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Cytoplasmic calcium (Ca2+) transients and nuclear Ca2+ oscillations act as

hubs during root nodulation and arbuscular mycorrhizal symbioses. Plants

perceive bacterial Nod factors or fungal signals to induce the Ca2+ oscillation

in the nucleus of root hair cells, and subsequently activate calmodulin (CaM) and

Ca2+/CaM-dependent protein kinase (CCaMK). Ca2+ and CaM-bound CCaMK

phosphorylate transcription factors then initiate down-stream signaling events.

In addition, distinct Ca2+ signatures are activated at different symbiotic stages:

microbial colonization and infection; nodule formation; and mycorrhizal

development. Ca2+ acts as a key signal that regulates a complex interplay of

downstream responses in many biological processes. This short review focuses

on advances in Ca2+ signaling-regulated symbiotic events. It is meant to be an

introduction to readers in and outside the field of bacterial and fungal symbioses.

We summarize the molecular mechanisms underlying Ca2+/CaM-mediated

signaling in fine-tuning both local and systemic symbiotic events.

KEYWORDS

Ca2+ signaling, local and systematic signaling, mycorrhizal development, plant-
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Introduction

Sessile plants have evolved complex signaling networks to cope with various

environmental changes (Laplaze et al., 2015; Tian et al., 2020). Calcium (Ca2+) signals

play a central role in the networks that regulate various physiological responses of all

eukaryotes, including plants (Berridge et al., 2003; Yuan et al., 2018a; Yuan et al., 2018b;

Luan andWang, 2021). Ca2+ signaling is also crucial in plant-pathogen interactions. Ca2+

influxes are induced when plants perceive pathogen-/microbe-associated molecular

patterns (PAMPs/MAMPs) through cell surface pattern recognition receptors (PRRs)

to trigger basal defense responses. For example, the plant plasma membrane receptor
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flagellin-sensitive 2 (FLS2) recognizes the conserved bacterial

PAMP, flg22, to induce transient Ca2+ influxes (Aslam et al.,

2008; Ma et al., 2017; Yuan et al., 2020). A stronger and

prolonged Ca2+ signature occurs when the bacterial pathogen

Pst DC3000 carrying the effector AvrRpt2 is recognized in

resistant plants, as compared to Pst DC3000 without this

avirulent factor (Yuan et al., 2021). In another example of

calcium’s role in plant resistance, the resistance protein ZAR1

forms a protein complex that triggers sustained calcium ion

influx into the cell that subsequently leads to cell death and

immune responses (Bi et al., 2021). The pathogen triggered Ca2+

signaling is perceived and relayed by various Ca2+ receptors,

such as CaMs/calmodulin-like proteins (CMLs), calcineurin B-

like protein (CBL)-CBL-interacting protein kinases (CIPK) and

Ca2+calcium-dependent protein kinases (CDPKs or CPKs) (Tian

et al., 2020; Köster et al., 2022; Yuan and Poovaiah, 2022).

Interestingly, Ca2+ also plays a critical role in the symbiotic

relationship between plants and beneficial microbes. The role of

Ca2+ has been well described in legumes forming a symbiotic

relat ionship with rhizobia bacteria and arbuscular

mycorrhizal fungi.

In the Medicago-rhizobial symbiotic relationship, the

symbiosis signaling pathway is initiated when the plant

receptor complex LysM receptor kinase 3 (LYK3)-Nod factor

perception (NFP) recognizes lipo-chitooligosaccharide signals

(i.e., Nod factors) from rhizobial bacteria (Haney et al., 2011;

Kang et al., 2011). The Does not Make Infections 2 (DMI2)/

nodulation receptor-like kinase (NORK), also known as

Symbiosis receptor kinase (SYMRK) in L. japonicus, interacts

with the LYK3-NFP receptor complex; the DMI2-LYK3-NFP

protein complex regulates rhizobial infection and nodule

development (Ané et al., 2004; Lefebvre et al., 2010). DMI2

interacts with 3-hydroxy-3-methylglutaryl CoA reductase 1

(MtHMGR1), which is a key enzyme in the biosynthesis of

many isoprenoid compounds, including cytokinin and

mevalonate. Mevalonate is a secondary messenger, and the

activation of the mevalonate pathway is important for the

activation of the common symbiotic pathway (Kevei et al.,

2007; Oldroyd, 2013; Venkateshwaran et al., 2015). The

recognition of Nod factors (NFs) by the plant cells activates

Ca2+ channels, such as the cyclic nucleotide gated channel 15

(CNGC15a, b, c) and DMI1 [which was initially reported as a

potassium channel (Ané et al., 2004; Peiter et al., 2007)]. Nod

factor recognition also activates the Ca2+ pump, a membrane

Ca2+-ATPase 8 (MCA8). As a result, sharp oscillations of

cytoplasmic and perinuclear Ca2+ occurs, a phenomenon

called Ca2+ spiking (Ehrhardt et al., 1996; Wang et al., 2022).

