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The existence of the nucleus distinguishes prokaryotes and eukaryotes.

Apart from containing most of the genetic material, the nucleus possesses

several nuclear bodies composed of protein and RNA molecules. The

nucleus is separated from the cytoplasm by a double membrane, regulating

the trafficking of molecules in- and outwards. Here, we investigate the

composition and function of the different plant nuclear bodies and molecular

clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal

bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies,

photobodies and DNA damage foci is analyzed in response to different

abiotic stresses. Furthermore, we research the literature to collect the

different protein localization signals that rule nucleocytoplasmic trafficking.

These signals include the different types of nuclear localization signals

(NLSs) for nuclear import, and the nuclear export signals (NESs) for

nuclear export. In contrast to these unidirectional-movement signals, the

existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional

movement through the nuclear envelope. Likewise, nucleolar signals are also

described, which mainly include the nucleolar localization signals (NoLSs)

controlling nucleolar import. In contrast, few examples of nucleolar export

signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export

signals (NoESs), have been reported. The existence of consensus sequences

for these localization signals led to the generation of prediction tools,

allowing the detection of these signals from an amino acid sequence.

Additionally, the effect of high temperatures as well as different post-

translational modifications in nuclear and nucleolar import and export

is discussed.
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nucleoplasm, nucleolus, stress, localization signals, non-coding RNAs, nuclear
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Introduction: Cell
compartmentalization and the
nucleus

Cell compartmentalization allows the physical separation of
molecules and metabolic reactions within the cell. In particular,
plants possess and exert a large number of biochemical
routes and metabolites because of their sessile character
(Solymosi and Schoefs, 2019). Thus, compartmentalization is
essential in plant cells for their correct functioning. During
evolution, compartmentalization appeared as the distinction
between eukaryotes and prokaryotes, since prokaryotic cells lack
membrane-bound organelles. Interestingly, plant cells possess
an exclusive organelle, the chloroplast, whose best-known
function consists in obtaining energy through photosynthesis
(Alberts et al., 2002; Lunn, 2007; Solymosi and Schoefs, 2019).

Nevertheless, the nucleus can be conceived as the
organelle distinguishing eukaryotic and prokaryotic cells.
The nucleus contains most of the genetic material, excluding
the mitochondrial and (in plants) the chloroplastic genomes
(Figure 1). Functionally, it separates the DNA replication
and DNA transcription taking place in the nucleoplasm from
the protein translation in the cytosol. The nucleus also has
a protective effect on the genetic material. Structurally, it
comprises the nucleoplasm and the nuclear envelope (NE).
The nucleoplasm contains the chromatin and the nuclear
bodies, and it is also the site of several enzymes involved
in the metabolism of DNA and RNA. On the other hand,
the NE delimitates the nucleoplasm from the cytoplasm. It
is composed of the outer nuclear membrane and the inner
nuclear membrane (ONM and INM, respectively), forming
the perinuclear space in-between. Whereas the ONM is in
contact with the endoplasmic reticulum in the cytoplasm, the
INM associates with the nuclear lamina, which is involved in
several nuclear functions in animals cells (Taddei et al., 2004;
Guo and Fang, 2014). The nucleoplasm and the cytoplasm
are in contact through thousands of nuclear pore complexes
(NPCs) located along the NE. In addition, actively transcribed
chromatin is often found interacting with the NPC, whereas
inactive chromatin is associated with the nuclear lamina in
animals and yeast (Taddei et al., 2004; Németh and Längst,
2011) or with the periphery of the nucleolus in eukaryotic cells
(Hicks, 2013; Padeken and Heun, 2014; Pontvianne et al., 2016;
Picart-Picolo et al., 2020; Castel and Chae, 2021).

Nuclear bodies are dynamic structures composed of proteins
and RNA molecules involved in related functions (Mao
et al., 2011; Petrovská et al., 2015). They are present in the
nucleoplasm and/or the nucleolus. Indeed, the best-known
nuclear body in eukaryotic cells is the nucleolus (Mao et al.,
2011; Sleeman and Trinkle-Mulcahy, 2014; reviewed by Sáez-
Vásquez and Medina, 2008). Even though animals, yeast and
plant cells share certain nuclear bodies, there are others that

are exclusive to each cell type. On the one hand, nuclear bodies
in human cells include the nucleolus, promyelocytic leukemia
nuclear bodies, nuclear speckles, paraspeckles, Cajal bodies
(CBs), Sam68 bodies, as well as other non-characterized nuclear
bodies (Fong et al., 2013). On the other hand, plant nuclear
bodies include the nucleolus, CBs, dicing bodies (D-bodies),
nuclear speckles, cyclophilin-containing speckles, photobodies
and DNA damage foci (Figure 1; Guo and Fang, 2014; Petrovská
et al., 2015; Emenecker et al., 2020). Nuclear bodies can be
distinguished according to their composition (Table 1) and/or
in terms of their assembly mechanism. Three different models
have been proposed to describe the formation of nuclear bodies.
Firstly, a stochastic series of events may lead to the assembly
of nuclear bodies, in which the structural process is mainly
random. Moreover, nuclear bodies can also be formed by a
coordinated mechanism, in which each element is incorporated
into the nuclear body after the other following a tightly
sequential order. In this model, only one or two assembly
pathways exist to form the nuclear body. Lastly, nuclear bodies
can also follow the seedling assembly mechanism, in which
one of their components acts as a seed to initiate and nucleate
the formation of the nuclear body (Mao et al., 2011; Matera
et al., 2011; Guo and Fang, 2014). Whereas the formation of
the nucleolus is governed by a seedling mechanism, where the
nascent rRNAs act as the “seed” (Karpen et al., 1988), CBs have
been observed to follow a stochastic events among the different
components (Kaiser et al., 2008).

In this review, we will consider the different plant nuclear
bodies, from their protein and RNA composition to the
functions and processes they are involved in. Moreover, the
dynamics of nuclear bodies upon different stressors in animals,
yeast and plants will be also addressed. In addition, the features
of the different protein signals that govern nuclear and nucleolar
import and export will be detailed. This review also focuses
on how heat stress and main post-translational modifications
(PTMs) modulate nuclear import and export.

Nuclear bodies

Nucleolus

The nucleolus is the most prominent subnuclear structure
in eukaryotic cells. It is considered to be a nuclear body
because of the presence of protein and RNA molecules. The
nucleolus possesses a tripartite composition distributed in a
vectorial fashion: fibrillar center (FC), dense fibrillar component
(DFC) and granular component (GC), although in yeast the
nucleolus exhibits a bipartite organization (Sáez-Vásquez and
Gadal, 2010). The FCs are low-density areas surrounded by
the DFC, which is embedded in the GC. Moreover, it is also
common to find nucleolar cavities in plant nucleoli (Jordan,
1984; Sirri et al., 2008). Moreover, the plant nucleoli differentiate

Frontiers in Plant Science 02 frontiersin.org

https://doi.org/10.3389/fpls.2022.984163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-984163 August 17, 2022 Time: 17:22 # 3

Muñoz-Díaz and Sáez-Vásquez 10.3389/fpls.2022.984163

FIGURE 1

Schematic representation of a plant nucleus showing the nucleolus (dark gray), Cajal bodies (brown), dicing bodies (purple), nuclear speckles
(blue), photobodies (red), cyclophilin-containing bodies (light brown) and DNA damage bodies (green). The nuclear enveloppe (NE) and nuclear
pore complex (NPC) are shown in green. The fibrillar centers (FCs), dense fibrillar component (DFC), granular component (GC) and nucleolar
cavity (NoC) are ilustrated within the nucleolus. Figure based on Petrovská et al. (2015).

between two types of FCs: homogeneous (similar to animals)
and heterogeneous. Homogeneous FCs, composed of a fibrous
loose material, are small and numerous, generally abundant in
cells actively producing ribosomes. In contrast, heterogeneous
FCs are large and scarce, associated with low translation rates
(Sáez-Vásquez and Medina, 2008).

The nucleolus is largely known for its role in the biogenesis
of ribosomes (Mélèse and Xue, 1995). Ribosome biogenesis
begins with the transcription of rRNA genes (rDNA) into pre-
rRNA molecules. The 5.8S, 18S and 25S (28S in mammals)
rRNA genes are located in tandem in polycistronic rDNA units
(called 35S, 45S, and 47S rDNA in yeast, plants and mammals,
respectively) and transcribed by the RNA polymerase I (RNA
Pol I). A fourth rRNA gene, the 5S, is transcribed by the RNA
Polymerase III (RNA Pol III; Campell et al., 1992). RNA Pol I
and III are multimeric enzymatic complexes composed of up to
∼15 subunits (Guilfoyle and Dietrich, 1987; Haag and Pikaard,
2007; Fernández-Tornero et al., 2013; Ream et al., 2015).

