prediction with cross-validation scenario 
CV1

In CV1 scenario lines that have been not evaluated are 
predicted. In predicting the grain yield of untested lines, model 5 

(E + GCA + SCA + GCA × E + SCA × E) performed superiorly over 
the other models in all the three manners for composing training 
sets (stress, non-stress, and combined) for predicting trait 
performance of drought stress, and non-stress conditions 
(Tables 1, 2; Figure  3). Furthermore, how the CV1 scenario 
behaves while using the datasets of the non-stress and stress 
datasets for predicting each dataset and also their counterpart is 
given below.

Predicting the performance under 
non-stress conditions using data 
(calibration) from non-stress and 
combined conditions

The highest prediction abilities using the non-stress and 
combined datasets for predicting the non-stress grain yields were 
obtained using model 6 (E + GCA + SCA + GCA × E + A × E) 
(0.309) and model 5 (E + GCA + SCA + GCA × E + SCA × E) 
(0.306) respectively. The minimal predictive abilities of 0.184 and 
0.227 were found with the conventional model 1 (E + A) alike in 
the CV2 scenario. Overall, the inclusion of genotype by 
environmental interaction effects along with the GCA and SCA 
by environment components in the model 5 (E + GCA +  
SCA + GCA × E + SCA × E) and genotype by environment 
interactions with the pedigree by environment interactions in the 
model 6 (E + GCA + SCA + GCA × E + A × E) improved the 
predictive abilities with both non-stress (0.305; 0.309) and 
combined calibration sets (0.306; 0.304) for predicting non-stress 
conditions. However unlike the CV2 scenario [where, predictive 
abilities were 0.341 (non-stress dataset) and 0.360 (combined 
dataset)], model 7 (E + GCA + A + GCA × E + A × E) depicted 
comparatively lower predictive ability of 0.298 and 0.299 using 
non-stress and combined datasets to model 5 (E + GCA + SCA +  
GCA × E + SCA × E) and 6 (E + GCA + SCA + GCA × E + A × E) 
with predictive abilities of 0.305 and 0.309 (non-stress dataset); 
0.306 and 0.304 (combined dataset), respectively. The average 
correlation values were obtained from predictions of the genotypes 
for the year 2005 to 2019. The average correlation values for the 
years 2010 were highest followed by 2012, 2013, 2016 and 2018 
when predicting the non-stress conditions with average 
correlation values of 0.58, 0.48, 0.48, 0.47, 0.47, respectively. In all 
of the years, except 2005, 2009 and 2019 model 5 
(E + GCA + SCA + GCA × E + SCA × E) gave higher average 
correlation values when the calibration set was composed of the 
combined datasets (NS and S; Figure 3A).

Predictive abilities under stress 
conditions using data (calibration) from 
stress and combined conditions

The prediction abilities for predicting under stress 
conditions using data from the stress (historical reproductive 
stage drought stress dataset) and combined conditions for 
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model calibration were similar to those obtained under the 
CV2 scenario. When conducting the model calibration using 
data from the stress conditions, the predictive abilities ranged 

between 0.230 using model 1 (E + A) to 0.359 with model 5 
(E + GCA + SCA + GCA × E + SCA × E). The added interaction 
effects including the genotype by genotype, genotype by 

A B

FIGURE 4

(A) The average correlation values obtained from predicting the grain yield for new environment/year (CV0) under the non-stress conditions using 
non-stress (NS) and combined [All (S and NS)] datasets. The plot depicts the correlations between the predicted and estimated values across the 
years 2005–2019, using model 1 (E + A), 2 and 5, respectively. (B) The average correlation values obtained from predicting the grain yield for new 
environment/year (CV0) under the stress conditions using the stress (S) and combined [All (S and NS)] datasets. The plot depicts the correlations 
between the predicted and estimated values across the years 2003–2019, using model 1 (E + A), 2 and 5, respectively.