Following Nod factor induced Ca2+ influxes, some Ca2+ binding

proteins, such as CCaMK, decode the symbiotic Ca2+ signal into

down-stream phosphorylation events (Gleason et al., 2006). The

Ca2+ and CaM-binding CCaMK phosphorylates transcription

factors and induces symbiotic-related gene expression to

initiate nodulation.
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Ca2+-mediated local symbiotic
signaling

Ca2+ mediates signal exchange between
host and microbe

The first step in root symbiosis is the molecular signal

exchange between roots and nitrogen-fixing rhizobia or

mycorrhizae. Legume-derived flavonoids induce the

biosynthesis of Nod factors in rhizobia, and some symbiosis-

related flavonoids are accumulated at the colonization site. This

suggests that Nod factors promote flavonoid biosynthesis in a

positive feedback loop (Liu and Murray, 2016; Panche et al.,

2016; Sharma et al., 2020). These root-excreted flavonoids serve

as chemo-attractants to facilitate the movement of rhizobia (e.g.,

Sinorhizobium meliloti) to root hairs (Hassan and Mathesius,

2012). Interestingly, some specific host flavonoids, such as

luteolin and naringenin, were shown to induce Ca2+ transients

in rhizobia, which subsequently activates bacterial Nod-related

genes (i.e., nodA, nodB, and nodC) in Rhizobium leguminosarum

cv. viciae (Moscatiello et al., 2010; Cui et al., 2019). These

findings suggest Ca2+ signaling in bacterial symbionts plays a

role during plant symbiotic microbe interaction. When studying

arbuscular mycorrhizal fungi (AMF)-peanut symbiosis, it was

noted that exogenous Ca2+ application improved the

colonization of peanut roots by AMF and induced the

expression of plant genes, including those genes regulating

flavonoid biosynthesis (Cui et al., 2019). The results from

these studies suggest Ca2+ signaling is important during the

initial interactions between plants and symbionts.
Plants perceive microbes via symbiotic
microbe-induced cytoplasmic and
nuclear Ca2+ transients

Nod factor-induced Ca2+ spikes in root hairs is essential for

plant root-nodule symbiosis. Earlier studies have revealed that S.

fredii-derived NGR234 Nod factor was able to induce Ca2+

concentration increases within root hairs of nodulating

legumes, such as Chamaecrista fasciculata, Acacia retinoides,

Cytisus proliferus, Lupinus pilosus, and Medicago truncatula

(Granqvist et al., 2015). However, Nod factor failed to trigger

Ca2+ oscillations in the non-nodulating legume Cercis

siliquastrum (Granqvist et al., 2015). This observation suggests

that Ca2+ transients are common events in rhizobia-compatible

plants. To further investigate Ca2+ transients in non-leguminous

plants, Granqvist et al. (2015) observed that non-leguminous

plants (e.g., Parasponia andersonii) could form a symbiotic

relationship with rhizobia and exhibit Ca2+ spiking in response

to NGR234 Nod factors. However, Trema tomentosa, a non-

nodulating plant related to Parasponia, did not exhibit Nod
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factor-induced Ca2+ oscillations (Granqvist et al., 2015). These

results suggest that Nod-factor-triggered Ca2+ oscillations are a

common feature in response to symbiotic bacteria in

nodulating species.

Nitrogen fixation in endosymbiotic plant-bacterial

associations is limited to the Fabid clade (e.g., squash, bean/

pea and rose families). The most well-studied bacterial

associations are between legumes and Rhizobium. The

association between a nitrogen-fixing filamentous bacteria

(Frankia) and a diverse range of trees and woody shrubs is

less well characterized. However, a recent study found that a

novel symbiotic factor from Frankia CcI3 strain was resistant to

chitinase treatment and had relatively low molecular weight (i.e.,

in the range 0.5–5 KDa) (Chabaud et al., 2016). The novel

symbiotic factor could trigger Ca2+ spikes in root hairs and

induce nodule inception (CgNIN) gene expression in the

actinorhizal plant Casuarina glauca. This finding suggests that

certain symbiotic responses, such as Ca2+ spiking, are conserved

across plants that can form symbiotic associations in the Fabid

clade (Chabaud et al., 2016).
Ca2+ channels and Ca2+ pumps involved
in beneficial microbes triggered
Ca2+ influxes

