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Polygonum hydropiper, is a plant of the Persicaria genus, which is commonly

used to treat various diseases, including gastrointestinal disorders, neurological

disorders, inflammation, and diarrhea. However, because of di�erent local

standards of P. hydropiper, people often confuse it with Polygonum

lapathifolium L. and other closely related plants. This poses a serious threat

to the safety and e�cacy of the clinical use of P. hydropiper. This study aims to

determine the six active ingredients of P. hydropiper and P. lapathifolium. Then

the endophytic fungi and rhizosphere soil of the two species were sequenced

by Illumina Miseq PE300. The results show significant di�erences between the

community composition of the leaves, stems, and roots of the P. hydropiper

and the P. lapathifolium in the same soil environment. Of the six secondary

metabolites detected, five had significant di�erences between P. hydropiper

and P. lapathifolium. Then, we evaluated the composition of the significantly

di�erent communities between P. hydropiper and P. lapathifolium. In the P.

hydropiper, the relative abundance of di�erential communities in the leaves

was highest, of which Cercospora dominated the di�erential communities

in the leaves and stem; in the P. lapathifolium, the relative abundance of

di�erential community in the stem was highest, and Cladosporium dominated

the di�erential communities in the three compartments. By constructing the

interaction network of P. hydropiper and P. lapathifolium and analyzing the

network nodes, we found that the core community in P. hydropiper accounted

for 87.59% of the total community, dominated by Cercospora; the core

community of P. lapathifolium accounted for 19.81% of the total community,

dominated by Sarocladium. Of these core communities, 23 were significantly

associated with active ingredient content. Therefore, we believe that the

community from Cercospora significantly interferes with recruiting fungal

communities in P. hydropiper and a�ects the accumulation of secondary

metabolites in the host plant. These results provide an essential foundation for

the large-scale production of P. hydropiper. They indicate that by colonizing
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specific fungal communities, secondary metabolic characteristics of host

plants can be helped to be shaped, which is an essential means for developing

new medicinal plants.

KEYWORDS

Polygonum hydropiper L., endophytic fungi, community assembly process,

flavonoids, core community

Introduction

Polygonum hydropiper is a plant of the Persicaria

genus in the family Polygonaceae. The whole plant of P.

hydropiper is commonly used to treat various diseases,

including gastrointestinal disorders, neurological disorders,

inflammation, and diarrhea (Xiang and Ming, 2020). Due to the

low requirements for growth conditions, it has abundant wild

plant resources what is more, it is widely distributed in China

in Sichuan, Guangdong, Guangxi, and other places (Hong and

Hanshen, 2013). Many studies have shown that P. hydropiper

is rich in various chemical components, including flavonoids,

terpenes, and organic acids, with antimicrobial, antioxidant,

antiviral, insecticidal, and other biological activities (Rahman

et al., 2002; Ayaz et al., 2014; Sharif et al., 2014; Shahed-Al-

Mahmud and Lina, 2017). Due to different local standards, the

large-scale commercial cultivation of P. hydropiper has not yet

been achieved. People are often confused by plants, such as

Polygonum lapathifolium and P. orientale (Hong et al., 2019).

This poses a serious threat to the safety and efficacy of the

clinical use of P. hydropiper. Therefore, clarifying the differences

between P. hydropiper and other obfuscated species is crucial to

developing and improving the production of P. hydropiper.

Our preliminary research found that as one of the drugs

for the treatment of enteritis, the role of flavonoids in it

cannot be ignored (Zhang et al., 2021). Quercetin, kaempferol,

isorhamnetin, hyperoside, catechins, and chlorogenic acid are

the main active ingredients of P. hydropiper in treating enteritis

(Yue, 2005; Wei et al., 2021). It is worth noting that Tian

et al. (2014) found the potential of flavonoids to act as

signaling molecules between endophytic fungi and plants.

Meanwhile, Tang et al. (2020) found that the endophyte

isolated from Conyza blinii H. Lév could produce flavonoids

with high yield and excellent biological activity. Endophytic

fungi are present in all plants and, together with host plants,

determine the production of secondary metabolites (Waqas

et al., 2012; Adeleke and Babalola, 2021). With the development

of next-generation sequencing, there is increasing evidence that

the compositional pattern of endophytic fungi is related to

the production of specific secondary metabolites (Lunardelli

Negreiros de Carvalho et al., 2016; Dang et al., 2021; Ribeiro

et al., 2021). In some crops and medicinal plants, it is also

recognized that the specific community composition pattern can

reflect the quality and yield of the host plant (Song et al., 2010;

Vergara et al., 2018; Cao et al., 2021; Martins et al., 2021).

There are abundant researches of chemical composition

and pharmacological effect research of P. hydropiper (Hong

and Hanshen, 2013). However, its endophytic fungi research

is still blank. Thus, this experiment uses Illumina Miseq

PE300 sequencing technology to sequence the endophytic

fungi of P. hydropiper and P. lapathifolium. At the same

time, we measured the content of 6 flavonoids of two

species to reveal the relationship between the endophytic

fungal community composition and the accumulation of active

ingredients. Furthermore, determining the composition of the

core microbiota related to active ingredients to improve the

production of P. hydropiper provides key fundamental data.