Transcribed pre-rRNAs (47S/45S/35S and 5S) undergo
several processing steps by endo- and exonucleases to form
the mature 5S, 5.8S, 18S and 25S (28S in mammals) rRNAs. In
plants, this include endonucleases RTL2 (ribonuclease 3-like
protein 2) and 5′-3′ and 3′-5′ exoribonuclease activities from
XRN2 and the exosome, respectively (reviewed by Sáez-Vásquez
and Delseny, 2019). In the processing of rRNA, both C/D

and H/ACA small nucleolar ribonucleoproteins (snoRNPs)
also play a central role in the modifications of the rRNAs. On
the one hand, C/D snoRNPs are involved in the 2′-O-methyl
ribose methylation of rRNAs, in which fibrillarin has been
described in many species as the methyltransferase. In contrast
to animals and yeast, two different genes encode fibrillarin
in Arabidopsis thaliana, referred as Arabidopsis (AtFIB1 and
AtFIB2; Barneche et al., 2000; Pih et al., 2000). Approximately
120 sites experiencing 2′-O-methyl ribose methylation have
been described in Arabidopsis (Azevedo-Favory et al., 2021).
On the other hand, H/ACA snoRNPs mediate 5-riboyluracil
pseudouridinyation of rRNAs. In Arabidopsis, dyskerin
conforms the catalytic subunit of the H/ACA complex
(Maceluch et al., 2001). Dyskerin is encoded by a single gene
in Arabidopsis, AtNAP57. In addition, rRNA molecules can be
subjected to base methylations, such as m7G, m6A, m3U, m5C
or Ac4C (Sloan et al., 2017; Taoka et al., 2018).

The mature 5S, 5.8S and 25S rRNAs (28S rRNA in
mammals), along with large ribosomal proteins (RPLs), form the
large ribosomal particle (60S), while the small ribosomal particle
(40S) contains the 18S rRNA plus small ribosomal proteins
(Fromont-Racine et al., 2003; Korostelev and Noller, 2007; Weis
et al., 2015; Sáez-Vásquez and Delseny, 2019).

The number of nucleolar proteins in Arabidopsis is
significantly lower than in humans (Palm et al., 2016;
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TABLE 1 Plant nuclear bodies.

Nuclear body Protein components RNA components Function

Nucleolus (No) Nucleolin
Fibrillarin
. . .

rRNAs
C/D snoRNAs
H/ACA snoRNAs

Ribosome biogensis
Regulation of the cell cycle
Stress response

Cajal bodies (CBs) Coilin
U2B
Fibrillarin
Dyskerin
AGO4, DCL3

snRNAs
C/D snoRNAs
H/ACA snoRNAs
scaRNAs
mRNAs

Modification of sRNAs
Formation of spliceosomal
particles
Gene silencing (Arabidopsis)

Dicing bodies (D-bodies) DCL1
HYL1
AGO1
DRB1
HEN1

- Gene silencing

Nuclear speckles SR-rich proteins
snRNPs
non-snRNPs
Transcription factors
3′ processing factors
Cyclophilins

snoRNAs
pre-mRNAs

Formation of spliceosomal
particles

Cyclophilin-containing bodies Cyclophilins (BypRS64) - Protein folding
Plant development and signaling

Photobodies Phytochromes
Cryptochromes

- Storage of active phytochromes
Degradation of phytochromes

DNA damage foci yH2AX
RBR1
RAD51, RAD54
E2F

- DNA damage response (DDR)

The proteins and RNAs listed are considered to be major (abundance) components and normally used as compartmental markers.

Montacié et al., 2017). In Arabidopsis, the vast majority are
proteins involved in the transcription and processing of the
rRNAs (Leung et al., 2003; Pendle et al., 2005; Montacié
et al., 2017). Nucleolin is the most abundant non-ribosomal
protein in the nucleolus in eukaryotic cells (Ginisty et al.,
1999; Tajrishi et al., 2011; Durut and Sáez-Vásquez, 2015).
Even though it is required for ribosome biogenesis, nucleolin
participates in other functions such as DNA replication, mRNA
stability and translation or maintenance of the chromatin (Roger
et al., 2003; Kim et al., 2005; Takagi et al., 2005; Angelov
et al., 2006). In Arabidopsis, two different nucleolins are found
(AtNUC-L1/NUC1 and AtNUC-L2/NUC2), showing structural
homology with animal and yeast nucleolins (Pontvianne et al.,
2007; reviewed by Durut and Sáez-Vásquez, 2015).

The assembly and organization of the nucleolus are
governed by liquid–liquid phase separation (LLPS; Lafontaine
et al., 2021). LLPS consists of the spontaneous demix of
a solution into several phases that coexist. Thus, the three
nucleolar subdomains (FC, DFC, and GC) behave as three
different coexisting liquid phases (reviewed by Emenecker
et al., 2020). Many nucleolar proteins, such as fibrillarin or
nucleolin, are capable of condensing through LLPS, feature
designated as multivalency (reviewed by Banani et al., 2017).
These proteins possess Gly-Arg-rich (GAR) domains as well

as intrinsically disordered regions (IDRs), which have been
observed to promote LLPS. Interestingly, the protein content of
the DFC and GC generate immiscibility owing to disfavorable
interaction. Thus, the nucleolus can be seen as a multilayered
condensate whose formation is governed by LLPS (reviewed by
Lafontaine et al., 2021).

During mitosis, the nucleus disappears in the majority of
the eukaryotes, including animal and plants. The nucleolus
disassembles in the early mitosis, becoming completely
lost in the prometaphase. Nevertheless, some nucleolar
components appear to be associated with the periphery of
the chromosomes during the metaphase and anaphase as
sheath-like structures. In the telophase, the sheath-like material
forms the perinucleolar bodies (PNBs), which are recruited
by the nucleolar organizer regions (NORs). This fact, along
with the transcription of the rRNA genes, promotes the
synthesis of new nucleoli in the daughter cells (Ochs et al.,
1985). Moreover, transcription from Alu elements generates
the so-called aluRNAs, which are necessary to maintain
the nucleolar integrity (Caudron-Herger et al., 2015). These
elements have not yet been described in plants. Exceptionally,
many fungi, including yeast, undergo closed mitosis in
which the nuclear structures are present throughout mitosis
(Asakawa et al., 2016).
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Cajal bodies and histone locus bodies

Cajal bodies are among the best-characterized nuclear
bodies in animal, yeast and plant cells. They were discovered
by Ramon y Cajal along with other nuclear bodies (reviewed
by Nizami et al., 2010). These dynamic structures are able to
fuse and divide. Moreover, they are also associated with the
nucleolus, moving in or out of it (Andrade et al., 1991; Beven
et al., 1995; Boudonck et al., 1999). Whereas the absence of CBs
causes developmental abnormalities and lethality in animals
(Liu et al., 2009; Walker et al., 2009; Strzelecka et al., 2010;
Kanno et al., 2016), CBs are not essential for plant viability
(Collier et al., 2006; Nizami et al., 2010). The protein and
RNA content of these bodies is very diverse and extensive. The
main component of CBs is coilin (Collier et al., 2006), followed
by small nuclear RNPs (snRNPs) involved in the processing
of pre-mRNAs, such as U2B (Beven et al., 1995); and small
nucleolar RNPs (C/D and H/ACA snoRNP) involved in the
processing of rRNAs, tRNAs and snRNAs (Ogg and Lamond,
2002; Kannan et al., 2008), as well as signaling pathways (Love
et al., 2017). In plants, proteins involved in gene silencing
are also part of CBs, such as AGO4 or DCL3 (Li et al.,
2006; Pontes and Pikaard, 2008). Coilin is required for the
formation of CBs, as shown in knockout and knockdown
mutants in some species, i.e., Arabidopsis thaliana or Mus
musculus (Tucker et al., 2001; Collier et al., 2006). The structure
of the coilin shows homology across several species: it possesses
two nuclear localization signals (NLS), one predicted nucleolar
localization signal (NoLS), an N-terminal globular domain
and a C-terminal Tudor-like structure (Makarov et al., 2013).
Furthermore, three RNA species are localized in CBs: snRNAs,
snoRNAs and small CB-specific RNAs (scaRNAs). Interestingly,
plant CBs also contain poly(A) RNAs, such as mRNAs (Kim
et al., 2010; Niedojadło et al., 2014). Contrary to other types
of nuclear bodies, CBs are dynamic because of a continuous
exchange of their components (reviewed by Nizami et al.,
2010).

Because of the diverse composition of CBs, these nuclear
bodies take part in numerous functions. One of the most
important processes involving CBs is the formation of
spliceosomal particles (snRNPs). After being synthesized in
the nucleoplasm, they are translocated to the cytosol to
interact with Sm proteins. After methylation of the 5′ of the
snRNAs, the snRNP complex moves back into the nucleus
(Suzuki et al., 2010). Another function revolving CBs is
the modification of small RNAs (sRNAs). The presence of
C/D box snoRNAs and scaRNAs mediates the 2′-O-methyl
ribose methylation of snRNAs, whereas H/ACA box snoRNAs
promote 5-riboyluracil pseudouridinyation of RNA molecules
in CBs (Bassett, 2012). The possible role of CBs in telomerase
activity has been hypothesized. In Arabidopsis, the telomerase
interacts with dyskerin, which is a component of CBs.
Moreover, the telomerase in invertebrates possesses a domain

that leads to accumulation in CBs (reviewed by Love et al.,
2017).

Some functions attributed to CBs are specific to plants,
i.e., the nonsense-mediated mRNA decay (NMD), a quality
control mechanism for premature terminated mRNA molecules.
Whereas this process takes place in the cytosol in human
cells, the nonsense-mediated mRNA decay might occur in the
nucleolus in plants. The nucleolar localization of the exon
junction complex, mRNA molecules and Up-frameshift factors
in plants sparked the idea of CBs involved in the nonsense-
mediated mRNA decay. Nevertheless, this hypothesis must be
fully demonstrated (Pendle et al., 2005; Trinkle-Mulcahy, 2009;
Bassett, 2012). Another plant-specific function of these bodies
is gene silencing. Several components of the gene-silencing
machinery have been observed to co-localize with components
of CBs (Li et al., 2006, 2008; Fujioka et al., 2007).