Since nuclear Ca2+ oscillations are required for rhizobial and

mycorrhizal symbioses, studies to better understand Ca2+

oscillations have mainly focused on ion channels and a pump

located at the nuclear envelope (NE). The Ca2+ channels include

CNGCs among which CNGC15s is crucial for the observed Ca2+

spiking triggered by rhizobia colonization in Medicago. The

CNGCs are regulated by calmodulin (CaM) via its interaction

with the CNGC isoleucine glutamine (IQ) motif. A recent study

found that Ca2+-bound CaM2 regulates Ca2+ spiking by

associating with the CNGC15s (e.g., CNGC15a, CNGC15b,

and CNGC15c), which results in closed Ca2+ channels. The

closing of the channel prevents it from releasing Ca2+ into the

nucleoplasm, while a calcium pump (MCA8) drives calcium

back to the nuclear envelope lumen; the opening and closing of

the channels shape the nucleoplasmic calcium concentration

(Cerro et al., 2022). A mutated CaM2, called CaM2R91A,

displayed increased binding affinity to CNGC15s. When

CaM2R91A was expressed in Medicago truncatula, the plants

exhibited an increased Ca2+ oscillation frequency during early

stage of colonization in both AM and rhizobia. Moreover, plants

expressing CaM2R91A showed enhanced Nod-factor-mediated

induction of nodulation-related genes, such as NIN and NF YA1.

Although the CaM2R91A expressing plants were able to maintain

enhanced bacterial symbiosis at later timepoints (14 and 28 dpi),

they could not sustain AM intraradical hyphae and arbuscule

formation in the roots (Cerro et al., 2022). Thus, the Ca2+-bound

form of CaM2 plays an important role in modulating CNGC15
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activity and the subsequent Ca2+ oscillations, but the

downstream Ca2+-mediated signaling networks differ between

AM and root nodule symbiosis (Figure 1).

The nuclear pore complex (NPC) in Lotus japonicus is

essential for Nod factor-induced nuclear Ca2+ oscillations

(Kanamori et al., 2006). Nod factor triggered a weaker nuclear

Ca2+ oscillation in mutant nup133 as compared to the wild-type

control, and the nup133 mutants showed no mycorrhizal

colonization and reduced nodulation by Rhizobium bacteria at

permissive temperatures (Kanamori et al., 2006). In L. japonicus,

the nucleoporin gene NUP85 was also required for Nod-factor-

induced nuclear Ca2+ oscillation as well as bacterial nodulation

and mycorrhizal colonization (Saito et al., 2007). The nuclear

pore complex may mediate Nod factor-induced nuclear Ca2+

oscillations indirectly by modulating the transport of symbiosis-

related mRNAs [such as Nod receptors and symbiosis-related

Ca2+ channels (CASTOR, POLLUX/DMI1, CNGC15) or Ca2

+pumps (MCA8)] from nucleus to ribosome for polypeptides or

protein biosynthesis. Another possibility is that the NPCs

regulate the localization of CASTOR, POLLUX/DMI1,

CNGC15 to the nuclear membranes, although the biological

mechanism involved deserves further study.

In addition to nuclear-localized Ca2+ channels and

components of the nuclear pore complex (NUP85, NUP133),

other cation channels are also required for nuclear Ca2+

oscillations. Medicago truncatula DMI1 and its two homologs

CASTOR and POLLUX in L. japonicus were once thought to be

potassium (K+) channels (Peiter et al., 2007; Charpentier et al.,

2016) but more recent evidence shows that they were Ca2+

channels (Kim et al., 2019). Ca2+ binding to the CASTOR

gating ring was required for root nodule symbiosis, and

legumes carrying mutated CASTOR at either of two Ca2+

binding sites (D442A or E493Q) failed to form rhizobia-

induced nodulation. This finding links defects in Ca2+ binding

to Ca2+ channel regulation, which ultimately affects the legume-

microbe symbiosis (Kim et al., 2019). However, this study was

carried out in mammalian cells (HEK293), and to further

characterize the function of DMI1 and clarify if it is a Ca2+ or

K+ channel, future research should be performed in plant cells.

Furthermore, Nod factor induced the association between C-

terminal of DMI1 and N-terminal of CNGC15s. In addition,

DMI1 associated with CNGC15s (CNGC15a, CNGC15b,

CNGC15c) to form a complex protein in nuclear membranes

which was required for the activation of nuclear Ca2+ spiking

(Charpentier et al., 2016). The latest study further confirmed that

the two cation channels, DMI1 and CNGC15, form a channel

complex to regulate nuclear symbiotic Ca2+ oscillations and

nodule development (Liu et al., 2022). Genetic testing showed

that gain-of-function mutations in MtDMI1, DMI1 (S760N),

displayed spontaneous nuclear Ca2+ spikes and constitutive

activation of nodulation (Liu et al., 2022). The S760N mutation

DMI1 caused nuclear Ca2+ oscillations in a CNGC15 dependent

manner and spontaneous nodulation (Liu et al., 2022). These
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studies extend our understanding of activating cation channels

complex to form nuclear Ca2+ oscillations during plant symbiotic

microbe interaction.