Methods

Sampling

In July 2021, the whole plant and rhizosphere soil of

P. hydropiper (ZP) and P. lapathifolium (WP) were sampled

from Huoba Village in Jianyang City, China. At each sample

point, four repeats of the whole plant and three repeats of

the rhizosphere soil were collected. The rhizosphere soil was

collected by the jitter root method. The plant residue and gravel

were selected and discarded, and the samples were collected by

the quartering method and loaded into sterile centrifuge tubes.

To ensure the representativeness of the samples and avoid edge

effects, we set the sample point away from the field ridge at least

25m and each sample point interval at least 2m. Samples are

frozen with liquid nitrogen after on-site sampling and quickly

transported back to the laboratory on dry ice for preservation at

−80◦C (Table 1).

Determination of active ingredients
content

Chemicals and reagents

Six commercial standards of HPLC grade, including

catechins, chlorogenic acid, hyperoside, quercetin, kaempferol,
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TABLE 1 Samples information.

Samples Type Date Site

ZY-1 Leaf 2020/7/6 Huoba Village in Jianyang City, China

ZY-2 Leaf 2020/7/6 Huoba Village in Jianyang City, China

ZY-3 Leaf 2020/7/6 Huoba Village in Jianyang City, China

ZY-4 Leaf 2020/7/6 Huoba Village in Jianyang City, China

ZJ-1 Stem 2020/7/6 Huoba Village in Jianyang City, China

ZJ-2 Stem 2020/7/6 Huoba Village in Jianyang City, China

ZJ-3 Stem 2020/7/6 Huoba Village in Jianyang City, China

ZJ-4 Stem 2020/7/6 Huoba Village in Jianyang City, China

ZG-1 Root 2020/7/6 Huoba Village in Jianyang City, China

ZG-2 Root 2020/7/6 Huoba Village in Jianyang City, China

ZG-3 Root 2020/7/6 Huoba Village in Jianyang City, China

ZG-4 Root 2020/7/6 Huoba Village in Jianyang City, China

WY-1 Leaf 2020/7/6 Huoba Village in Jianyang City, China

WY-2 Leaf 2020/7/6 Huoba Village in Jianyang City, China

WY-3 Leaf 2020/7/6 Huoba Village in Jianyang City, China

WY-4 Leaf 2020/7/6 Huoba Village in Jianyang City, China

WJ-1 Stem 2020/7/6 Huoba Village in Jianyang City, China

WJ-2 Stem 2020/7/6 Huoba Village in Jianyang City, China

WJ-3 Stem 2020/7/6 Huoba Village in Jianyang City, China

WJ-4 Stem 2020/7/6 Huoba Village in Jianyang City, China

WG-1 Root 2020/7/6 Huoba Village in Jianyang City, China

WG-2 Root 2020/7/6 Huoba Village in Jianyang City, China

WG-3 Root 2020/7/6 Huoba Village in Jianyang City, China

WG-4 Root 2020/7/6 Huoba Village in Jianyang City, China

ZT-1 Rhizosphere soil 2020/7/6 Huoba Village in Jianyang City, China

ZT-2 Rhizosphere soil 2020/7/6 Huoba Village in Jianyang City, China

ZT-3 Rhizosphere soil 2020/7/6 Huoba Village in Jianyang City, China

WT-1 Rhizosphere soil 2020/7/6 Huoba Village in Jianyang City, China

WT-2 Rhizosphere soil 2020/7/6 Huoba Village in Jianyang City, China

WT-3 Rhizosphere soil 2020/7/6 Huoba Village in Jianyang City, China

and isorhamnetin, were purchased from Chengdu Pufei De

Biotech Co., Ltd. (China). Other HPLC grade reagents used were

acetonitrile and methanol from Thermo Fisher Scientific Co.,

Ltd. (USA). The Watsons distilled water was applied to prepare

for samples and the mobile phase. All other reagents were just

met for an analytical grade.

Sample preparation

We precisely weighed 0.1 g of PL sample, added it to 15mL

of 60% ethanol in an Erlenmeyer flask, and dissolved it by

sonication at 50◦C for 30min. Then filtering the sample, and

evaporated the filtrate. The methanol was added to the residue

until the volume to 5mL, and the solution was filtered with a

microporous filter membrane of 0.22 µm.

UPLC-QQQ-MS/MS analysis

Ultra performance liquid chromatograph LC-20A and triple

quadrupole mass spectrometer LCMS-8045 were purchased

from Shimadzu Co., Ltd. (Japan). A Shim-pack Velox C18

column (2.1 × 1,000mm, 2.7µm) was employed at a column

temperature of 30◦C. The mobile phase consisted of 0.3%

carboxylic acid in water (A) and methanol (B), and the flow rate

was 0.2 mL/min. The gradient elution parameters were set as

follows: 0–6min, 15% B; 6–15min, 15–45% B; 15–20min, 45%–

47% B; 20–22min, 47%−50% B; 22–25min, 50%−15% B. The

injection volume was 2 µL.

