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The viability status of seeds before sowing is important to farmers as it allows them

tomake yield predictions.Monitoring the seed quality in a rapid and nondestructive

manner may create a perfect solution, especially for industrial sorting applications.

However, current offline laboratory-based strategies employed for themonitoring

of seed viability are time-consuming and thus cannot satisfy industrial needswhere

there is a substantial number of seeds to be analyzed. In this study, we describe a

prototype online near-infrared (NIR) hyperspectral imaging system that can be

used for the rapid detection of seed viability. A wavelength range of 900–1700 nm

was employed to obtain spectral images of three different varieties of naturally

agedwatermelon seed samples. The partial least square discriminant analysis (PLS-

DA) model was employed for real-time viability prediction for seed samples

moving through a conveyor unit at a speed of 49 mm/sec. A suction unit was

further incorporated to develop the online system and it was programmatically

controlled to separate the detected viable seeds from nonviable ones. For an

external validation sample set showed classification accuracy levels of 91.8%,

80.7%, and 77.8% in relation to viability for the three varieties of watermelon

seed with healthy seedling growth. The regression coefficients of the classification

model distinguished some chemical differences in viable and nonviable seed

which was verified by the chromatographic analysis after the detection of the

proposed online system. The results demonstrated that the developed online

system with the viability prediction model has the potential to be used in the seed

industry for the quality monitoring of seeds.
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Introduction

Watermelon (Citrullus lanatus) is one of the most

economically important crops grown in 122 countries, in

terms of production value (US$ 51 million in 2020) (Food and

Agriculture Organization of the United Nations, 2022). The use

of high-quality watermelon seeds is one of the most important

elements in farming systems for increasing agricultural

production (Ahmed et al., 2020). Each seed has its own

distinct capability to produce a plant from a seed lot in the

field under favorable conditions. From a technological point of

view, a seed can be defined as a small embryonic plant with

stored food enclosed within a cover or seed coat. The seed

viability denotes the degree of metabolically active and alive

seeds that can undergo the metabolic reactions required for

germination and seedling growth. Determination of the seed

quality is also critical for producers who need to predict seed

viability using an appropriate methodology in a precise fashion

(Mukasa et al., 2022).

To acquire improved cultivars, watermelon breeders need to

have high-quality seeds of cultivars, breeding lines, and gene

mutants that exhibit desired traits. To accomplish this, they

should evaluate the seed samples of available cultivars to become

familiar with germplasm diversity (Whitfield and Last, 2017).

Therefore, the quick indication of seed viability has many

advantages for watermelon breeders that can allow rapid

decision making.

To determine the seed viability, the most used method is the

germination rate (%), which has become universally accepted.

Several renowned methods are also available for measuring the

germination rate, such as the tetrazolium test (TZ), biochemical

tests (coloring, enzyme activity, and oxidase methods); and other

seed chemical tests (fatty acid, ferric chloride, and conductivity

tests) (Copeland and McDonald, 2012). However, in general,

seed industries detect nonviable seed by randomly taken of a

handful seeds from a seed lot and perform the conventional

germination test (Mukasa et al., 2022). Therefore, these

germination test results are often not exact and sometimes

may overestimate the field performance of a particular seed

lot. In addition, the germination test requires a longer duration

to ensure the seed quality as germination time varies depending

on the seed species.

To overcome this weakness, seed industries need to undergo

a continuous detection process, which should be an

uninterrupted process that analyzes and controls the seed

quality during the process. Continuous quality control requires

the development of new technologies for real-time (online, in-

line, or at-line) monitoring that can improve the quality, safety,

and efficiency of seed quality detection. By combining

spectroscopic technology with an imaging camera,

manufacturers can continuously monitor each seed of a seed

lot to predict the viability.
Frontiers in Plant Science 02
The hyperspectral (HSI) based sorting system has the great

potential to replace the conventional germination testing

techniques. By employing HSI technique, several important

aspects of the seeds can be obtained. Published researches has

already suggested the use of HSI incorporated with multivariate

data analysis to predict different seed factors, such as seed age

(Huang et al., 2016), viability detection (Ambrose et al., 2016),

moisture content (Cogdill et al., 2004), and the detection of

fungal infestation (Del Fiore et al., 2010; Kandpal et al., 2014).

For actual real-time application, it is necessary to simultaneously

collect and analyze data during the continuous movement of

seeds. Previous researchers were able to apply the HSI technique

for quality evaluation of the corn seed viability during

continuous operation (Wakholi et al., 2018).