Ca2+ pumps regulate Ca2+ changes in the nuclear region, like

nuclear localized Ca2+ channels, during plant and symbiotic

microbe interactions. Other than depending on the ion

concentration or electrochemical gradient like Ca2+ channels,

Ca2+ pumps consumed ATP to facilitate Ca2+ movement against

it (Demidchik et al., 2018). A Ca2+ pump, MtMCA8, was

involved in the formation of symbiosis-induced nuclear Ca2+

oscillation, and MCA8-silenced plants displayed decreased

mycorrhizal colonization (Capoen et al., 2011). Unlike DMI1

being mainly distributed in the inner layer of nuclear membrane,

MCA8 was equally localized at both inner and outer layers of the

nuclear membrane and at the endoplasmic reticulum (ER). A

hypothesis proposes that the inner-layer-localized MCA8

mediates the recapture of nuclear Ca2+ spikes, while the outer-

layer- and the ER-localized MCA8 may reload the Ca2+ store at

the ER or nuclear envelope from the cytoplasm (Capoen et al.,

2011; Tian et al., 2020).
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A key component of calcium regulation during plant

symbiosis is the small guanosine triphosphatase (GTPase). The

GTPase, belongs to the Rho/Rop family, directly regulates

reactive oxygen species (ROS) production through activating

the respiratory burst oxidase homolog B (RBOHB) (Wang et al.,

2020). The ROS activates Ca2+ channels and triggers Ca2+

influxes, which subsequently activates plant immune responses

(Wang et al., 2020), which suggests the GTPases play a role in

plant defense (Rivero et al., 2019). Interestingly, the small

GTPases [Rho-like GTPas (MtROPs)] and heterotrimeric G-

proteins including Ga, Gb, and Gg subunits are also involved in

root nodule symbiosis (Ke et al., 2012; Pandey, 2019; Bovin et al.,

2021): the expressions of MtROP3, MtROP5 and MtROP6 were

induced in rhizobia-infected roots (Liu et al., 2010); and genetic

tests indicated that the Ga repressed nodule development, while

the Gb, Gg and RGS promoted nodule development (Choudhury

and Pandey, 2013). Further study revealed that ROP6 interacted

with NFR5, but not with NFR1, to positively regulate infection

thread development and nodulation formation in soybean (Ke

et al., 2012). Another study revealed that ROP9 interacted with
FIGURE 1

Ca2+ signals mediate local symbiotic signaling pathways in the root. Plants recognize the Nod factor via Nod factor perception (NFP)/Nod Factor
Receptor 5 (NFR5) and LysM receptor kinase 3 (LYK3)/NFR1 subsequently activate the leucine-rich repeat receptor-like kinases which include
the symbiotic receptor kinase LjSYMRK in Lotus and MtDMI2 in Medicago truncatula. The activated LjSYMRK/MtDMI2 may directly open
unknown cytoplasmic membrane-localized Ca2+ channels or indirectly regulate Ca2+ channels through ROS signaling pathway, to induce
cytosolic Ca2+ influxes. Meanwhile, LjSYMRK/MtDMI2 interacts with 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (HMGR) to initiate the
biosynthesis of mevalonate. The mevalonate accumulation activates LjPOLLUX and LjCASTOR/MtDMI1. MtDM1/LjPOLLUX and LjCASTOR
interact with the nuclear envelope (NE)-localized channels, CNGC15s (CNGC15a, b or c), to regulate Nod factor-induced Ca2+ inflex into the
nucleus from the NE or endoplasmic reticulum. Ca2+-bound MtCaM2 interacts with CNGC15s, causing its closure and thus acting as a negative
feedback loop for ion channels. Meanwhile, the nuclear localized Ca2+ pump, MtMCA8, uses ATP to transport the Ca2+ ions from the nucleus
back to NE or ER to maintain the Ca2+ oscillation. In addition, a potential component of the nuclear pore complex (NPC), nucleoporins, such as
NUP133 and UNP85, are essential for the Nod-factor-induced nuclear Ca2+ oscillation. The symbiotic Ca2+ signal is decoded by CaM to activate
down-stream phosphorylation events, through the Ca2+- and CaM-dependent protein kinase, LjCCaMK or MtDMI3. The activated LjCCaMK or
MtDMI3 phosphorylates LjCYCLOPS or MtIPD3, which is a transcription factor. The phosphorylated LjCYCLOPS or MtIPD3 associates with
DELLA, NSP2 and NSP1 to form a complex, which binds to the promoter of symbiosis-associated genes to induce their expression, which
ultimately leads to nodulation.
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RACK1 and regulated root nodule development (Gao et al.,

2021). Active NFR1 phosphorylated the regulator of G-protein

signaling (RGS) proteins, which deactivated Ga, a negative

regulator of root nodulation (Choudhury and Pandey, 2015).