Histone locus bodies are another type of nuclear body
involved in the processing of histone pre-mRNA, as they are
associated with histone-coding genes. In fact, these bodies
resemble CBs in terms of structure and composition. HLBs were
first discovered in Drosophila melanogaster and human cells,
even though they were considered to be CBs (Frey and Matera,
1995; Liu et al., 2006; Bongiorno-Borbone et al., 2008; Ghule
et al., 2008; Nizami et al., 2010). As CBs, HBLs also contain
coilin. The difference resides in the fact that coilin is not essential
for the assembly of HLBs, in contrast to CBs (Love et al., 2017).
However, these bodies have not been described in plants.

Dicing bodies

MicroRNAs (miRNAs) are a type of RNase III-dependent
sRNAs involved in gene silencing. They are transcribed by the
RNA Polymerase II (RNA Pol II) as pri-miRNAs, which are
processed by the DCL1-HYL-SE complex into a duplex miRNA.
Then, these duplexes associate with ARGONAUTE proteins
to form the RISC complex in order to exert their function
(reviewed by Liu et al., 2012). In Arabidopsis, DCL1 was found
to form round structures in the nucleus. These bodies were able
to diffuse around the nucleoplasm, but they were not associated
with the nucleolus. In addition, HYL1 also forms aggregates
in the nucleus, co-localizing with DCL1 bodies. Similarly, SE
forms aggregates in the nucleus. However, they do not always
co-localize with DCL1 and HYL, as SE is also found in nuclear
speckles (Fang et al., 2004; Fang and Spector, 2007; Song et al.,
2007). What is more, the DCL1-HYL1 bodies are different from
CBs owing to the absence of coilin. Thus, these DCL1-HYL1
bodies were named D-bodies (Fang and Spector, 2007). Other
proteins co-localizing with D-bodies include AGO1, HEN1,
DRB1, and PIF4 (reviewed by Emenecker et al., 2020). The
formation of D-bodies is also governed by LLPS. It was observed
that SE forms droplets, followed by the presence of HYL, DCL1
and pri-/pre-miRNAs. The absence of SE inhibits the formation
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of D-bodies, which indicates that these bodies are formed via
SE-phase separation (Xie et al., 2021).

Nuclear speckles and paraspeckles

Nuclear speckles constitute another type of common nuclear
body present in animal and plant cells (Reddy et al., 2012). These
bodies are located in the interchromatin space, and they store
splicing factors, as well as snRNPs, non-snRNPs, transcription
factors and 3′ processing factors (Lamond and Spector, 2003).
These speckles are normally found near active transcription
sites, where pre-mRNA molecules have been also found forming
fibers (Spector and Lamond, 2011).

Serine/arginine (SR)-rich proteins are splicing proteins
involved in recognition of pre-mRNA introns and in the
assembly of the spliceosome (Lorkoviæ et al., 2004). The
arginine/serine (RS)-rich motif present in these proteins, apart
from having an NLS, has been experimentally demonstrated
to be responsible for the accumulation in the nuclear speckles
(Tillemans et al., 2005). The number, size and shape of nuclear
speckles in plant nuclei vary according to the metabolic stage,
transcriptional activity or cell type. For instance, actively
transcribing cells have numerous small nuclear speckles,
whereas inhibition of transcription leads to the formation
of larger and less numerous nuclear speckles (Reddy et al.,
2012). Interestingly, the co-localization of SR-rich proteins
within nuclear speckles also depends on the cell type and/or
environmental conditions of the plant cell. What is more,
it has been observed that the co-localization of proteins in
nuclear speckles does not imply physical interaction among
them (Lorkoviæ et al., 2008; Reddy et al., 2012). There is a
continuous interchange of components between the nuclear
speckles and the nucleoplasm (Rausin et al., 2010). The presence
of Arabidopsis SR31, SR1 and atSRp30 in nuclear speckles
was demonstrated (Fang et al., 2004). Even though the main
components of these bodies are SR proteins, the precise
composition of the nuclear speckles continuously changes
(Reddy et al., 2012).

Paraspeckles have been described in animals and are
composed of non-coding RNA molecules and proteins. They
have not been described in plants (Spector and Lamond, 2011;
Reddy et al., 2012).

Cyclophilin-containing bodies

Cyclophilins are a family of proteins that are present in
many organelles in plant cells (Singh et al., 2020). They are
believed to be involved in protein folding, possibly mediating the
assembly of the spliceosome. Recently, it has been observed that
cyclophilins constitute versatile proteins that exert a wide array
of functions in plant development and signaling (Schmid, 1995;

Lorkoviæ et al., 2004; Singh et al., 2020). It was observed that
CypRS64, a member of the cyclophilins in Arabidopsis, formed
certain bodies in the nucleus named cyclophilin-containing
bodies. This protein contains three different domains: (i) the
PPiase motif, (ii) the KRS motif, and (iii) the RS/SP domain.
The localization of CypRS64 in the cyclophilin-containing
bodies requires both the KRS and the RS/SP domains. It is
also known that cyclophilins interact with SR proteins, which
form part of the nuclear speckles. When CypRS64 was co-
expressed with one of its interactors, CypRS64 translocated into
the nuclear speckles. It has been hypothesized that this re-
localization allows the gathering of different proteins involved
in the same process. In addition, the phosphorylation of the
CpRS64-interacting proteins is necessary in order to associate
with CypRS64 (Lorkoviæ et al., 2004).

Photobodies

Phytochromes (phys) are photoreceptors responsible for
the red (R) and far-red (FR) sensing (Schâfer et al., 1972).
They possess inactive and active conformations, referred
as R light-absorbing Pr and FR light-absorbing Pfr forms,
respectively. In Arabidopsis, there are five types of phys (phyA–
phyE). Among them, the most prominent in Arabidopsis are
phyA, which senses R, FR and blue light, and phyB, which
responds to R light (van Buskirk et al., 2012). Interestingly,
the conversion from Pr to Pfr leads to the translocation of
phys from the cytosol into the nucleus (Kircher et al., 1999;
Kim et al., 2000; Rockwell et al., 2006). Not only are these
receptors located in the nucleus upon light excitation, but
they also form nuclear bodies, named photobodies (Yamaguchi
et al., 1999). The formation of photobodies occurs during
the dark-to-light transition. Photobodies containing both phyA
and phyB can be observed a few minutes after exposure
to R light. These photobodies, named “early photobodies,”
disappear after 1 h of exposure. After 2 h of exposure to R
light, novel photobodies called “late photobodies” are formed.
PhyA is no longer present in the “late photobodies,” as they
have been degraded because of continuous exposure to light
(Kircher et al., 1999; Yamaguchi et al., 1999; Kim et al.,
2000; Bauer et al., 2004). The size and number of phyB
photobodies are determined by the amount of phyB in the
Pfr form under continuous exposure to R light. Upon high-
intensity R light, the Pfr form is predominant, leading to
the formation of large photobodies. On the other hand, dim
R light generates smaller and more dispersed photobodies,
because of the conversion of Pfr into Pr (Chen et al., 2003). In
addition, some phyB photobodies may contain cryptochromes,
which are blue light receptors (reviewed by van Buskirk
et al., 2012). Apart from photoreceptors, the composition
of the photobodies includes transcription factors, such as
Constans (CO) and the B-box transcription factor 28 (BBX28),
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or the E3 ligase constitutively photomorphogenic 1 (COP1;
Liu et al., 2014, 2020).

Structurally, phys are able to form either homodimers or
heterodimers. Each monomer possesses a N-terminal domain
to sense light, and a C-terminal domain to allow dimerization
(Clack et al., 2009; Nagatani, 2010). The C-terminus of phyB
is required for the formation of photobodies independently
of light. The proline-rich domain (PRD) domain, in the
C-terminus, might contain an NLS or be able to bind a
nuclear protein. Notably, the whole C-terminal domain (PRD
and histidine kinase-related domain (HKRD) subdomains)
is required for the formation of photobodies under normal
conditions (Matsushita et al., 2003; Chen et al., 2005). It has been
proposed that in the inactive Pr form, the C-terminal domain
of phyB is hidden and masked by the N-terminal domain. The
transition to the active Pfr form allows the exposure of the NLS
in the C-terminal domain to form the photobodies (Fankhauser
and Chen, 2008). Regarding the function of photobodies, several
hypotheses have been proposed due to the heterogeneous
composition: (i) they may act as a storage site for active
photoreceptors, (ii) they could be sites of protein degradation,
since many proteins are localized in photobodies prior to
degradation, or (iii) they could act in transcriptional regulation,
as many transcriptional regulators are present (reviewed by van
Buskirk et al., 2012). Using a nucleolus-tethering system (NoTS)
to dive into the assembly of the photobodies, it was observed
that any of the components of the photobodies is able to trigger
the formation and assembly of these bodies. Thus, the formation
of the photobodies follows a stochastic pathway, also referred as
self-organized assembly (Liu et al., 2014).

DNA damage foci

Because of the sessile character of plants, they are highly
exposed to several adverse conditions that lead to DNA damage.
However, the mutation rate is very low due to the existence
of reparation mechanisms. One of these is called the DNA
damage response (DDR), which is highly conserved among
animals and plants. The DDR starts with the activation of
the protein kinases ataxia telangiectasia mutated (ATM) by
double strand breaks (DSBs), and ATM- and Rad3-related
(ATR) proteins by single strand (SS) DNA. Then, the suppressor
of gamma-response 1 (SOG1) is phosphorylated, promoting
the transcription of DNA repair genes and the regulation of
the cell cycle. However, there is a SOG1-independent DDR,
which involves E2F-retinoblastoma-related protein 1 (RBR1)
complexes (reviewed by Nisa et al., 2019).