A B

FIGURE 3

(A) The average correlation values obtained from predicting the grain yield for untested lines (CV1) for predicting non-stress conditions using the 
non-stress (NS) and combined [All (S and NS)] calibration sets. The plot depicts the correlations between the predicted and estimated values 
across the years 2005–2019, using model 1 (E + A), 2 and 5, respectively. (B) The average correlation values obtained from predicting the grain yield 
for untested lines (CV1) under the stress conditions using stress (S) and combined [All (S and NS)] datasets. The plot depicts the correlations 
between the predicted and estimated values across the years 2003–2019, using model 1 (E + A), 2 and 5, respectively.

https://doi.org/10.3389/fpls.2022.983818
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khanna et al. 10.3389/fpls.2022.983818

Frontiers in Plant Science 11 frontiersin.org

environment, SCA by environment and GCA by environment 
interactions in model 5 (E + GCA + SCA + GCA × E + SCA × E) 
gave significantly higher predictive abilities of 0.359  in 
comparison to the conventional model 1 (E + A), model 3 
(E + GCA) and model 4 (E + GCA + SCA) with environment, 
GCA and SCA interactions giving prediction abilities of 
0.230, 0.256 and 0.306, respectively. However, there were 
minimal differences in predictive abilities using model 5 
(E + GCA + SCA + GCA × E + SCA × E) (0.359) compared with 
model 6 (E + GCA + SCA + GCA × E + A × E) (0.355) and 
model 7 (E + GCA + A + GCA × E + A × E) (0.355), respectively. 
This signifies the added environment interactions effects of 
genotype by environment, pedigree by environment, GCA  
by environment and SCA by environment interactions 
contributed to improving the predictive abilities when 
predicting stress environments using stress calibration sets.

Also, when using the combined calibration set for predicting 
the stress conditions, model 5 (E + GCA + SCA + GCA × E + SCA × E) 
gave the highest predictive abilities of 0.345 alike as obtained using 
the stress dataset with slight differences with model 2 (E + A + A × E) 
(0.340), model 6 (E + GCA + SCA + GCA × E + A × E) (0.339) and 
model 7 (E + GCA + A + GCA × E + A × E) (0.344), respectively. 
Likewise, model 1 (E + A), model 3 (E + GCA) and model 4 
(E + GCA + SCA) gave significantly lower prediction abilities of 
0.170, 0.197 and 0.209.

When observed across years/environments, the average 
correlation values of the genotypes with the stress dataset for 
predicting the grain yields under the stress conditions for the 
years 2003–2019, depicted highest values for the year 2010 
with the average correlation values of 0.60 using the model 5 
(E + GCA + SCA + GCA × E + SCA × E). This was followed by 
the years 2012 and 2003 with average correlation values of 
0.58 and 0.48 using the combined datasets using the model 5 
(E + GCA + SCA + GCA × E + SCA × E) and model 2 
(E + A + A × E), respectively. The average correlations for the 
years 2004, were minimal amongst all followed by 2009, 2005, 
2017 and 2019. Overall, using model 5 (E + GCA + SCA +  
GCA × E + SCA × E) and model 2 (E + A + A × E) average 
correlation values were higher over the conventional model 1 
(E + A) (Figure 3B).

Predicting the performance for CV0 
scenario

In predicting the performance in new environment/year 
(forward prediction/leave-one-year-out) under scenario CV0, 
model 4 (E + GCA + SCA) including the genotypes by genotype 
interactions gave higher predictive abilities under both stress and 
non-stress conditions showing predictive abilities of 0.125 and 
0.193 under reproductive stage drought stress and non-stress 
conditions, respectively. However, when using the combined 
dataset for calibration, model 2 (E + A + A × E) gave highest 
prediction accuracies of 0.209 compared to stress and non-stress 
counterparts. The CV0 scenario was peculiar than the other two 

scenarios as it was designed not only to predict the grain yields 
under stress and non-stress conditions with the respective datasets 
but also the counterpart datasets were used to predict each 
condition (i.e., stress to predict non-stress conditions and vice-
versa). Overall, amongst the three tested calibration sets of 
non-stress, combined and counterpart predictions, combined 
dataset gave highest prediction accuracies of 0.209, 0.206 and 
0.200 using model 2, 7 and 1, respectively.

Predictive abilities under non-stress 
using data from non-stress and 
combined conditions for model 
calibration

The predictive abilities of all the seven models for 
predicting the genotype performance in new environments 
were nearly similar with minor differences; however, were 
unlike the results obtained in the other scenarios CV1 and 
CV2. The best results were obtained from implementing 
model 4 (E + GCA + SCA) with estimated predictive ability of 
0.193 using the non-stress dataset. The predictive abilities 
using the combined dataset for model training were 
comparable when using model 2 (E + A + A × E) and model 7 
(E + GCA + SCA + GCA × E + A × E), however model 2 
(E + A + A × E) gave higher predictive ability of 0.209. The 
model 3 (E + GCA), unlike other two scenarios and conditions, 
showed the least predictive abilities of 0.153 and 0.159 using 
both the non-stress and combined calibration sets. 
Additionally, for specially designed case for predicting the 
grain yields under non-stress conditions using the stress 
dataset, model 2 (E + A + A × E) gave a maximum prediction 
accuracy of 0.132. Also, models 1 and 7 gave comparable 
results with predictive abilities of 0.127 and 0.126, respectively.