Watermelon seed both seeded and seedless contains many

chemical and mineral components, and published literature has

described the contents of carbohydrates, proteins, and moisture

in different varieties (Jyothi lakshmi & Kaul, 2011; Tabiri, 2016).

Researchers had reported that the loss of seed-soluble

carbohydrates is related to seed aging (Horbowicz and

Obendorf, 1994), and this has been proved for maize seed

(Bernal-Lugo and Carl Leopold, 1992) and wheat grain seed

(Lehner et al., 2008). Other published research has also

confirmed that seed proteins (Mbofung et al., 2013; Sekar

et al., 2015) and moisture content (Repo et al., 2002; Kibinza

et al., 2006) have direct relationships with the seed viability.

Research proved that the deficiency in the moisture content of a

substance affects the physical and chemical properties of a

material (Adebowale et al., 2011; Sun et al., 2017).

During aging process of seeds, their vitality steadily decrease

in storage period. However, almost all above studies only focused

on artificial seed aging. Moreover, previous published research

has proved that artificially aged seeds display amplified

deterioration in comparison with naturally aged seeds

(Petruzzelli and Carella, 1983; Giurizatto et al., 2012;

Fantazzini et al., 2018) and are associated with a higher

prediction accuracy. In addition, all these researches are

destructive, and limited research has been conducted for

naturally aged seed deterioration. Hence, this research focuses

on natural aging as researchers detected physiological changes in

seeds after long term storage (Ahmed et al., 2018) that reduced

the viability (Yasmin et al., 2019).

To the best of our knowledge, it was hard to find studies

about high-throughput phenotyping techniques for watermelon

seed quality focused on watermelon breeding issues. In our

previous study, to distinguish viable and non-viable triploid

watermelon seeds from three different varieties stored for four

years, a machine learning based classification method was

developed using Fourier transform near-infrared spectroscopy

(Yasmin et al., 2019). On the other hand, only a few studies have

been recently conducted to develop phenotyping technologies

for the rapid and non-destructive prediction of watermelon seed
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qualities such as bacterial infection (Lee et al., 2017), detection of

seedless from seeded watermelon seeds (Mukasa et al., 2022),

and internal parameters (endosperm and air space) (Ahmed

et al., 2020), and morphological features (Liu et al., 2019).

Therefore, this study proposes an online HSI system for the

rapid and continuous identification of viable seed after natural

aging. Moreover, this prototype system can be easily set up on

the inspection lines to monitor, detect, and sort viable seeds from

naturally aged seedless watermelon seed varieties. By applying

this method, seed quality measurement can be performed for the

entire batch in fast and cost-effective manner as the production

cost of seedless watermelon seed is higher than the seeded

watermelon seed (Seeds, 2014). To develop classification

(viability of seeds) model, partial least square discriminant

analysis (PLS-DA) technique and various was utilized and

eight various preprocessing methods were applied for more

accurate analysis. For viability prediction of watermelon seeds,

pixel-based chemical imaging was performed for viability

prediction of watermelon seeds by PLS-DA model. This could

provide a hands-on solution for large-scale, real-time viability

categorization of naturally aged seeds.

The aim of this study was to develop a prototype of an online

NIR hyperspectral imaging system that can be used as a

continuous detection process to visualize the viability of

naturally aged seeds. To achieve this, a conveyor belt system

was designed and equipped with an NIR-HSI camera, which was

controlled by a custom-built graphical interface. By using this

proposed system, real-time quality monitoring was used to

assess the viability of bulk seed samples. To evaluate the

detection accuracy of the proposed real-time NIR-HSI

technique, a separate validation data set was used. After viable

and nonviable seeds were detected as two groups, another

germination test was performed to verify the germination

accuracy. Afterwards, chromatographic and moisture content

tests were conducted to identify designated chemical and

moisture differences between viable and nonviable seed.
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Materials and methods

Seed collection

The three varieties of naturally aged seedless (triploid)

watermelon seed used in this study, Choiganggul, Sambaechea,

and Leehyunglim varieties, which will be referred to as V1, V2,

and V3, respectively, were provided by the Korea seed & variety

service (KSVS), South Korea. The seed samples were stored in a

small room specifically designed for seed lots under the

management of KSVS from 2015 for natural aging. Seeds were

sealed in a plastic container, and the room temperature was

controlled at around 5°C. The germination rate of the seed

varieties was provided by the seed institute; 89%, 32% and 14%

for V1, V2 and V3 respectively. To investigate the accuracy of

the given germination rate, another germination test was

performed using 200 seeds randomly taken from each three

varieties. Afterwards, one thousand seeds were used from each

variety (total of 3000 seeds from the three varieties) to establish

the classification model. A detailed flowchart illustrating the seed

viability analysis using the near-infrared hyperspectral imaging

(NIR-HSI) technique is shown in Figure 1.
HSI system for image acquisition

In this study, a NIR-HSI camera (Resonon PIKA-640, NIR,

MT, USA) with an Allied vision detector combined with 336

pixels and a spectral range of 900–1700 nm was used.