More studies are needed to reveal how small GTPases, together

with Nod factor receptor complex, regulate symbiotic

cytoplasmic and/or nuclear Ca2+ spiking.
Plants transduce and decode Ca2+

signals through CCaMK during symbiosis

In 1995, the Poovaiah laboratory cloned and characterized a

novel protein kinase from lily, which turned out to be regulated

by both Ca2+ and CaM. Hence, it was named Ca2+/CaM-

dependent protein kinase (CCaMK; Patil et al., 1995). Unlike all

the other Ca2+/CaM-dependent protein kinases (CaMKs) which

were discovered in animal cells, the CCaMK reported from plants

contained a C-terminal visinin-like domain, including three EF-

hand motifs, which functioned as a Ca2+-sensitive molecular

switch (Sathyanarayanan et al., 2001). The CCaMK involved in

symbiosis is encoded by DMI3 in Medicago truncatula and

LjCCaMK in L. japonicus (Patil et al., 1995). CCaMK is

essential for root nodule formation and mycorrhizal

associations. CCaMK has a serine/threonine kinase domain at

the N-terminal and two Ca2+-mediated regulatory domains

at the C-terminal. The two C-terminal domains include a

visinin-like domain with three EF-hand motifs (i.e., identified as

three Ca2+-binding domains) and one CaM-binding domain with

autoinhibitory function (Sathyanarayanan et al., 2001; Yuan et al.,

2017). Plants carrying the mutated CCaMK lacking the

autoinhibitory domain exhibited spontaneous nodulation even

without rhizobia infection (Gleason et al., 2006). This data

indicates that the legume CCaMK is a master controller of

nodulation and its autoinhibitory domain is important in

regulating its activity. Further studies have shown that when

basal levels of Ca2+ bind to CCaMK, the protein is kept in an

inactive state. However, at elevated Ca2+ concentrations (e.g., Ca2+

spiking), Ca2+/CaM also binds to CCaMK, and the protein

becomes activated (Miller et al., 2013). Thus, CCaMK is kept in

an inactive state when there are no symbiotic microbes present.

However, once symbiosis signals are perceived, Ca2+ spiking is

induced, and the inactive CCaMK state is overridden by higher

levels of Ca2+ and CaM binding (Miller et al., 2013).

Further studies in the Poovaiah laboratory and others

revealed that a mutated CCaMK negatively affects root nodule

symbiosis inMedicago truncatula (Sinharoy et al., 2009; Jauregui

et al., 2017). Site-directed mutations in the CaM-binding

domain of CCaMK altered its binding capacity to CaM,

providing an effective approach to study how CaM regulates

CCaMK during rhizobial symbiosis in Medicago truncatula.

Mutating the tryptophan at position 342 to phenylalanine

(W342F) increased the CaM-binding capability of the mutant,
Frontiers in Plant Science 05
which underwent autophosphorylation and catalyzed substrate

phosphorylation in the absence of Ca2+ and CaM. When the

mutant W342F was expressed in ccamk-1 roots, the transgenic

roots exhibited an altered nodulation phenotype. These results

suggest that altering the CaM-binding domain of CCaMK could

generate a constitutively activated kinase with a negative role in

the physiological function of the CCaMK [(Jauregui et al.,

2017) (Figure 2)].

The CCaMK phosphorylated symbiosis-related substrate has

been identified, CYCLOPS in Lotus and interacting protein of

DMI3 (IPD3) in Medicago truncatula (Lévy et al., 2004;

Messinese et al., 2007; Yano et al., 2008). As with auto-active

CCaMK, auto-active CYCLOPs causes spontaneous nodulation

in the absence of rhizobia (Gleason et al., 2006; Hayashi et al.,

2010; Miller et al., 2013; Singh et al., 2014). CCaMK

phosphorylates CYCLOPS/IPD3 to form a complex that binds

to promoter elements and induces the expression of symbiosis-

involved genes (Yano et al., 2008; Singh et al., 2014). For

example, in Lotus, CYCLOPS works with CCaMK and a

DELLA transcription factor to regulate the expression of

reduced (or required) arbuscular mycorrhiza1 (RAM1)

(Gobbato et al., 2012; Pimprikar et al., 2016). RAM1 is a

GRAS transcription factor which, when expressed, initiates the

colonization of plant roots by arbuscular mycorrhiza (Gobbato

et al., 2012). During Nod-factor signaling, CCaMK/IPD3 forms

large complexes with two GRAS proteins, nodulation signaling

pathway1 (NSP1) and NSP2, in addition to DELLA proteins.