Ionization method: Electrospray ion source (ESI); Multi-

reaction monitoring mode (MRM); Curtain Gas (CUR)

flow rate: 40 L·min−1; Atomized Gas (GS1) flow rate: 55

L·min−1; Auxiliary gas (GS2) flow rate: 55 L·min−1; ionization

temperature (TEM): 550◦C; Spray voltage (IS): 4,500V in

positive ion mode, −4,500V in negative ion mode. The

optimized MS/MS parameters of ZP are shown in Table 1.

Method validation

The six reference standards were weighed accurately

and dissolved with methanol comparable to sample extracts.

Calibration curves were constructed by measuring the signal

intensity (peak area) of MRM transitions for at least six

appropriate concentrations of each compound. Intra-day and

inter-day precisions were evaluated by calculating the relative

standard deviations (RSDs) of retention time and signal intensity

during a single day and on three successive days, respectively.

Repeatability was evaluated by calculating the RSDs of retention

time and signal intensity of six tested solutions made from

the same sample on a single day. Stability was evaluated by

calculating the RSDs of retention time and signal intensity of the

same tested solution during a single day at 0, 2, 4, 8, 12, and 24 h.

Recovery experiments were done by spiking authentic standards

into samples directly.

DNA extraction and library construction

Plants and soil samples were finely ground to powder in

liquid nitrogen using a tissue grinder separately, and 0.5 g was

taken for DNA extraction using the FastDNA R©SPIN Kit (MP

Biomedicals, US). Three repeats per sample were required.

The DNA bands, concentration, and purity of the extract

were detected using a 1% agarose gel electrophoresis and an

accounting analyzer, and samples with a concentration of ≥20

ng/µL were selected and sent to Shanghai Majorbio Bio-pharm

Technology Co., Ltd for Polymerase Chain Reaction (PCR)

amplification, DNA sequencing, and library construction.

Fungal ITSregion was amplified using the forward primer ITS1F

(CTTGGTCATTTAGAGGAAGTAA) and reverse primer

ITS2R (GCTGCGTCTTCATCGATGCGC). The PCR reaction
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mixture, including 2 µL 10 × buffer, 2 µL 2.5mM dNTPs,

0.8 µL each primer (5µM), 0.2 µL rTaq polymerase, 0.2 µL

BSA, 10 ng of template DNA, and ddH2O to a final volume of

20 µL. PCR amplification cycling conditions were as follows:

initial denaturation at 95◦C for 3min, followed by 35 cycles

of denaturing at 95◦C for 30 s, annealing at 55◦C for 30 s

and extension at 72◦C for 45 s, and single extension at 72◦C

for 10min, and end at 4◦C. All samples were amplified in

triplicate. The PCR product was extracted from a 2% agarose

gel and purified using the AxyPrep DNA Gel Extraction Kit

(Axygen Biosciences, Union City, CA, USA) according to the

manufacturer’s instructions and quantified using QuantusTM

Fluorometer (Promega, USA). Purified amplicons were pooled

in equimolar amounts and paired-end sequenced on an Illumina

MiSeq PE300 platform (Illumina, San Diego, USA) according

to the standard protocols by Majorbio Bio-Pharm Technology

Co. Ltd. (Shanghai, China). The data presented in the study are

deposited in the NCBI Sequence Read Archive (SRA) database

repository, accession number SRR20897189-SRR20897218.

Data processing

Clean reads were obtained by filtering the raw sequences

using a microbial ecological quantitative analysis pipeline

(QIIME, version 1.9.1, USAU). Low-quality sequences (such

as uncertain nucleotide sequences, three nucleotides with a Q-

value of<20, and unmatched barcode sequences) were removed.

The QIIME v1.9.0 was used for quality control to obtain

valid data, and the Uchime algorithm and gold database were

used to remove delusion. These sequences were grouped into

operational taxonomic units (OTUs) based on 97% sequence

identity using UPARSE (V7.0.1090). Each row was annotated

by comparing the Ribosomal Database Project (RDP) classifier

(V2.11) against the unite8.0 database using a comparison

threshold of 70%. Resampling was carried out with the smallest

amount of data in the sample as the standard to make the

uniform treatment for each sample. Mothur (version 1.30.2) 1

was used for diversity analysis. R 3.6.0 was used to perform

various data conversions. Fungi Functional Guild (FUNGuild)

was used for function prediction.

Statistical analysis

All statistical analyses were performed in R (v4.0.3) (Team,

2020). Hellinger transformation was first used to convert

microbiota data. The Alpha diversity and Principal Component

Analysis (PCA) analysis were generated by the vegan package

in R (Oksanen et al., 2013) and plotted by ggplot2 (Wickham,

2011). The ternary diagram was drawn using the ggtern in R

(Hamilton and Ferry, 2018). The significant difference between

the functional composition of ZP and WP were detected by the

Wilcoxon test. The significant different taxa between ZP andWP

were detected by theMetagenomeSeq package (Wickham, 2011).