In the year wise comparison, an average correlation value of 
0.5 was observed in the year 2016, followed by the years 2015, 
2003 and 2007 amongst the 15 years from 2005 to 2019. Model 5 
performed superior over the other models 1 and 2 when analyzed 
using the non-stress as well as combined datasets. Also, there were 
minimal differences between the three plotted models for the year 
2016 (Figure 4A).

Predictive abilities under stress using 
data from stress and combined 
conditions for model calibration

The predictive abilities for the scenario CV0 for predicting the 
new environments using the stress and combined datasets for 
model training were almost alike the results obtained for the 
non-stress dataset. The inclusion of the models with pedigree 
effects improved the predictive abilities. The model 4 
(E + GCA + SCA) gave improved predictive abilities of 0.125 using 
the stress dataset like with the non-stress dataset. Unlike the 
results obtained for the other two scenarios and conditions, model 
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1 (E + A) performed better than other models in predicting yield 
when combined calibration conditions were used for training with 
the predictive ability of 0.185, with minimal differences to model 
7 (E + GCA + A + GCA × E + A × E) (0.176). Congruently, in the 
case to predict the grain yields using the non-stress dataset for 
predicting the stress environments, model 1 again gave maximum 
predictive ability (0.171) followed by model 7 (0.149).

In the comparative analysis amongst the tested years or 
environments, an average correlation value of 0.5 was observed in 
the year 2016, followed by the years 2015, 2003 and 2007 amongst 
the 15 years from 2005 to 2019. Model 5 performed superior over 
the other models 1 and 2 when using the non-stress as well as 
combined datasets for model calibration. Also, there were minimal 
differences between the three plotted models for the year 2016 
(Figure 3B).

Discussion

In multi-environment trials, G × E prediction models for 
complex traits like grain yield could help in accelerating the 
breeding cycles. Integration of G × E in predictions has helped to 
improve the genetic gains significantly (Crespo-Herrera et  al., 
2017; Jarquín et al., 2017; Bajgain et al., 2020; Dreisigacker et al., 
2021). Models based on G × E accounting for the correlated 
environmental effects might significantly help to enhance the 
predictive ability of un-observed phenotypes in multi-
environment trials (Sukumaran et al., 2017). Here, we leverage the 
huge number of multi-year environmental data along with robust 
pedigree information to exploit the genetic variance and 
covariance structure of correlated environmental effects to predict 
new lines or environments, and dissect the G × E by considering 
the interaction of the GCA and SCA terms with environment and 
these were modeled using the pedigree-relationship matrix.

Pedigree information to accesses 
predictions

The availability of robust pedigree information was pivotal in 
this study, which helped us fit the additive matrix in the second 
stage analysis to estimate breeding values and prediction 
accuracies (Khanna et  al., 2022). The essence of using the 
pedigree-based kinship matrix is that it accounts for the additive 
genetic co-variance between the genotypes to estimate the 
breeding values (Piepho et al., 2008). Robust and deep pedigrees 
may result in the expected genetic relationships close to realized 
estimated relationships obtained by genetic markers (Howard 
et al., 2019). Further, it has been shown that with robust and deep 
pedigree records, pedigree-based models perform much better 
than genetic marker-based models (Juliana et  al., 2017). For 
example, Howard et al. (2019) showed that pedigree-based models 
gave better prediction accuracy than genome-based models when 
main effects were modeled. However, we  emphasize that the 
robust pedigree information might be  incorporated with the 

genetic marker-based information to improve the accuracy of 
prediction models to a greater extent.

Identify best model and integrate 
interaction and genotypic effects (GCA 
and SCA)

The seven models ranging from basic models without any 
interaction effects to higher advanced models involving the 
interaction and main genotypic effects were utilized to assess the 
predictive ability. In general, the incorporation of genotype-by-
environment interactions (pedigree-by-environment; A × E here) 
in prediction models increased the predictive ability in all three 
scenarios. Dissecting and quantifying A × E has been an integral 
part of predictions and has led to increased prediction ability 
(Jarquín et al., 2017; Ankamah-Yeboah et al., 2020), as found in 
this study. Further models, involving the GCA and SCA effects 
along with the A × E interactions have slightly better predictive 
ability as compared to those only involving the GCA and SCA 
effects. This gain is not surprising and may be due to the significant 
contribution of variance components contributed by the 
interaction effects. Thus, we argue that reasonable gains in the 
prediction ability can be achieved by jointly considering the main 
and environmental interaction components as depicted in 
previous studies on wheat (Burgueño et  al., 2012; Sukumaran 
et al., 2017) and barley (Ankamah-Yeboah et al., 2020).