The DELLA proteins work as scaffolding to link the CCaMK-

IPD3 complex with the NSP1-NSP2 complex, resulting in a

complicated unit that regulates symbiotic signaling (Fonouni-

Farde et al., 2016; Jin et al., 2016). This unit also activates the

expression of two downstream transcription factors, NIN and

ERN1 (ERF, required for nodulation 1) (Marsh et al., 2007).

Furthermore, ERN1 and/or ERN2 regulate the expression of

rhizobium-directed polar growth (RPG), cystathionine b-synthase
like 1 (CBS1), nodule pectate lyase (NPL), and nuclear factor YA 1

(NF-YA1), while NIN regulates the expression of early nodulin

11 (ENOD11) and ENOD12 (Fonouni-Farde et al., 2016).

Another reported interactor of CCaMK is the Calf

intestinal phosphatase 73 (CIP73) (Kang et al., 2011). CIP73

belongs to a large ubiquitin super family, and it contains a

Scythe N ubiquitin-like domain. A report showed that CIP73

interacted with CCaMK in a Ca2+-independent manner (Kang

et al., 2011). However, CIP73 is phosphorylated by CCaMK in

a Ca2+/CaM-dependent manner (Kang et al., 2011). The cip73

silencing mutants displayed significantly reduced nodulation

as compared to the wild-type control, indicating that it has a

role in nodule formation (Kang et al., 2011). Notably, due to

CIP73 having a scythe-N ubiquitin-like domain, it may be

interesting to study whether the 26S proteasome mediates

rhizobial/AM fungal infections. Known components of the

Ca2+-mediated local symbiotic pathway in roots is described

in Figures 1 and 2.
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Phytohormone-mediates symbiosis
through regulating the stability of the
CCaMK-DELLA-CYCLOPS complex

To activate nodulation or arbuscule formation, the CaM-

CCaMK-DELLA-CYCLOPS protein complex binds to the

promoter of symbiosis-related genes (Pimprikar et al., 2016).

The DELLAs are a key scaffold protein for symbiosis, but they

are also critical transcription factors that regulate phytohormone

signaling. Therefore, DELLAs may be the link between hormone

signals and symbiosis (Liu et al., 2018). Studies about

phytohormones involved in symbiosis focus on gibberellic acid

(GA), auxin, cytokinin, and abscisic acid (ABA).

NFs-triggered the activation of nodulation requires an optimal

level of GAs and exogenous high concentration (>0.01 mM) GA

treatments inhibit AM and rhizobial symbioses (Ferguson et al.,

2005; Ferguson et al., 2011). One hypothesis is that GA negatively

regulates plant symbiosis through the disruption of the CCaMK-

DELLA-CYCLOPS complex. This disruption occurs when GA-

receptor GID1 (GA INSENSITIVE DWARF1) perceives GA, and
Frontiers in Plant Science 06
then interacts with DELLA proteins (Nemoto et al., 2017). The GA-

GID1-DELLA complex recruits a specific F-box protein that

interacts with the SCF E3 ligase complex, resulting in the 26S

proteasome-mediated ubiquitination and degradation of DELLA

proteins. Recruiting E3 ligases to DELLAs (i.e., part of the CaM-

CCaMK-DELLA-CYCLOPS complex) may lead to the degradation

of the entire complex (Wang and Deng, 2011; Kudla et al., 2018).

Auxin has a positive role in nodulation (Suzaki et al., 2013;

Breakspear et al., 2014; Bensmihen, 2015), and nodule numbers

are regulated by shoot-to-root auxin transport (van Noorden

et al., 2006). Auxin also seems to be positively involved in AM

symbiosis (Hanlon and Coenen, 2011; Etemadi et al., 2014).

However, a separate study revealed that indole-3-acetic acid

(IAA), a class of auxin, promoted GA1 accumulation in pea

(O’Neill and Ross, 2002); further studies are needed to extend

our knowledge about GA and auxin crosstalk during plant

symbiotic microbe interaction.