Then, we performed the Pearson correlation analysis between

the core community and the ingredients. Draw the heatmap of

the correlation analysis using the Pheatmap package (Kolde and

Kolde, 2015), and remove the community not significantly.

Interaction network analysis

We first use the iGraph package (Csardi and Nepusz,

2006) to analyze the network structure of the endophytic

fungi community of P. hydropiper and P. lapathifolium. Then

we use the weighted gene co-expression network analysis

(WGCNA) package (Langfelder and Horvath, 2008) to calculate

the correlation and P-values. And use the false discovery rates

(FDR) to correct the P-values. The interaction network was

generated by retaining the edges of R≥±0.4 and P≤ 0.05. Then

we import the interaction network into Cytoscape (Shannon

et al., 2003) to analyze the module. We choose the fast greedy

algorithm to calculate the module, and use the GuImerà Amaral

NeTwork (GIANT) package (Cumbo et al., 2014) to analyze the

module’s connectivity and the connectivity between modules.

Finally, we use the ggplot2 package to plot the results.

Results

Determination of active ingredient
content

Method validation

A preliminary optimization of the UPLC method (flow rate,

gradient, injection volume, etc.) successfully achieved a well-

separated peak for every standard compound, as shown in

Figure 1. Moreover, the performance validation of the method

was evaluated, including linearity, precision, reproducibility,

stability, and recovery (Table 2). The linearity of the method was

measured by analyzing standards over a linear range suitable for

quantifying the corresponding analytes. Good linearity between

concentration and signal intensity was obtained, and correlation

coefficients of all compounds were calculated to be more than

0.999. Additionally, good reproducibility, stability, and precision

were revealed in the results.

The above results suggest that the established method is

sensitive, rapid, and reliable in identifying and quantifying

phenolic compounds. The MRM mode of the UPLC-QQQ-

MS/MS system is an effective and efficient tool for natural

product analysis in complex matrices.

Sample content determination

The content determination results of catechins, chlorogenic

acid, hyperoside, quercetin, kaempferol, and isorhamnetin are
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FIGURE 1

The extracted ion chromatograms (EICs) of reference substances (A) and sample (B). 1. Catechin; 2. Chlorogenic acid; 3. Hyperoside; 4.

Quercetin; 5. Kaempferol; 6. Isorhamnetin.

TABLE 2 Liner equations, precision, repeatability, stability, and average recovery rates of quantification of six components.

Compound Liner equations R Precision (RSD/%) Repeatability

RSD/%

Stability

RSD/%

Recovery

Intra-day

(n = 6)

Inter-day

(n = 9)

Mean/% RSD/%

Catechins Y= 55091.2X+ 1252.94 0.9991 2.5 2.59 2.96 1.86 92.02 2.14

Chlorogenic acid Y= 17261.2X+ 22440.6 0.9996 2.73 2.42 2.58 2.58 102.45 2.75

Hyperoside Y= 2982.38X+ 29865.3 0.9992 2.87 2.57 0.60 0.11 100.62 2.41

Quercetin Y= 4467.8X+ 11024.8 0.9995 2.72 2.66 2.17 1.53 102.47 2.65

Kaempferol Y= 12145.9X+ 18648.7 0.9993 2.15 2.20 2.04 1.35 97.37 2.96

Isorhamnetin Y= 28372.1X+ 13477.73 0.9993 1.43 2.76 1.88 2.02 97.52 2.06

shown in four batches of ZP and four batches of WP in Table 3.

In addition, we used student’s t-test to detect the significant

difference between the content of the active compounds in the

two groups of ZP and WP, and the results are shown in Table 4.

For ZP, the catechins content was between 16.7874 and

17.5247 µg g−1, the chlorogenic acid content was between

2.5801 and 3.7231 µg g−1, the content of hyperoside was

between 501.1931 and 519.0559 µg g−1, the quercetin content

was between 334.8053 and 389.4847 µg g−1, and the content

of kaempferol was between 18.7093 and 30.9806 µg g−1. The

content of isorhamnetin was between 24.1923 and 25.9680 µg

g−1; for WP, the content of catechins was between 29.2366

and 37.6574 µg g−1; the chlorogenic acid content was between

1.1047 and 1.3370 µg g−1; the content of hyperoside was

between 204.4158 and 234.7462 µg g−1; the quercetin content

as between 184.4371 and 197.7751 µg g−1; the content

of kaempferol was between 14.0855 and 23.6914 µg g−1,

and the content of isorhamnetin was between 7.8025 and

13.6166 µg·g−1.

Student’s t-test results (Table 4) showed that the contents of

chlorogenic acid, hyperoside, quercetin, and isorhamnetin in ZP

were significantly higher than those in WP, and the catechins in

WP were considerably higher than those in ZP, while there was

no significant difference in kaempferol between the two species.

Statistics of ITS amplicon sequencing

We sequenced 30 plant and soil samples, and a total of

2,321,991 reads were obtained, with a total base number of

696,597,300 bp. After filtering, the clean reads were 2,321,991,

the total number of bases was 540,788,432 bp, and the average
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TABLE 3 The content of the six compounds in ZP and WP.