As expected, under the CV0 scenario, models accounting for 
the A × E interactions have very low predictive ability since no 
phenotypic information from the target environment is available. 
CV0, which involves the prediction performance of the genotypes 
in the new and un-observed environments, typically fails to 
exploit the genetic correlation among the different environments 
(Jighly et al., 2021). This results in lower prediction accuracies. 
Similar results of lower accuracy under the CV0 scenario have 
been observed in wheat and Barley Howard et al. (2019); 
(Ankamah-Yeboah et al., 2020). To predict the new environments 
and dissect G × E, it is important to exploit and use the genetic 
correlations among different sets of environments for improved 
and accurate estimates of genomic estimated breeding values 
(GEBVs). Predicting the new and unobserved environments 
without any information on genetic correlations among the 
environments or without borrowing information from other 
environments would be challenging, resulting in lower accuracy 
of breeding values. Recently, Jighly et al. (2021) proposed a novel 
alternative strategy called 3GS that predicts phenotypes in 
unobserved environments with high prediction accuracy with low 
to negative correlations among the different environments.

Predictions under different scenarios

Importantly, the prediction abilities were majorly dependent 
on the employed cross-validation schemes used in this study. In 
general, prediction ability was marginally lower when predicting 
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non-stress lines using stress data and vice-versa. Much better 
prediction accuracies were obtained when predicting the lines 
using the data sets evaluated under the same conditions (stress or 
non-stress data sets). This may be  expected due to extremely 
different experimental conditions under drought, and normal 
conditions resulting in lower correlations and lower heritability 
always observed under the drought conditions. Thus, the 
alternative strategy must be used to predict the lines using data 
from different conditions (Lyra et al., 2017). For example, here in 
this study, when we combine both stress and non-stress for model 
calibration, we observed much higher prediction accuracies under 
all the three prediction scenarios.

Further, amongst the three scenarios, CV1 and CV2 showed 
higher prediction accuracies as compared to the CV0. As discussed 
above, CV0 in which un-observed environments are predicted is not 
a good option to accurately predict as they do not borrow 
information from other related environments; however, this an 
important prediction scenario in breeding programs. In comparison 
to CV0, CV1, and CV2 scenarios in which new lines are tested or 
predicted borrows information from other and same environments 
(years). Thus, CV2 and CV1 scenarios, allows to exploit the genetic 
correlations amongst different environments and thus impart in 
improving the prediction accuracies (Ben Hassen et  al., 2018; 
Ankamah-Yeboah et  al., 2020). Notably, in predicting the 
performance of new lines under CV1, the combined effects of GCA, 
SCA, A × E interaction components contributed to improve the 
predictive ability. Hence, adding additive and A × E interaction 
components could contribute in enhancing the prediction abilities 
for deducing grain yield performances of incomplete trials (CV2).

Conclusion

Historical data sets have been a great resource to deduce 
meaningful conclusions for the implementation and optimization 
of pedigree-based predictions in breeding programs. Here, 
we leveraged a relatively large environmental dataset to answer the 
key questions related to predictions in the IRRI’s rice drought 
breeding program. We  proposed a series of models that were 
compared with conventional pedigree-based implementation for a 
total of 7 models that were tested under three validation schemes 
to dissect the G × E. We found that prediction accuracies improved 
when incorporating the interaction components helping to build 
the future pedigree or genomic-based prediction models in the rice 
breeding program. Prediction accuracy varies considerably across 
the validation schemes, with CV0 as expected, giving the minimal 
prediction accuracy, highlighting the importance of borrowing the 
correlated information from other environments to improve 
prediction accuracy. Further, we  emphasize the inclusion of a 
marker-based relationship matrix will further help in improving 
the accuracy of genomic prediction models and answer the 
question in a more meaningful way. Conclusively, rigorous 
theoretical and empirical assessment of genomic prediction 
optimization approaches will be  crucial in translating the 
investments into real genetic gains in rice breeding programs.
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