The role of Ca2+ in controlling cell division and growth is

well recognized (Perris et al., 1968). It is becoming clear that

there is also a linkage between cytokinin signaling and Ca2+
FIGURE 2

Schematic presentation displaying the domain structure of Ca2+/CaM-dependent protein kinases (CCaMK). The kinase domain (KD) is colored in
blue, the autoinhibitory domain (AID) and calmodulin (CaM)-binding domain (CaMBD) are colored in green, the visinin-like domain (VID) is
colored in purple and the EF-hand motifs in VID are in yellow. When symbiotic microbes are absent, the auto-inhibitory domain interacts with
the kinase domain through a hydrogen bond between amino acid Thr-271 in KD and Arg-323 in AID. The interaction keeps the CCaMK inactive.
The basal Ca2+ concentrations in root cell may bind to one or two EF-hands in the visinin-like domain, but not to all three EF-hand motifs.
When symbiotic bacteria are present, the Nod factors induce nuclear Ca2+ oscillations. Hence, Ca2+ is loaded onto the EF-hand motifs in VID
and to CaM. Subsequently, the Ca2+-loaded CaM will interact with the CCaMK AID. Ca2+ and CaM trigger conformational changes in the tertiary
structure of CCaMK resulting in the AID being detached from the KD and removing the auto-inhibition caused by the Thr-271 phosphorylation.
Thus, the CCaMK is completely activated. When the amino acid Ser-343 and/or Ser-344 in the AID are phosphorylated, the interaction between
CCaMK and Ca2+-bound CaM is blocked and the CCaMK becomes inactive. The gain-of-function T271A mutant displays a spontaneous
nodulation phenotype; a possible explanation is the hydrogen bond between amino acid Thr-271 in KD and Arg-323 in AID is compromised.
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signaling. Cytokinin is an important hormone involved in

symbiotic interactions between Rhizobium bacteria and

leguminous plants. This interaction leads to the induction of

the nitrogen-fixing nodule. It was proposed that cytokinin was

the key differentiation signal for nodule organogenesis (Frugier

et al., 2008). It was also proposed that cytokinin is involved in

the regulation of NIN (Nodule Inception) expression to initiate

nodule organogenesis and other transcriptional regulators

through mechanisms operating both locally and systemically

(Yano et al., 2008; Liu et al., 2019). Further study revealed that

Ca2+ signaling involve cytokinin mediated nodule formation

through regulating cytokinin biosynthesis (Reid et al., 2016; Reid

et al., 2017). Nod factor induced cytokinin biosynthesis genes

expression, including isopentenyl transferase 2 (LjIPT2) and

lonely guy 4 (LjLog4), and CCaMK is required for this

induction (Reid et al., 2017), although the underlying

mechanism is still unclear.

ABA application can inhibit root nodulation, suggesting that

ABA is a negative regulator of rhizobial symbiosis (Suzuki et al.,

2004; Ding et al., 2008). Interestingly, arbuscule formation was

compromised in an ABA biosynthesis-defective tomato mutant

sitiens (Herrera-Medina et al., 2007) and further work in

Medicago truncatula supported the idea that some

components of ABA signaling were needed for AM symbiosis

(Charpentier et al., 2014). Another study revealed that ABA

contributed to root symbiosis in a dose-dependent manner: high

concentrations of ABA repressed AM colonization, while low

ABA (i.e., less than 200 mM) promoted AM development (Liu

et al., 2018). ABA works in complex signaling pathways with

other hormones, including GA. In fact, the interconnection

between ABA and GA is illustrated by ABA negatively

regulating GA biosynthesis-related gene expression and

positively regulating GA catabolism (Nag et al., 2005; Martıń-

Rodrıǵuez et al., 2016). Another study revealed that exogenous

ABA application enhanced the stability of DELLA protein, even

in the presence of GA (Achard et al., 2006). ABA maintains the

stability and integrity of DELLAs and low doses of ABA may

contribute to its positive impact on AM symbiosis (Bedini et al.,

2018). High levels of ABA impair Ca2+ oscillations, which

negatively affects symbiosis (Charpentier et al., 2014). Further

studies could address whether SA and JA are also involved in

root symbiosis through stabilizing the DELLA protein, although

the underlying molecular mechanism remains unclear (Liu

et al., 2018).