Catechins

(µg·g−1)

Chlorogenic

acid (µg·g−1)

Hyperoside

(µg·g−1)

Quercetin

(µg·g−1)

Kaempferol

(µg·g−1)

Isorhamnetin

(µg·g−1)

Z1 17.3281 3.5837 501.1931 366.8620 30.9806 24.3484

Z2 17.5247 3.7231 507.4762 389.4847 30.7550 25.9680

Z3 17.4783 2.7570 508.8720 361.1795 22.5175 25.7283

Z4 16.7874 2.5801 519.0559 334.8053 18.7093 24.1923

W1 29.2366 1.1047 225.8444 184.4371 15.9720 13.5882

W2 33.4035 1.1563 215.0943 190.2311 14.0855 10.4824

W3 36.5700 1.3370 234.7462 197.7751 23.6914 13.6166

W4 37.6574 1.2769 204.4158 184.9176 19.7679 7.8025

TABLE 4 Student’s t-test of component content between ZP and WP.

Compounds ZP WP P-value

Mean SD Mean SD

Catechins 17.2796 0.3387 34.2169 3.7789 0.0028

Chlorogenic acid 3.1610 0.5760 1.2187 0.1069 0.0057

Hyperoside 509.1493 7.4009 220.0252 13.1471 0.0000

Quercetin 363.0829 22.4691 189.3402 6.2059 0.0003

Kaempferol 25.7406 6.1218 18.3792 4.2575 0.1016

Isorhamnetin 25.0593 0.9184 11.3724 2.7978 0.0012

length was 232 bp. The number of sequences assigned to each

sample was 47,618–169,166, with a median of 75,882 (Table 5).

Based on the minimum sample sequence size, 1,642 OTUs were

obtained at a similarity of 97%. The rarefaction curve showed

sufficient sequencing depth (Figure 2), and the Good’s coverage

also shows good taxa coverage for each sample (Table 5).

Analysis of the diversity and composition
of the fungal communities

To compare the differences in fungal communities of two

plants from a macroscopic perspective. First, we compared the

difference in the alpha diversity index of all samples of the two

species. As can be seen from Figure 3A, there are no significant

differences in the ACE, Shannon, and Simpson indices between

the two species. Then, the difference in the alpha diversity of the

same compartment of the two species was compared, and it can

be seen from Figure 3B that there is a significant difference in the

ACE index between ZP and WP in the leaves.

If we look at the composition of all the communities of

the two species, as can be seen from Figure 4A, both ZP and

WP are dominated by Ascomycota, accounting for an average of

87.83% of the entire community. As the sampling compartment

ranges from rhizosphere soil and rhizome to leaf, the relative

abundance of Ascomycota in ZP and WP increases in quantity.

The Adonis analysis of community composition in different

parts of ZP and WP shows significant differences in leaves,

stems, and roots (Figure 5).

Furthermore, we performed the ternary phase diagram

analysis of the leaves, stems, and roots of two plants (Figure 4B)

to determine the distribution of the community in various

compartments. We found that a large amount of OUT was

shared between stems and leaves. Compared to ZP, the three

compartments of WP shared more OTUs, while shared OTUs in

ZP tended to occupy a higher proportion of stems and leaves.

Based on MetagenomeSeq, the leaves, stems, and roots of ZP

and WP were analyzed (Figure 4C). A significant difference

in OTUs was found (88) in leaves, 38 in stems, and 71 in

roots. We observed the composition of these OTUs at the

genus level. In ZP,Cercospora (15.34 and 22.11%), Phaeosphaeria

(8.48, 7.45%), and Cladosporium (7.29 and 5.68%) dominate the

leaf and stem community, while Branch06 (30.69%) dominates

the root community. In WP, Cladosporium (16.02, 20.68,

and 8.04%) and Stachybotryaceae (17.02, 9.55, and 1.23%)

dominate the community of leaves, stems, and roots. In addition,

Plectosphaerella has a significantly higher abundance inWP than

in ZP, especially in stems; 16.29% in WP, compared with only

0.44% in ZP.

Interaction network analysis of
endophytic fungal communities

The interaction networks of ZP andWP fungal communities

were constructed, respectively, and the results are shown in

Figure 6. The overall module connectivity of the ZP network

is 0.38, and the overall module connectivity of the WP

network is 0.34. Still, the nodes of ZP show special aggregation

characteristics, while the nodes of WP are more widely

distributed, and there is no obvious aggregation. We performed

characteristic annotations to the nodes in the network to

determine the core community in the endophytic fungal

community (Figure 7). This study defines the node annotated
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TABLE 5 Sequencing statistics.