DNA damage foci appear at sites of double-stranded damage
in animals, yeast and plants. It has been hypothesized that
LLPS, similar to the nucleolus, governs the formation of these
bodies (reviewed by Emenecker et al., 2020). The protein
components of DNA damage foci are involved in DDR.

One of those proteins is the phosphorylated histone H2AX
(γH2AX). This histone variant accumulates at DNA damage
sites, becoming an excellent marker for DNA damage foci
(Löbrich et al., 2010). In Arabidopsis, the E2F transcription
factors also form DNA damage foci that co-localize with
γH2AX. In addition, RBR1 co-localizes with E2Fa in DNA
damage foci, recruiting proteins involved in DNA repair (Lang
et al., 2012; Biedermann et al., 2017). Other components
of the DNA damage foci include radiation-sensitive (RAD)
proteins, such as RAD54 (Hirakawa and Matsunaga, 2019) or
RAD51 (Kurzbauer et al., 2012). However, according to Singh
et al., RAD51 did not co-localized with γH2AX. Moreover,
the gamma-tubulin complex component 3-interacting protein 1
(GIP1), involved in the maintenance of the nuclear structure and
organization, forms nuclear foci that co-localize with γH2AX
foci (Singh et al., 2022).

Nuclear granules and bodies under
stress

Eukaryotic cells are often exposed to unfavorable conditions,
such as extreme temperatures or hypoxia. These stresses activate
different types of cellular responses to mitigate and/or fight
the adverse conditions (Audas et al., 2016). These stressors
have been demonstrated to have an impact on the composition,
shape, size and number of nuclear bodies. For instance, the
nucleolus undergoes reversible changes in response to low and
high temperatures. Plant nucleoli show speckled structures upon
incubation at 37◦C (Hayashi and Matsunaga, 2019). Moreover,
they start to disaggregate and dissemble after longer exposure
to 37◦C (Darriere et al., 2022). On the other hand, chilling
temperatures lead to the formation of a round structure in
the nucleolus. It was also observed that both low and high
temperatures inhibit the accumulation of newly synthesized
rRNA in the nucleolus (Figure 2; Hayashi and Matsunaga,
2019).

High temperatures induce the enlargement of CDKC2-
containing nuclear speckles, whereas cold treatment inhibits
their formation (Kitsios et al., 2008; reviewed by Reddy
et al., 2012). CBs also respond to heat shock, since they
disappear upon exposure to high temperatures. Nevertheless,
they reappear once the heat stress stops (Boudonck et al., 1999).
As coilin plays a role in some signaling pathways in plant cells,
the involvement of CBs and/or coilin has been suggested in the
perception and response to stresses (Love et al., 2017).

Different cellular bodies are formed in response to abiotic
stress. In the cytosol of plant cells, stress granules and heat stress
granules appear upon short- and long-term exposure to heat
stress, respectively. They can also be differentiated according
to their protein and RNA composition (reviewed by Maruri-
López et al., 2021). Interestingly, the generation of nuclear
aggregates upon diverse stimuli was observed in human cells
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FIGURE 2

Representation of the different nuclear aggregates originating
under stress conditions in mammals, yeast, and plants. In
mammal cells (top) two different nuclear granules are
represented: the nuclear stress granules (SGs), formed in the
nucleoplasm (Np) upon viral infection, hypoxia or UV exposure;
and the A-bodies, formed in the nucleolus (No) in response to
acidosis or heat stress. In the middle, the generation of nuclear
aggregates in yeast is driven by acute heat stress. While
nuclear/nucleolar proteins form the nucleolar ring (No-Ring) in
fission yeast (Schizosaccharomyces pombe), the intra-nuclear
quality-control compartment (INQ) appears in the nuclei of
budding yeast (Saccharomyce cerevisiae) in contact with the
nucleolus. On the bottom, the loss of the nucleolar structure
occurs in plant cells upon heat stress, whereas the presence of a
round structure occurs during chilling temperatures. Moreover,
the formation of AKIP1-containing bodies in the nucleus was
observed in Vicia faba in the presence of abscisic acid (ABA).

and yeast (Figure 2). The nuclear stress granules appear in
the nucleoplasm of mammalian cells after exposure to different
stimuli, such as hypoxia or UV exposure (Figure 2). However,
their existence in plant cells remains uncharacterized (Gaete-
Argel et al., 2021; reviewed by Biamonti and Vourc’h, 2010).

Moreover, the amyloid bodies (A-bodies) are formed in
the nucleoplasm of human cells in response to various stimuli
such as hypoxia, heat stress or acidosis (Figure 2). The protein
content of these A-bodies [also referred as Detention Center in
Audas et al. (2012a)], is heterogeneous, but all of the proteins
share a protein motif known as an amyloid-converting motif
(ACM). In addition, the presence of lncRNAs derived from the
ribosomal intergenic spacer (IGS) was observed in the A-bodies
(Audas et al., 2016). Regarding fungi, the formation of nucleolar
rings is attributed to S. pombe. Upon acute heat stress, nuclear
and nucleolar proteins accumulate in the periphery of the
nucleolus (Gallardo et al., 2020). Another example constitutes
the “intra-nuclear quality-control compartment” located in the
nucleus of S. cerevisiae upon heat stress. This nuclear structure,
located close to the nucleolus, contains misfolded cytosolic and
nuclear proteins (Figure 2; Kaganovich et al., 2008; reviewed by
Gallardo et al., 2021).

In Arabidopsis, abiotic stress modulates the composition of
certain nuclear bodies. For instance, early flowering 3 (ELF3), a
component of the evening complex, forms nuclear speckles in
response to high temperatures. The C-terminal prion domain
of ELF3 is responsible for this behavior (Jung et al., 2020). In
contrast, low and high temperatures promote the disaggregation
of phyB photobodies in Arabidopsis Col-0 and Ler ecotypes.
This disaggregation occurs because of the transition from the
active Pfr form to the inactive Pf form of phyB photobodies
(Legris et al., 2016; Hahm et al., 2020). On the other hand, the
recruitment of the RNA-binding proteins UBA2a and UBA2b
to nuclear speckles in Arabidopsis is enhanced upon exposure
to abscisic acid, a hormone that mediates the response to
some abiotic stresses, such as salinity or drought (Bove et al.,
2008). Similarly, the RNA-binding protein AKIP1 forms a plant-
specific nuclear body called “AKIP1-containing bodies” in fava
bean (Vicia faba) upon exposure to abscisic acid (Figure 2;
Li et al., 2002).

Moving into and out of the nucleus

In order to exert their function, nuclear proteins,
synthesized in the cytosol, need to cross the NE through
the NPC. As mentioned before, the NPCs are embedded in the
nuclear membrane, creating a channel between the cytoplasm
and the nucleoplasm. These cylindrical structures constitute
the largest macromolecular complexes present in eukaryotic
cells. Morphologically, each NPC is composed by a cytoplasmic
and a nucleoplasmic ring, connected by eight spokes. A basket-
like structure has been observed in the nucleoplasmic side
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of the NPC, whereas some fibrillar structures are present in
the cytoplasmic face. The main component of the NPC are
proteins known as nucleoporins, which are partially conserved
in eukaryotes (Nigg, 1997; Stewart, 2007; Hicks, 2013; Petrovská
et al., 2015). The NPC regulates protein movement from the
cytosol into the nucleus and vice versa. Small molecules can
cross the NPC by diffusion. In contrast, larger molecules such
as proteins need to be actively translocated in order to cross the
NPC (Hicks, 2013). Generally, the exclusion size of the nucleus
ranges from 30 to 60 kDa, in which passive transport through
the NPC is possible. However, smaller proteins have been
observed to cross the NPC by active transport (Timney et al.,
2016). Particular amino acid sequences and/or arrangements
have been implicated in the active transport of proteins between
the cell nucleus and the cytoplasm (Figure 3).

Nuclear import

The nuclear import mechanism includes the movement of
proteins from the cytosol into the nucleus. The molecular
players in this mechanism have been characterized in
eukaryotes. In animals, there are different nuclear import
pathways depending on the protein–protein interactions
(Stewart, 2007).

The classical nuclear import pathway includes the cytosolic
importin β. This protein interacts with the target nuclear protein
through an adaptor protein, importin α, which recognizes
a specific motif of the target nuclear protein. The complex
importin α–nuclear protein–importin β migrates into the
nucleoplasm via interaction with proteins from the NPC. In
the nucleus, Ran-GTP promotes the dissociation of importin α,
importin β and the target nuclear protein. Importin α moves
back into the cytoplasm by interaction with the β-karyopherin
CAS and Ran-GTP. At the same time, importin β, along with
Ran-GTP, migrates back to the cytoplasm. The hydrolysis of
Ran-GTP into Ran-GDP by Ran GTPase-activating protein
allows its dissociation from importin β (Smith et al., 1998; Sazer
and Dasso, 2000; Hicks, 2013). Finally, the nuclear transport
factor 2 (NTF2) mediates the re-importing of Ran-GDP into
the nucleus (Kutay and Bischoff, 1997; Ribbeck et al., 1998).
In plants, homologs of the components of the machinery have
been identified. For instance, Arabidopsis possesses orthologs
of importin α, such as At-IMP α and AtKAP α, and impotin
β (Ballas and Citovsky, 1997; Hübner et al., 1999; Tamura
and Hara-Nishimura, 2014). Moreover, orthologs of importin
α and importin β have also been found in rice (Matsuki et al.,
1998). This suggests that the nuclear import pathway is mostly
conserved between animals and plants.