CCaMK also has a positive role in ABA-mediated responses

(Ni et al., 2019; Chen et al., 2021). Work in rice showed that the

type C protein phosphate (PP2C), also known as PP45,

negatively affected CCaMK activity by dephosphorylating

T263. However, ABA induced H2O2 accumulation suppressed

the transcriptional expression of PP45 (Ni et al., 2019). Although

this work was performed in rice, which does not form symbiotic

relationships with rhizobia, it would be interesting to

hypothesize that ABA is involved in the mediation of root
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symbiosis through CCaMK. Further studies are needed to

better understand the interaction between CCaMK and ABA

and their role in symbiosis.
Systemic symbiotic signaling

A number of studies have revealed that plants tightly regulate

nodule development through a systemic signaling pathway (root-

derived peptides and shoot-derived microRNA), also known as

autoregulation of nodulation (AON) (Kassaw et al., 2015). During

early rhizobial infection events, the small peptides, CLAVATA

(CLV)/Embryo-surrounding region (CLE), accumulate in roots

and are transported to the shoots through the xylem (Yamaguchi

et al., 2016; Wang et al., 2022). The rhizobial-induced CLE (RIC) is

recognized by a receptor complex in leaves, and this recognition

initiates the biosynthesis of cytokinins and the shoot-derived

microRNA, miR2111 (Kassaw et al., 2015; Gautrat et al., 2020;

Okuma and Kawaguchi, 2021). The shoot-derived regulators are

transported to the root through the phloem to repress or fine-tune

nodule formation (Wang et al., 2022), although the role of Ca2+

signaling in these systemic regulators is not understood.

Recent studies indicate that photosynthesis and light signals

participate in symbiotic nitrogen fixation in soybean through Ca2+

signaling. Root nodules formed when plants were grown under

normal light conditions. However, when light was absent, nodule

formation was disrupted. Moreover, root nodules were only formed

when leaves were illuminated; only illuminating the roots failed to

promote the formation of infection threads by rhizobia (Wang et al.,

2021). Blue light was sufficient for nodule formation, and a known

blue light receptor GmGRY1 was required for light-induced

nodulation. Light signals facilitated the movement and

transportation of two proteins, soybean TGACG-motif binding

factor 3/4 (GmSTF3/4) and flowering locus T (GmFTs), from

shoots to roots. Once these proteins are in roots, the transported

GmSTF3 is phosphorylated and becomes a substrate for the active

CCaMK. The phosphorylated GmSTF3 interacts with GmFT2 to

form a complex. This complex targets the promoter regions of

GmNF-YA1 and GmNF-YB1 and induce their expression,

ultimately resulting in nodule formation. Thus, these findings

using soybeans suggest that plants could interpret light signals in

leaves and then signal roots that photosynthesis-derived

carbohydrates are available to support symbiosis and enhance

nitrogen fixation in roots (Figure 3). It is worthwhile to test

whether Ca2+ signaling mediates the activation and formation of

mobile signals and to determine the long-distance signal transport.
Summary and outlook

We are starting to learn the complexity of Ca2+ signaling

during plant-microbe symbiotic interactions. Previous studies

have mainly focused on the individual, local signaling
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components. A recent study Wang, et al. (2021) uncovered that

not only the local signaling, but also the systemic signal

integration coordinately regulates symbiotic responses. Further

studies suggest the specific spatial and temporal Ca2+ signaling

response is tightly regulated and sophisticated; it is likely that

multiple symbiotic signaling pathways are involved in fine-

tuning a precise symbiosis response in plants (Kudla et al., 2018).

Although exciting advances in Ca2+-mediated symbiotic

signaling pathways are rapidly expanding our knowledge about

how plants mediate symbiotic interactions, some questions remain

to be answered. One question is whether Nod factor or symbiotic

microbes induce the cytosolic Ca2+ transients (although nuclear Ca2

+ oscillation has been well documented) and which Ca2+

component(s), Ca2+ channel or Ca2+ pumps that are localized in

the cytoplasmic membrane is/are involved in this biological process.

Another question is whether CCaMK is involved in the transport of

ammonia from roots to shoots. More questions remain as to

whether other novel Ca2+ signaling proteins [e.g., CaM-like

proteins (CML) or calcineurin B-like proteins (CBLs)-CBL-

interacting protein kinases (CIPKs)] participate in symbiotic

regulation. The answers to the above questions should provide

new insights into nodulation and arbuscular mycorrhizal

colonization. This knowledge would empower us to develop

strategies to improve and manipulate plant-microbe symbioses

and, thus, increase crop yield and agricultural productivity.
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FIGURE 3

Systemic symbiotic signaling pathways in plants. Leaves perceive the blue light signal through the blue light receptor, GmCRY, which
subsequently facilitates the long-distance transport of two symbiosis-associated transcription factors, GmSTF3/4 and GmFT, from shoots to
roots. CCaMK, a Ca2+ and CaM-binding protein phosphorylates GmSTF3, which then facilitates the interaction between GmSTF3 and GmFT to
form a complex. This complex binds to the promoter region of symbiosis-related genes, such as NIN, NF-YA1 or NF-YB1, to trigger nodule
formation in leguminous plant roots.
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