Compartment No. Sequence number Sequence base number Average length Min length Max Length Coverage

ZP Leaf 1 81671 18659755 228.47 150 514 99.98%

Leaf 2 75151 17275810 229.88 149 514 99.96%

Leaf 3 67298 15158745 225.25 144 473 99.98%

Leaf 4 80201 18570459 231.55 152 524 99.97%

Rhizosphere soil 1 52439 12505425 238.48 165 517 99.84%

Rhizosphere soil 2 60256 13933186 231.23 143 518 99.83%

Rhizosphere soil 3 54748 13127476 239.78 140 522 99.84%

Stem 1 47618 11099330 233.09 164 515 99.99%

Stem 2 69632 16378460 235.21 173 505 99.99%

Stem 3 63497 14935152 235.21 171 523 99.99%

Stem 4 57766 13408123 232.11 172 423 99.99%

Root 1 64740 16161710 249.64 173 494 99.93%

Root 2 57239 16812244 293.72 146 395 99.94%

Root 3 76613 17766891 231.90 145 349 99.93%

Root 4 169166 42516049 251.32 150 438 99.99%

WP Leaf 1 69738 16457499 235.99 141 321 99.99%

Leaf 2 91724 20805391 226.83 169 504 99.99%

Leaf 3 80418 18451726 229.45 157 321 99.98%

Leaf 4 88068 20608782 234.01 181 393 99.98%

Rhizosphere soil 1 72261 16224948 224.53 142 525 99.77%

Rhizosphere soil 2 66798 15601070 233.56 141 433 99.79%

Rhizosphere soil 3 63371 14296112 225.59 141 528 99.76%

Stem 1 94776 20978893 221.35 154 531 99.99%

Stem 2 96825 21836843 225.53 169 526 99.99%

Stem 3 82421 18990185 230.40 187 528 99.95%

Stem 4 76992 17647509 229.21 191 522 99.96%

Root 1 85574 19244983 224.89 155 498 99.98%

Root 2 76856 17077185 222.20 177 366 99.98%

Root 3 100743 22772037 226.04 168 529 99.99%

Root 4 97391 21486454 220.62 169 507 99.99%

as the module node and the connectors as the core community.

In ZP, three module hub nodes were identified, including

OUT1551 (Teratosphaeriaceae), OUT1542 (Phaeosphaeriaceae),

and OUT1374 (Basidiomycota), in addition to 32 connection

nodes. In theWP, 74 connection nodes are identified. Observing

the community composition at the genus level (Figure 8),

the relative abundance of key communities in the three

compartments in WP was close, accounting for 19.81% of

the total community, dominated by Sarocladium in stems

and roots and dominated by Cercospora in leaves. In ZP,

the relative abundance of key communities in the three

compartments was significantly different, accounting for 87.59%

of the community. The relative abundance of community

in stems is highest, dominated mainly by Sarocladium and

Cercospora, in the leaves by Cercospora, and in the roots

by Zopfiella.

Functional composition analysis of
endophytic fungi

To detect the differences in function community

composition in two plants, we used FUNGuild to perform

the functional annotations. A total of 10 trophic types are

annotated (Figure 9).

We found significant differences in the relative

abundance of trophic types between ZP and WP,

including pathogen-saprotroph-symbiotroph, pathotroph,

pathotroph-saprotroph-saprotroph, pathotroph-saprotroph-

symbiotroph, and saprotroph-symbiotroph. Further, a

functional analysis of the core community (Figure 10) was

performed. In the dominant functional community, saprotrophs

and pathotroph-saprotrophs in ZP were significantly higher

than in the WP group.
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FIGURE 2

The rarefaction curve [(A) the leaf of WP; (B) the stem of WP; (C) the root of WP; (D) the rhizosphere soil of WP; (E) the leaf of ZP; (F) The stem of

ZP; (G) the root of ZP; (H) the rhizosphere soil of ZP].

FIGURE 3

Alpha diversity of fungal communities; (A) Di�erence analysis between whole plant of two species; (B) Di�erence analysis between three

compartments of two species. *Means P-value < 0.05, **means P-value <= 0.01, ***means p-value <= 0.001, ****means P-value <= 0.0001,

ns mean P-value > 0.05.

Correlation analysis of fungal
communities with active ingredients

The Pearson-related analysis of core community and

active ingredient content in ZP and WP was performed.

In the roots of ZP (Figure 10A), Gibberella and Leptospora

were significantly positively correlated with chlorogenic

acid and kaempferol. Phaeosphaeria was significantly

inversely associated with hyperoside. In the stem of ZP

(Figure 10B), Tilletiopsis, c_Sordariomycetes, Pyrenochaetopsis,
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FIGURE 4

(A) The community composition of ZP and WP at the phylum level; (B) The ternary phase diagram of community in ZP and WP; (C) The

significant di�erential communities between ZP and WP.

Cryptococcus_f_Tremellacea, and Keissleriellawere significantly

negatively correlated with catechins; Cercospora was

significantly positively correlated with hyperoside; Sarocladium

was significantly positively correlated with quercetin. In

the leaves of ZP (Figure 10C), Keissleriella, Phaeosphaeria,

Sarocladium, Articulospora, and c_Sordariomycetes were

significantly negatively correlated with catechins; Tilletiopsis

was significantly negatively correlated with chlorogenic acid

and kaempferol; f_Phaeosphaeriaceae positively correlated

with chlorogenic acid and kaempferol; Leptospora and

Rhodosporidiobolus were positively correlated with hyperoside;

Keissleriella was negatively correlated with quercetin;

Pyrenochaetopsis and p_Basidiomycota were negatively

correlated with Isorhamnetin significance.