The specific sequence of the target nuclear protein
recognized by importin α is known as the nuclear localization
signal (NLS). Unlike other localization signals, such as
mitochondrial and plastid signals, NLSs are not proteolytically

removed after nuclear import, allowing nuclear proteins to
participate in more than one round of nuclear transport. These
localization signals can be found in the N- and/or C-terminus,
as well as within the protein (Martoglio and Dobberstein,
1998; Lu et al., 2021). Adam et al. described the first NLS in
the simian virus 40 large T-antigen (SV40), comprising seven
hydrophobic residues (126PKKKRKV132). Sequence analysis of
other nuclear proteins revealed the presence of NLSs. These
signals can be classified in different groups according to their
structure and composition. The first class includes the classical
NLSs (cNLSs), which are the most characterized. This class
can also be subdivided into two categories: monopartite and
bipartite cNLSs. Monopartite cNLSs are composed of 4–8 basic
amino acids, at least four of them being positively charged
(lysine or arginine). The consensus sequence for this subgroup
of cNLSs is K-K/R-X-K/R, where X represents any residue
(Dingwall and Laskey, 1991; Lange et al., 2010; Lu et al., 2021).
One of the most notorious and best-characterized members of
the monopartite cNLSs subgroup is SV40. Functional analysis
of this NLS revealed that the third lysine (126PKKKRKV132)
is necessary for the correct nuclear localization of the protein
(Kalderon et al., 1984). The second subgroup within the
cNLSs is the bipartite cNLSs, having two clusters of positively
charged amino acid residues separated by a spacer of 9–
12 residues. The consensus sequence of this subgroup is
R/K-X(9−12)-K-R-X-K, where X represents any amino acid.
The protein nucleoplasmin exemplifies the possession of a
bipartite cNLS (155KRPAATKKAGQAKKKK170, where the two
positively charged clusters are underlined; Smith et al., 1995;
Lange et al., 2010; Lu et al., 2021). Lange et al. demonstrated
the importance of the length of the spacer in the bipartite
cNLSs, it being crucial in the interaction with importin α.
By testing different spacer lengths of a bipartite cNLS, they
concluded that the longer the spacer is, the less nuclear
accumulation is observed.

The second class of NLSs is known as non-classical NLSs
(ncNLSs). This type comprises NLSs whose composition varies
from positively charged residues. The best-known ncNLSs are
the proline-tyrosine (PY) ncNLSs, which are composed of 20–30
residues with a basic or hydrophobic N-terminus and a common
C-terminal motif ([basic/hydrophobic]-Xn-R/H/K-X(2−5)-P-Y,
where X represents any amino acid; Wang et al., 2012; Mallet
and Bachand, 2013). Nevertheless, other ncNLSs cannot be
represented as a consensus sequence, such as the ribosomal
protein L23a (Jäkel and Görlich, 1998). Additionally, Lu et al.
designated a third class of miscellaneous NLSs, including (i)
proteins with a potential NLS, predicted in silico, that do not
lead to nuclear localization; (ii) NLSs recognized upon protein
dimerization; (iii) cryptic NLSs, where a stimulus is necessary
for the translocation into the nucleus; and (iv) proteins with
multiple NLSs, all of them required for nuclear import.

In plants, several NLSs have been characterized both
in silico and experimentally. Examples include the E3
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FIGURE 3

Representation of proteins containing nuclear and/or nucleolar signals involved in their translocation between the cytoplasm, the nucleoplasm
and/or the nucleolus. A classical nuclear localization signal (cNLS) including monopartite and bipartite classical signals (MP and BP cNLS,
respectively); ncNLS, non-classical nuclear localization signals; NES, nuclear export signal; NoLS, nucleolar localization signal; GAR, glycine
arginine rich domain. In mammalian cells certain proteins might also contain an nucleoplasmic localization signal (NpLS), nucleolar exclusion
signals (NoES) and/or amyloid-converting motif (ACM, also referred as nucleolar detention signal or NoDS). In response to heat/acidosis the
ACM interacts with IGS-derived lncRNA, forming the A-bodies (or detention centers).

ubiquitin-protein ligase COP1 in Arabidopsis, a repressor
of the photomorphogenesis. This protein exhibits nuclear
localization owing to the presence of a bipartite cNLS
(294RKKRIHAQFNDLQECYLQKRRQLA317; Stacey and
Von Arnim, 1999). Another example is the Arabidopsis
transcriptional elongation regulator MINIYO, which possesses
two NLSs in its sequence. One of them is a monopartite
cNLS located in the N-terminus (254LKKRKH259), whereas
the other is a bipartite cNLS present in the C-terminus
(1401RKRHREGMMLDLLRYKK1417; Contreras et al., 2019).
Arabidopsis RTL2 contains a bipartite cNLS in the C-terminal
portion (371KKAESSSAYHMIRALRK387; Comella et al., 2008).
In maize, three different NLSs are present in the protein R. Two
of them are monopartite cNLSs (100CDRRAAPARP109 located
in the N-terminus, and 419MSERKRREKL428 found within the
sequence). The third NLS is a Mat α2-type NLS, named after the
unusual NLS of the Mat α2 protein in yeast (Hall et al., 1984),
located in the C-terminus (598 MISESLRKAICKR610; Shieh
et al., 1993; Hicks et al., 1995). Finally, the first 43 amino acids of
the Brassica napus 60S ribosomal protein L13-1 are sufficient to
target this protein to the nucleus. The NLS is likely to be present

between the residues 29 and 43 (29RKTRRRVARQKKAVK43;
Table 2; Sáez-Vásquez et al., 2000).

Nuclear export

In contrast to nuclear import, the mechanisms that govern
the movement of proteins from the nucleoplasm to the
cytoplasm have been much less characterized. There are few
examples of transporters of proteins from the nucleoplasm into
the cytoplasm. One of them is Exportin1 (CRM1), which is
known to specifically interact with nuclear proteins in order
to translocate them into the cytoplasm (Fornerod and Ohno,
1997; Ossareh-Nazari et al., 1997). For this, CRM1 interacts
with a specific sequence of the nuclear protein, as well as with
Ran-GTP. This complex interacts with the NPC, crossing the
NE and reaching the cytosol. The complex dissociates when
Ran-GTP is hydrolyzed into Ran-GDP (Bischoff and Görlich,
1997; Neville et al., 1997). This nuclear transporter has also
been found in Arabidopsis, named AtXPO1. Similarly, AtXPO1
interacts with a specific motif of the nuclear proteins and
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TABLE 2 Nuclear localization signals.

Protein Organism Sequence1 Type References

Nuclear localization signals (NLS)

COP1 Arabidopsis thaliana 294RKKRIHAQFNDLQECYLQKRRQLA317 BP cNLS Stacey and Von Arnim (1999)

MINIYO Arabidopsis thaliana 254LKKRKH259 MP cNLS Contreras et al. (2019)
1401RKRHREGMMLDLLRYKK1417 BP cNLS

RTL2 Arabidopsis thaliana 371KKAESSSAYHMIRALRK387 BP cNLS Comella et al. (2008)

Hsfa1 Arabidopsis thaliana 230KEKKSLFGLDVGRKRR245 BP cNLS Evrard et al. (2013)

Coilin Arabidopsis thaliana 175KRKK178 MP cNLS Makarov et al. (2013)
264KKAKR268 MP cNLS

Protein R Zea mays 100CDRRAAPARP109 MP cNLS Hicks et al. (1995)
419MSERKRREKL428 MP cNLS
598 MISESLRKAICKR610 ncNLS

60S ribosomal protein L13-1 Brassica napus 29RKTRRRVARQKKAVK43 N/S Sáez-Vásquez et al. (2000)

Nucleoplasmin Xenopus laevis 155KRPAATKKAGQAKKKK170 BP cNLS Dingwall et al. (1988)

ERK5 Homo sapiens 505RKPVTAQERQREREEKRRRRQERA
KEREKRRQERE539

BP cNLS Kondoh et al. (2006)

CCTα Homo sapiens 12RKRRK16 MP cNLS Taneva et al. (2012)

SV40 Simian virus 126PKKKRKV132 MP cNLS Adam et al. (1989)

N protein Porcine reproductive
and respiratory
syndrome virus

10KRRK13 7 MP cNLS Rowland and Yoo (2003)

41PGKKNKK4 MP cNLS

cNLS, classical nuclear localization signal; ncNLS, non-classical nuclear localization signal; MP, monopartite; BP, bipartite; N/S, non-specified. 1The two positively charged amino acid
clusters of the BP cNLSs are underlined.

with the protein Ran in order to export the nuclear proteins
(Haasen et al., 1999). It has been suggested that the nuclear
proteins react with phenylalanine and glycine (FG)-repeats of
the nucleoporins from the NPC in order to reach the cytoplasm
(Stutz et al., 1996).

The specific region of the nuclear proteins that is recognized
by CRM1/AtXPO1 is called the nuclear export signal (NES).
The existence of NESs was initially described in the HIV-1
Rev protein (75LPPLERLTLD84), involved in the export of pre-
mRNAs and mRNAs from the nucleus, and the heat-stable
inhibitor (PKI) of cAPK (38LALKLAGLDI47; Fischer et al.,
1995; Wen et al., 1995). These NESs are rather short and
hydrophobic sequences where Leu is highly present (Nigg,
1997). The presence of NESs is mainly characterized in proteins
involved in the export of RNA molecules from the nucleus.
For instance, the translocation of the 5S rRNA to the cytosol
is mediated by TFIIIA in Xenopus oocytes, which contains
a Rev-like NES (357SLVLDKLTI365; Guddat et al., 1990). In
Arabidopsis, a Rev-like NES is located in the C-terminus of
RanBP1a (171DTAGLLEKLTVEETKTEEKT190; Haasen et al.,
1999). Besides a bipartite cNLS, Arabidopsis RTL2 also possesses
an NES in the N-terminus (7PEYNFPAITRCSLSNSLPHR26).
The presence of an NLS and NES allows RTL2 to move between
the cytosol and the nucleus (Table 3; Comella et al., 2008). The
characterization of later NESs allowed grouping the majority of
the NESs into three different consensus sequences: ϕ-X1,2-[∧P]-

ϕ -[∧P]2,3- ϕ -[∧P]- ϕ (class 1), ϕ -[∧P]- ϕ -[∧P]2- ϕ -[∧P]-
ϕ (class 2), and ϕ -X-[∧P]- ϕ -[∧P]3- ϕ -[∧P]2- ϕ (class 3),
where ϕ represents large hydrophobic residues, X1,2 represents
any one or two amino acids, [∧P] represents any amino acid
except proline, and [∧P]2,3 represents any two or three amino
acids except proline (Kosugi et al., 2014).

Bidirectional signals

Another type of localization signal that mediates
nucleocytoplasmic trafficking has been described. In contrast
to the NLSs or NESs, which exert a unilateral translocation
of proteins, the nucleocytoplasmic shuttling signals (NSSs)
allow both import and export of proteins to/from the nucleus
in human cells. Many NSS-containing proteins interact with
mRNA molecules. These motifs are longer and lack basic
residues (Michael, 2000). The first NSS was found in the human
heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1),
which associates with pre-mRNA and mRNA molecules. The
domain responsible for the bidirectional behavior of A1 is called
M9, present in the C-terminus (see Table 3 for sequence; Siomi
and Dreyfuss, 1995). Other examples include the C-terminal
ZNS domain of the DAZ-associated protein 1 (DAZAP1; see
Table 3 for sequence; Lin and Yen, 2006) or the C-terminal
nuclear transport domain (NTD) of the human RNA helicase

Frontiers in Plant Science 11 frontiersin.org

https://doi.org/10.3389/fpls.2022.984163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-984163 August 17, 2022 Time: 17:22 # 12

Muñoz-Díaz and Sáez-Vásquez 10.3389/fpls.2022.984163

TABLE 3 Nuclear export signals and nucleocytoplasmic shuttling signals.

Protein Organism Sequence References

Nuclear export signals (NES)

RanBP1a Arabidopsis thaliana 171DTAGLLEKLTVEETKTEEKT190 Haasen et al. (1999)

RTL2 Arabidopsis thaliana 7PEYNFPAITRCSLSNSLPHR26 Comella et al. (2008)

TFIIIA Xenopus laevis 357SLVLDKLTI365 Guddat et al. (1990)

PKI Homo sapiens 38LALKLAGLDI47 Wen et al. (1995)

N protein Porcine reproductive
and respiratory
syndrome virus

106LPTHHTVRLIRV117 Rowland and Yoo (2003)

Rev protein HIV-1 75LPPLERLTLD84 Fischer et al. (1995)

Nucleocytoplasmic Shuttling Signals (NSS)

hnRNP A1 Homo sapiens 316GNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY357 Siomi and Dreyfuss (1995)

DAZAP1 Homo sapiens 383GPPAGGSGFGRGQNHNVQGFHPYRR407 Lin and Yen (2006)

RNA helicase A Homo sapiens 1151GSTRYGDGPRPPKMARYDNGSGYRRGGSSYSGGGYGGGYSSGG
YGSGGYGGSANSFRAGYGAGVGGGYRGVSRGGFRGNSGGDYRGPS
GGYRGSGGFQRGGGRGAYGTGY1260

Tang et al. (1999)

A (see Table 3 for sequence; Tang et al., 1999). M9-dependent
nuclear import is conferred by transportin. Transportin
binds directly to the M9 domain, binds to nucleoporins and is
sufficient for the movement of M9-containing cargo through the
NPC and into the nucleus. This transport seems to be dependent
on the Ran-GTP concentration (reviewed by Michael, 2000). To
our knowledge, NSSs have not been described in plant proteins.

Moving into and out of the
nucleolus

Nucleolar localization signal

Once in the nucleus, proteins can diffuse in the nucleoplasm
or migrate into the nucleolus and/or other bodies. Unlike
nuclear targeting, the mechanism and localization signals that
regulate the translocation of proteins into the nucleolus remain
highly unexplored (Figure 3). Over the years, several proteins
have been predicted to possess a nucleolar localization signal
(NoLS). These signals are rich in basic amino acids, especially
Lys and Arg, preferentially located in the C- or N-terminus
of proteins. Moreover, the NoLSs are predicted to be present
in alpha helices or random coils located on the surface of the
protein (Scott et al., 2010). For a peptide to achieve nucleolar
localization it must be positively charged, formed exclusively of
six or more arginines, and with an isoelectric point above 12.6
(Martin et al., 2015).

The existence of NoLSs have been predicted in silico
and experimentally confirmed. For instance, both isoforms
of the Arabidopsis ribosomal protein RPL23a (RPL23aA
and RPL23aB) accumulate in the nucleolus owing to an
NLS/NoLS region (Degenhardt and Bonham-Smith, 2008).

An NoLS was also found in the sequence of Arabidopsis
coilin (202KKKKKKK208), as well as two NLSs (175KRKK178

and 264KKAKR268; Makarov et al., 2013). Likewise, the
human coilin also presents one NoLS (160KKNKRNL168),
which was experimentally confirmed to be necessary for
nucleolar localization (Hebert and Matera, 2000). Moreover,
the sequence of the breast cancer autoantigen nucleolar
GTP-binding protein 2 (NGP-1) contains two NoLSs. One
of them is located in the N-terminus (see Table 4 for
sequence), whereas the second one is a C-terminal NoLS
(see Table 4 for sequence; Datta et al., 2015). Interestingly,
the nucleocapsid (N) protein of the porcine reproductive and
respiratory syndrome virus (PRRSV) exhibits both cytosolic and
nucleolar localization. This dual accumulation is achieved by
the presence of two NLSs (10KRRK13 and 41PGKKNKK47), one
NoLS (41PGKKNKKKNPEKPHFPLATEDDVRHHFTPSER72)
and one NES (106LPTHHTVRLIRV117; Table 4; Rowland and
Yoo, 2003).

It is widely thought that the nucleolar localization of
many proteins is the result of the association with nucleolar
components, such as rRNA (Schmidt-Zachmann and Nigg,
1993; Scott et al., 2010). In mammal cells, many ribosomal
components adopt nucleolar localization by interaction with
B23, the major constituent of the granular component of
the nucleolus (Borer et al., 1989). It was proposed that B23,
because of its constant movement between the nucleolus
and the cytosol, is able to shuttle NoLS-containing proteins
into the nucleolus (Borer et al., 1989; Scott et al., 2010).
Nevertheless, this hypothesis has not been confirmed. What
has been observed is that the ADP-ribosylation factor GTPase-
activating protein 1 (ARF GAP 1) accumulates in the nucleolus
because of the interaction with B23 (Korgaonkar et al., 2005;
Sirri et al., 2008). Interestingly, human nucleolin has not been
demonstrated to possess an NoLS, but it does contain a bipartite
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TABLE 4 Nucleolar localization signals and nucleolar exclusion signals.

Protein Organism Sequence References

Nucleolar Localization Signals (NoLS)

Coilin Arabidopsis thaliana 202KKKKKKK208 Makarov et al. (2013)

RPL23a1 Arabidopsis thaliana 33KKDK36 Degenhardt and Bonham-Smith (2008)
36KKIR39

Coilin Homo sapiens 160KKNKRNL168 Hebert and Matera (2000)

NGP-12 Homo sapiens 1MVKPKYKGRSTINPSKASTNPDRVQGAGGQNMRDRATIRRLNM
YRQKERRNSRGKIIKPLQYQSTVASGTVARVEPNIKWFGNTRVIKQ
SSLQKFQEEMD100

Datta et al. (2015)

631DEKIAKYQKFLDKAKAKKFSAVRISKGLSEKIFAKPEEQRKTLEED
VDDRAPSKKGKKRKAQREEEQEHSNKAPRALTSKERRRAVRQQRP
KKVGVRYYETHNVKNRNRNKKKTNDSEGQ KHKRKKFRQKQ701

N protein Porcine reproductive
and respiratory
syndrome virus

41PGKKNKKKNPEKPHFPLATEDDVRHHFTPSER72 Rowland and Yoo (2003)

Nucleolar Export Signals (NoES)

GNL3L3 Homo sapiens 292EVYLDKFIRLLDAPGIVPGPNSEVGTILRNCVHVQKLADPVTPVET
ILQRCNLEEISNYYGVSGFQTTEHFLTAVAHRLGKKKKGGLYSQEQAAK
AVLADWVSGKISFYIPPPATHTLPTHLSAEIVKEMTEVFDIEDTEQAN
EDTMECLATGESDELLGDTDPLEMEIKLLHSPMTKIADAIENKTTVYKI
GDLTGYCTNPNRHQMGWAKRNVDHRPKSNSMVDVCSVDRRSVLQRI
METDP531

Meng et al. (2007)

NGP-13 Homo sapiens 349QYITLMRRIFLIDCPGVVYPSEDSETDIVLKGVVQVEKIKSPEDHIG
AVLERAKPEYISKTYKIDSWENAEDFLEKLAFRTGKLLKGGEPDLQTV
GKMVLNDWQRGRIPFFVKPPNAEPLVAPQLLPSSSLEVVPEAAQNNP
GEEVTETAGEGSESIIKEETEENSHCDANTEMQQILTRVRQNFGKINV
VPQFSGDDLVPVEVSDLEEELESFSDEEEEEQEQQRDDAEESSSEPEEE
NVGNDTKAVIKAL DEKIAKYQKFLDKAKAKKFS620