In the roots of the WP (Figure 10D), Mortierella,

Symmetrospora, and Taromyces were significantly positively

correlated with kaempferol.Mortierella was positively correlated

with quercetin; c_Sordariomycetes was significantly inextricably

linked to catechins and chlorogenic acids; Verticillium was

significantly inversely associated with Isorhamnetin. In the

stem of WP (Figure 10E), Botrytis and Sarocladium were

significantly positively correlated with kaempferol; Sarocladium

was significantly positively correlated with chlorogenic

acid; Paraphoma was significantly positively correlated with

Hyperoside; Cercospora was significantly negatively correlated

with Hyperoside and Isorhamnetin; Pyrenochaetopsis was

significantly and negatively correlated with catechins. In the

leaves of WP (Figure 10F), Cercospora, Botrytis, and Keissleriella

were significantly positively correlated with chlorogenic acid;

Cercosporawas significantly positively correlated with catechins;

Cladosporium was significantly negatively correlated with

Isorhamnetin; Hannaella was significantly negatively correlated

with hyperoside.

Discussion

The colonization of cercospora interferes
with the assembly process of the
endophytic fungi of P. Hydropiper

In this study, we found a high degree of overlap in the

taxa and distribution areas of ZP and WP, and there was no

significant difference in the overall alpha diversity between
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FIGURE 5

PCA analysis of three compartments between ZP and WP [(A) leaf, (B) stem, (C) root, (D) rhizosphere soil].

the two. The similarity of fungal communities in rhizosphere

soil confirms that both acquire fungi from the same soil

species pool. Moreover, the interaction network analysis shows

that the connectivity of the endophytic fungi between ZP

and WP is very close. These results indicate that the two

plants are similar in their ability to shape the composition

and structure of endophytic fungal communities. However, we

also observed significant leaves, stems, and roots differences

between the two plants. This suggests that the assembly

process of fungal communities is the key factor influencing
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FIGURE 6

Interaction network diagram of ZP and WP [(A) ZP, (B) WP].

FIGURE 7

The characteristic annotation analysis of nodes in the interaction network. (A) ZP, (B) WP.

the composition of the community. Therefore, we compared

the community composition of the three compartments in

ZP and WP and assessed the community composition that

differed significantly between the two. In ZP, the relative

abundance of differential communities in leaves is highest,

with Cercospora dominating the differential communities in
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FIGURE 8

The core community composition at the genus level. (A) ZP, (B) WP.

stems and leaves. At the same time, the ACE index of the

community in the leaves of ZP was significantly higher than that

of WP, indicating a significant enrichment of the community

in the leaves of ZP. Studies have shown that Cercospora usually

colonizes leaves (Khan et al., 2008). Interestingly, the core

community in ZP was also dominated byCercospora, accounting

for 38.12% of the total community. This suggests that after

Cercospora colonizes the leaves of ZP, it significantly affects the

assembly process of the endophytic fungi. In WP, the relative

abundance of differential communities in stems was highest,

and the differential community at all three compartments was

dominated by Cladosporium, which is generally considered to
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FIGURE 9

Functional community composition. (A) The functional composition of all compartments, (B) The functional composition of core community.

*P-value < 0.05.

colonize the roots of plants (Hamayun et al., 2009; Chen et al.,

2022); this suggests that the assembly process of endophytic

fungal communities in WP is still dominated by fungi recruited

in the soil.

Endophytic fungi communitites
significantly a�ect host secondary
metabolic processes

We found significantly different communities between

ZP and WP, including Cercospora, Phaeosphaeria, Branch06,

Stachybotryaceae, and Plectosphaerella. Most of the community

from Cercospora is thought to be able to cause diseases in plants.

Interestingly, Martínez et al. (2017) found that chlorogenic acid

can effectively inhibit the growth of fungi such as Cercospora. In

this study, the chlorogenic acid content of ZP was significantly

higher than that of WP, and the relative abundance of this

type of fungi in ZP was also considerably higher than WP,

suggesting that it may be due to the extensive colonization of

Cercospora, resulting in host stress producing more chlorogenic

acid. For Pheosphaeria, there have been many studies that

demonstrate it is rich in secondary metabolites, including

polyketone derivatives, pyrazine alkaloids, isocoumarins,

perylenequinonoid, anthraquinone, diterpenes, and cyclic

peptides (El-Demerdash, 2018; Xiao et al., 2022). This may

illustrate the reason that the content of secondary metabolites

in ZP is significantly higher than in WP. Fungi, mainly

plant pathogens or saprophytic, such as the widely studied

Cladosporium fulvum, are considered to be the leading cause

of moldy tomato leaves. However, many species have also

been found in this genus that promotes plant growth, such

as through the production of gibberellin (Hamayun et al.,

2009, 2010), protein hydrolysates (Răut et al., 2021), and

volatile substances (Paul and Park, 2013). In addition, some

species from Cladosporium can also produce substances such as

brefeldin A (Wang et al., 2007) and Cladosins LO (Pan et al.,

2020) to play an anti-pathogenic fungus and bacterial activity. It

is worth noting that after Ullah et al. (2019) found that the stem

of Poplars was infected with Plectosphaerella populi, the content

of catechins and proanthocyanidins increased significantly.

In this experiment, the community of Plectosphaerella was

observed in the stem of WP to be considerably higher than

that of ZP. The catechin content of WP was also significantly

higher than that of ZP, suggesting that Plectosphaerella is

likely to be an essential potential community involved in or

promoting catechin synthesis and indicating that the synthetic

compartment of catechin in the plant may be the stem.

Moreover, we analyzed the functional composition of

these communities. In ZP, it is dominated by saprotroph

and pathotroph-saprotrophs. In WP, the community

of pathotrophs, pathogen-saprotroph-symbiotrophs, and

saprotroph-symbiotrophs. Moreover, the relative abundance

of the ZP-led functional community was significantly higher
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FIGURE 10

Analysis of the correlation between core community and active ingredient [(A) ZP root; (B) ZP stem; (C) ZP leaf; (D) WP root; (E) WP stem; (F) WP

leaf].

than that of WP, and the relative abundance of the dominant

community in WP was significantly higher than that of

ZP. This indicates a significant difference in the functional

community composition between the two. Further, in the

functional composition analysis of the core community, it

was also found that saprotroph and sathotroph-saprotrophs

had significant differences between ZP and WP. These results

suggest a difference in the status of endophytic fungi involved

in the secondary metabolism of ZP and WP. Further research is

needed on the function of these communities in plants.

The core communities are the essential
members involved in the secondary
metabolic processes of host plants

We constructed the interaction network of ZP and WP

endophytic fungal communities, 3 module hub nodes and

35 connector nodes were found in ZP, and 74 connector

nodes were found in WP. The two core communities present

different compositions at the genus level, with ZP dominated

by Cercospora and Zopfiella. In the WP, it is mainly dominated

by Mortierella and Cercospora. Kemp et al. (2020) found that

Sarocladium zeae from this genus acted as systemic endophytic

fungi in wheat and as a biological control agent in the host. Since

the Cercospora and Sarocladium play a dominant role in both

ZP and WP, therefore, it may indicate that the Cercospora has

a potential role in regulating the structure of the community.

In addition, Mortierella is often thought to promote plant

growth and increase biomass (Li, S. J. et al., 2018; Ozimek and

Hanaka, 2020; Zhang et al., 2020). For Zopfiella, Sun et al. (2020)

found that species from this genus are capable of producing

sesquiterpenes and α-pyranone derivatives.

In the analysis of the correlation between the core

community and the active ingredient, 23 distinctly associated

communities were found, many of which were thought to

promote plant growth and participate in secondary metabolic

processes, including Mortierella (Li, F. et al., 2018; Ozimek

and Hanaka, 2020; Zhang et al., 2020), Talaromyces (Naraghi

et al., 2012; Lan and Wu, 2020), Sordariomycetes (Camarena-

Pozos et al., 2021), Verticillium (You et al., 2009; Li, N.,

et al., 2018), Sarocladium (Kemp et al., 2020; Błaszczyk

et al., 2021; Salvatore et al., 2021), Gibberella (Brian et al.,

1954; Geng et al., 2014), Tilletiopsis (Klecan et al., 1990),

and Phaeosphaeriaceae (Xiao et al., 2022; Xu et al., 2022),

In addition, some plant pathogens are still present in these

communities, including Botrytis, Paraphoma, Cercospora, and

Pyrenochaetopsis. These communities potentially affect the

secondary metabolic processes of the host, and it is necessary

Frontiers in Plant Science 14 frontiersin.org

https://doi.org/10.3389/fpls.2022.984483
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.984483

to further identify these communities and their functions in

subsequent studies. Therefore, these results demonstrate that the

core community of the interaction network plays a vital role in

the secondary metabolism of ZP and WP.

Conclusion

The results showed that the endophytic fungi community

assembly processes of P. hydropiper and P. lapathifolium are

significantly different. Since the two acquired fungi from the

same soil species pool and have the same ability to shape the

composition and structure of endophytic fungal communities,

we believe that this difference was mainly due to the infestation

of Cercospora. In addition, the results also found that the

core community was an important member involved in the

secondary metabolism of P. hydropiper and P. lapathifolium.

The infection of Cercospora provided an opportunity to shape

a specific core community. The infection process exerted

selective pressure on recruiting other fungi, resulting in a

higher proportion of the core community of P. hydropiper

in the community as a whole than that of P. lapathifolium.

This increases the odds of the host interacting with the core

community. Therefore, it can enhance the communication

between host plants and endophytic fungi, affecting the content

of secondary metabolites of P. hydropiper. Although our

study is limited to the two current species, more in-depth

studies are needed to elucidate the mechanism by which

Cercospora infestation affects the process of plant endophytic

fungal community assembly. This study has important practical

implications for inoculating specific communities in production

to improve the yield of crops ormedicinal plants. It also provides

ideas for the study of the assembly process of other plant

endophytic fungi.
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