Meng et al. (2007)

TdIF2/ERBP Homo sapiens 441VLLVL445 Fukada et al. (2019)

1These sequences are described as NLS/NoLS.
2The N- and C-terminal regions are responsible for the nucleolar accumulation; the sequence of the NoLS is not detailed.
3These sequences are named nucleoplasmic localization signals (NpLSs).

cNLS (256KRKKEMANKSAPEAKKKK273). The structure of
the nucleolin was analyzed to determine which domain is
responsible for its nucleolar accumulation (Créancier et al.,
1993; Schmidt-Zachmann and Nigg, 1993). It was proposed
that the GAR domain located in its C-terminus is necessary
for its localization in the nucleolus (Pellar and DiMario,
2003). The localization of a GAR-deleted nucleolin is mainly
nuclear, decreasing its nucleolar accumulation. Nevertheless,
there are other domains that are also necessary for the
translocation of nucleolin into the nucleolus, such as the RNA
recognition motif (RRM). Thus, it was proposed that it interacts
with nucleolar components such as rRNA to accumulate in
the nucleolus (Doron-Mandel et al., 2021; Okuwaki et al.,
2021). Similarly, the N-terminal GAR domain present in the
human fibrillarin was demonstrated to drive both nuclear and
nucleolar accumulation (Snaar et al., 2000; Shubina et al., 2020).
Whereas fibrillarin is located in the nucleolus, GAR-deleted
fibrillarin is distributed in the nucleolus, nucleoplasm and
cytoplasm. Moreover, the methylation of the arginine residues
of the GAR domain positively regulates nuclear localization.
However, this methylation decreases the nucleolar accumulation

of fibrillarin (Shubina et al., 2020). As previously stated,
two nucleolin (AtNUC-L1/NUC1 and AtNUC-L2/NUC2) and
fibrillarin (AtFIB1 and AtFIB2) protein genes were described
in Arabidopsis. Both nucleolin and fibrillarin proteins contain
GAR domains in the C-terminus or N-terminus sequences,
respectively. In contrast, the N-terminal region of AtNUC-
L1/NUC1 contains two potential bipartite NLSs, whereas there
is only one NLS in AtNUC-L2/NUC2 (Barneche et al., 2000;
Pontvianne et al., 2007).

Nucleoplasmic localization signal

Two different types of signals that prevent nucleolar
accumulation have been characterized in humans (Meng et al.,
2007; Fukada et al., 2019). On the one hand, Meng et al.
coined the term nucleoplasmic localization signal (NpLS)
to describe the regions of the guanine nucleotide-binding
protein-like 3-like protein (GNL3L) and the nucleolar GTP-
binding protein 2 (NGP-1) that prevented localization in
the nucleolus and promoted nucleoplasmic accumulation.
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Fukada et al. also identified a region in the terminal
sequence of the deoxynucleotidyltransferase-interacting factor
2/estrogen receptor α-binding protein (TdIF2/ERBP) that
led to the similar nucleoplasmic localization, called the
nucleolar exclusion signal (NoES). Whereas the described
NpLSs represent rather large regions (>200 residues), the NoES
is only composed of five hydrophobic residues. Each of the
NpLSs contains five hydrophobic residues, which indicates
that the NpLS and NoES are structurally similar (Table 4;
Fukada et al., 2019).

In terms of composition, NoLSs and NLSs have a similar
composition, since both contain basic residues. In some cases,
nucleolar signals were initially predicted to be nuclear signals
because of their similarity. Thus, the experimental validation
of predicted nucleolar signals, as well as nuclear signals,
is fundamental to fully characterizing the nuclear and/or
nucleolar localization of a protein. A classification of NLSs
and NoLSs consists of (i) NLS-only signals, responsible for
nuclear localization, (ii) NoLS-only signals, which determine
localization exclusively in the nucleolus, and (iii) joint NLS–
NoLS regions, which lead to accumulation of proteins in the
nucleus and the nucleolus (Scott et al., 2010). Likewise, leucine is
a common residue of NESs and NoESs. Nevertheless, the NoES
characterized by Fukada et al. (441VLLVL445) cannot be included
in any of the consensus NESs described above.

Nuclear and nucleolar
accumulation under heat stress:
Amyloid-converting
motif/nucleolar detention signal

Part of the heat stress response includes inhibition or
induction of specific protein activities. For that, transcription
factors (TFs) are responsible of transforming the perception
of the stressor into the expression of key genes. More
specifically, heat stress transcription factors (HSFs) play a
central role in gene transcription under different abiotic
stresses, including heat stress (Guo et al., 2016). Consequently,
the nuclear proteome undergoes substantial changes upon
high temperatures, promoting the accumulation of HSFs. For
instance, Arabidopsis bZIP18 and bZIP52, which are present
in the cytoplasm under normal conditions, accumulate in
the nucleus under heat stress. This nuclear localization is
provoked by the dephosphorylation of Ser residues (Wiese
et al., 2021). In contrast, phosphorylation of Arabidopsis
HsfA2 promotes nuclear accumulation under heat stress. The
phosphorylated residue consists of threonine (Thr249) located
close to a bipartite cNLS (230KEKKSLFGLDVGRKRRLTST249,
where the NLS is in bold, and Thr249 is underlined; Evrard
et al., 2013). Another example includes the Arabidopsis
heat shock factor-binding protein (AtHSBP), which shuttles

from the cytosol to the nucleus in response to heat stress
(Hsu et al., 2010). Nevertheless, HSFs are not the only
proteins that accumulate into the nucleus upon heat stress.
Arabidopsis heat–intolerance 4 (HIT4), involved in the
release from transcriptional gene silencing, translocates
from the chromocentres to the nucleolus under heat stress
(Wang et al., 2015).

This nuclear translocation upon heat stress has also been
described in human cells. As mentioned previously (see the
section: Nuclear granules and bodies under stress), some
proteins are retained in the nucleus, forming A-bodies in
response to heat stress. This phenomenon was initially called
nucleolar sequestration of proteins, including the heat shock
protein 70 (Hsp70) or the E3 ubiquitin-protein ligase MDM2.
The ACM, which is the peptide responsible for this behavior,
was originally defined as a nucleolar detention signal (NoDS).
These signals are characterized by the presence of an arginine
motif (R-R-L/I) and two or more hydrophobic triplets (L-
ϕ-L/V, where ϕ represents a hydrophobic residue). Likewise,
there is a physical interaction between the NoDS and IGS-
derived lncRNAs, transcribed in response to high temperatures
(Mekhail et al., 2007; Audas et al., 2012a,b). These NoDS/ACM
signals have not been functionally characterized in plants.

In silico prediction tools for
nuclear and nucleolar signals

The existence of consensus sequences of localization
signals, such as NLSs or NESs, allows their prediction using
computational methods. There is a wide array of online
platforms and in silico methods to predict the existence of NLSs
from an amino acid sequence. For instance, “NLStradamus”
is based on a Hidden Markov Model and used to find cNLSs
from yeast sequences (Nguyen Ba et al., 2009). Cokol et al.
(2000) created “predictNLS” by performing in silico mutagenesis
of a library of 91 experimentally tested NLSs. Similarly,
“NESmapper” allows the detection of NESs with high accuracy
and a low false positive rate. To do that, every residue of the NES
is considered, contributing independently and additively to the
nuclear exportation (Kosugi et al., 2014). In the case of “NLSdb,”
the server allows the prediction of NLSs and NESs from nine
different species, including Arabidopsis thaliana, Homo sapiens
and Oriza sativa (Bernhofer et al., 2018).

On the other hand, the prediction of nucleolar signals
is challenging. First of all, the only well-stablished nucleolar
signal is the NoLS, since few nuclear export signals have been
described (see the above NoESs and NpLSs). Moreover, NoLSs
are considerably similar to NLSs, both containing arginine and
lysine residues. The web server “NoD” appears to be the best tool
to predict an NoLS. It predicts the presence of an NoLS from
the protein sequence, using the human-trained artificial neural
network. Even though “NoD” performs best using mammal and
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mammalian-infecting viral proteins, it can also be used with
plant and plant virus proteins (Scott et al., 2010, 2011).

Post-translational modifications
and nuclear localization

Post-translational modifications consist of the addition of
functional groups, or even cleavage, of certain domains. These
modifications change the properties of proteins, promoting
functional diversity. The best-known PTMs conform the
addition of chemical groups, which can be reversible
or irreversible, including phosphorylation, methylation,
acetylation, or ubiquitination. These modifications have
an impact on many aspects of the protein, i.e., activity,
half-life, interaction with other molecules, or subcellular
localization (Ramazi and Zahiri, 2021). More specifically,
certain PTMs are able to modulate the accumulation of certain
proteins in the nucleus.

Phosphorylation

Phosphorylation is the best-characterized PTM. The
addition of a phosphate negatively or positively influences
the function of a protein. To couple and uncouple phosphate
groups, kinases and phosphatases are necessary, respectively.
Phosphorylation can also enhance or inhibit nuclear transport
through different mechanisms (Nardozzi et al., 2010). The
first case portrays the accumulation in the nucleus after
protein phosphorylation. As exemplified by Nardozzi
et al., phosphorylation can occur in the NLS or in the
surrounding sequence. Phosphorylation can also induce
conformational changes in the NLS-containing protein,
exposing the NLS and enhancing nuclear accumulation.
For instance, phosphorylation upstream the cNLS of SV40
(110PSSDDEAAADSQHAAPPKKKRKVG133, where the NLS is
marked in bold, and the phosphorylation sites are underlined)
enhances nuclear import (Xiao et al., 1997). On the other hand,
phosphorylation of proteins lacking NLSs can also increase
nuclear accumulation. Upon phosphorylation of the TEY
domain of ERK1/2 (232LDQLNHILGILGSPSQEDL250, the
nuclear transport signal sequence, where the phosphorylated
residue is underlined) or the RS domain of ASF/SF2, these
proteins shuttle from the cytosol into the nucleus (reviewed
by Nardozzi et al., 2010). What is more, the phosphorylation
of the TEY domain of ERK5 promotes nuclear accumulation.
This protein contains a bipartite cNLS and non-classical NES,
in which phosphorylation benefits the nuclear import over
cytoplasmic localization (Table 2; Kondoh et al., 2006; Nardozzi
et al., 2010).

Several examples in which phosphorylation enhances
nuclear import in plants can be found in the literature. For

instance, the Arabidopsis ssDNA binding protein WHIRLY
(WHY1) is present in the nucleus and in the chloroplast under
normal conditions. When WHY1 is phosphorylated by the
calcineurin B-like-interacting protein kinase 14 (CIPK14), it
accumulates predominantly in the nucleus (Ren et al., 2017).
Another example is the movement of 14-3-3 proteins from
the cytosol to the nucleus upon phosphorylation by the cold-
activated plasma membrane protein cold-responsive protein
kinase 1 (CRPK1; Liu et al., 2017). The second scenario is
the inhibition of the nuclear import upon phosphorylation.
Nardozzi et al., presented different cases and examples. On
the one hand, phosphorylation of nucleoporins of the NPC
can repress nuclear import (Porter and Palmenberg, 2009).
On the other hand, the phosphorylation of the NLS provokes
cytoplasmic accumulation. As mentioned above, Arabidopsis
bZIP18 and bZIP52, which are present in the cytoplasm
under normal conditions, accumulate in the nucleus under
heat stress. This nuclear localization is provoked by the
dephosphorylation of Ser residues (Wiese et al., 2021). In
contrast, phosphorylation of Arabidopsis HsfA2 promotes
nuclear accumulation under heat stress. The phosphorylated
residue consists of threonine (Thr249) located close to a
bipartite cNLS (230KEKKSLFGLDVGRKRRLTST249, where the
NLS is in bold, and Thr249 is underlined; Evrard et al., 2013).

In lymphocyte T cells, the nuclear factor of activated
T cells (NFAT) has an NLS and NES. Low Ca2+ levels
cause phosphorylation of the SRR2 region, which overlaps
with the NLS, promoting cytoplasmic localization of the
NFAT. On the other hand, nuclear accumulation of the
NFAT has been observed with high levels of Ca2+ owing
to dephosphorylation (Kehlenbach et al., 1998; Belfield
et al., 2006). In Arabidopsis, the phytochrome-interacting
factor 7 (PIF7) accumulates in the cytosol under white-light
conditions because of its phosphorylation. In contrast, shade
exposure activates phosphatases, de-phosphorylating PIF7 and
promoting its accumulation in the nuclear photobodies (Huang
et al., 2018). Similarly, the activity of the transcription factor
Brassinazole-resistant 1 (BZR1) is linked to its phosphorylation
status. Brassinosteroid-insensitive-2- (BIN2-) mediated
phosphorylation of BZR1 promotes nuclear export of BZR1 and
cytosolic accumulation. Either de-phosphorylation or mutation
of the putative phosphorylation sites in BZR1 results in nuclear
accumulation (Ryu et al., 2007).

Acetylation and methylation

The addition of an acetyl group is catalyzed by
acetyltransferases using acetyl CoA as a cofactor. In contrast,
the removal of the acetyl group is catalyzed by deacetylases.
Protein acetylation becomes necessary in certain situations,
such as protein–protein interaction, chromatin stability or
nuclear transport (Yang and Seto, 2008; Choudhary et al., 2009;
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Xia et al., 2020). Some examples in the literature exemplify
the role of acetylation in nuclear protein accumulation. For
instance, the human tyrosyl-tRNA synthetase (TyrRS) becomes
highly acetylated upon oxidative stress, promoting its nuclear
accumulation (Cao et al., 2017). Similarly, the acetylation
of the Lys10 of the human translational corepressor CtBP2
by the nuclear acetylase p300 is essential for its nuclear
localization (Zhao et al., 2006). In contrast, the acetylation
of the NLS of some proteins prevents nuclear accumulation.
This is the case of the human tyrosine-protein kinase c-Abl,
in which the acetylation of the Lys730 within its second
NLS (728SSKRFLR734, in which the Lys730 is underlined)
promotes cytosolic localization rather than nuclear import
(di Bari et al., 2006).

From another perspective, the acetylation of a component
of the nuclear import machinery has an impact on the actual
nuclear import rate in Arabidopsis. For instance, acetylation
of the Lys18 of Nup50, which promotes the dissociation
of importin α from the nuclear protein, decelerates this
dissociation, repressing the nuclear import (Matsuura and
Stewart, 2005; Füßl et al., 2018).

Protein methylation is a reversible PTM that occurs in
the nucleus. Even though many residues can be methylated,
this PTM is most common in arginine and lysine (reviewed
by Ramazi and Zahiri, 2021). The effects of methylation
in nuclear accumulation are diverse and specific for each
protein. On the one hand, the human Hsp70 localizes in the
nucleus when the Lys561 is dimethylated, accumulating in the
cytosol when unmethylated (Cho et al., 2012). On the other
hand, the methylation of the Lys494 of Yes-associated protein
(Yap) by a SET-domain-containing lysine methyltransferase
prevents its nuclear import, remaining in the cytosol in mouse
(Oudhoff et al., 2013).

SUMOylation and Ubiquitination

The attachment of a small ubiquitin-like modifier (SUMO)
to proteins involves three different enzymes: (i) the activating
enzyme or E1, (ii) the conjugating enzyme or E2, and (iii) the
ligase or E3. This PTM is crucial in several processes, such
as the regulation of the cell cycle, subcellular localization or
transcription (reviewed by Hannoun et al., 2010). In the case
of the human polo-like kinase 1 (PLK1), the SUMOylation of
the Lys492, which is close to one of the NLSs, is essential for
the nuclear accumulation of PLK1, as well as increasing its
stability (Wen et al., 2017). Similarly, the SUMOylation of the
Lys248 of the human X-linked zinc finger transcription factor
ZIC3 is important for its nuclear retention (Chen et al., 2013).
As with acetylation, the SUMOylation of the Lys909 of the
yeast importin Kap114 is essential for its role in the nuclear
import mechanism (Rothenbusch et al., 2012). In Arabidopsis,
heat stress increases the amount of SUMOylated proteins in the

nucleus, suggesting that SUMOylation induces nuclear import
(Saracco et al., 2007).

Ubiquitination is a reversible PTM in which the C-terminus
of an active ubiquitin is attached to a protein. Even though
ubiquitination can occur in all 20 amino acids, it is more
frequent in lysine residues. Similar to SUMOylation, the
ubiquitin junction requires three enzymes: (i) the activating
enzyme or E1, (ii) the conjugating enzyme or E2, and (iii)
the ligase or E3. This reversible modification is normally
associated with protein degradation via ubiquitin-proteasome.
However, some effects in nuclear translocation have been
described (Lecker et al., 2006; Bhogaraju and Dikic, 2016;
Ramazi and Zahiri, 2021). The ubiquitination of the
Lys57 of the human cytidylyltransferase (CCTα) promotes
cytosolic accumulation. This ubiquitination event occurs near
the N-terminal NLS of CCTα, disrupting its interaction
with importin α (Trotman et al., 2007). Similarly, the
monoubiquitination of two lysine residues (Lys13 and
Lys289) in PTEN is necessary for its correct nuclear import,
where it exerts its role as tumor suppressor (Trotman
et al., 2007). Moreover, ubiquitination is also attributed to
nuclear export. Upon proteasome inhibition, ubiquitinated
proteins accumulate in the cytosol. This accumulation
results from the transport of the ubiquitinated proteins
from the nucleus to the cytosol (Hirayama et al., 2018). On
the other hand, how ubiquitination affects nuclear and/or
nucleolar import and/or export in plants remains mainly
uncharacterized.

Perspectives

The purpose of this review is to gather global information
concerning nuclear bodies in plants and, in particular, to
survey their composition (proteins and RNA) and the peptide
or amino acid sequence/structure signals involved in their
localization and assembly. We did not intend to present an
exhaustive catalog of protein and molecular bases involved
in the assembly of nuclear bodies in plants, but rather to
establish the current state of the art of these bodies in response
to environmental conditions in plants and, more specifically,
in response to abiotic stresses. Comparison of the behaviors
of conserved nucleolar bodies revealed certain functional and
structural similarities in yeast, animal and plant cells. However,
under specific environmental conditions, particular nuclear
bodies are formed and/or reorganized distinctly. For instance,
this pertains to the nucleolus under heat stress conditions.
Thus, although under optimal growth conditions nuclear bodies
might have similar functions, key differences might appear
upon specific developmental and environmental conditions.
This is particularly true for plants, which are sessile organisms
subjected to major developmental programs (including seed
germination and flowering) and constrained to adapt to or
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resist stressful conditions (biotic and abiotic) to survive. The
functional, structural and molecular clues of these bodies remain
elusive and deserve further study to better understand the
underlying molecular mechanism of nuclear bodies in plants.
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