Illumination was provided using two pairs of three lighting

sources with a tungsten halogen lamp (LS-F100HS, 100 W

each) through optical fiber fittings (G(P)L30 × 1.0-1000F). The

focal length of the camera was 25 mm, and the distance from the

camera lens to the sample was 56.4 cm with an instantaneous

field of view (IFOV) of 0.60 milliradians. The conveyor unit was

designed with rubber material to prevent seed falling off in the
FIGURE 1

Procedure used to generate the classification model using the near infrared hyperspectroscopic (NIR-HSI) technique.
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movement process, and the dimensions of the conveyor belt

were 200 cm (length) × 18 cm (width), which permitted the

continuous analysis of the bulk lot of seeds. The field of view

(FOV) of this setting was 26 cm × 18 cm. A DC motor controller

was connected to the conveyor belt to control the belt speed

using a custom-built algorithm scripted in Matlab (2019a, The

MathWorks, Natrick, MA, USA) software. Figure 2 illustrates

the proposed data collection process with a conveyor belt speed

of 49 mm/s at an ambient temperature of 21°C.

Formodel development, tomitigate the prediction error caused

by the seed side facing the camera, seed samples were scanned from

both sides of the seeds,which doubled the acquired spectra number.

The camera exposure time was set to 17 ms during spectral

acquisition. Hyperspectral reflectance images of the seed samples

were collected and stored for further analysis. Finally, the relative

reflectance was calculated using the following equation:

Xcal =  
Xraw − Xdark

Xref − Xdark

where Xraw is the raw HSI image, Xdark is the dark reference

acquired by the covered camera lens, Xref is the white reference

obtained using a Teflon board with >99% reflectance, and Xcal is

the calibrated image, which was corrected by removing noise to

produce a cleaned absolute image (Mo et al., 2014).
Spectral data processing

The samples containing spatial noise in the collected HSI

images were minimized using a 2D median filter with a moving

window of 3 × 3 pixels. The regions of interest (ROIs) were used

to manually extract the spectral information of the watermelon

seed samples from the acquired HSI images. The mean spectral

data from each sample were saved according to the respective
Frontiers in Plant Science 04
seeds, and this procedure was performed for all three varieties,

resulting in a total of 6000 spectra (1000 seeds from each of the

three varieties with double-sided spectra). All seeds and spectra

were numbered carefully, and the seeds were placed on a 96-well

plate and stored in the refrigerator at 4°C until further analysis.
Germination test

The between paper germination test is the most effective

approach for ensuring easy counting of the sprouted seeds

through visualization of the seeds that are beginning to sprout

and those that are not showing any action of germination. Due

to being naturally aged, the numbers of seeds in the viable and

nonviable groups were not the same. The germination rate was

found 89% for V1, 32% for V2, and 14% for V3. These rates were

determined by performing a germination test on 200 seeds from

each variety, and the values were the same as those provided by

the seed company. The germination test was done to aid in the

classification model development and to inspect the primary

germination rate and was conducted following the guidelines of

the International Seed Testing Association (ISTA) (International

Seed Testing Association, 1985).

Seeds were placed on amoistened paper towel to determine the

seed viability after spectral acquisition. The seed number was

maintained very carefully from the 96-well plate. All the

moistened towels were rolled carefully and placed upright in a

deep bottom plastic box. Then, 3 cm of the rolls was covered from

the bottomwith distilled water andmoistenedwhen necessary. The

rolled paper towels were placed in the germination cabinet at 25°C

for 14 days. Seeds with a primary root length of 5 mm were

considered viable. Data from the germination test were used to

divide the seeds into two groups: viable seeds and nonviable seeds.

After 14 days, the seeds that did not show any signs of germination
FIGURE 2

Online NIR hyperspectral imaging system employed for the visualization of seeds in relation to their viability.
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were included in the group of nonviable or dormant seeds. To

remove model bias for any single group (viable or nonviable), the

same number of seed samples was included in both of the two

groups for each of the three varieties. The details of the sample

distribution for the calibration and validation sets for each of three

groups are given in Table 1.
Model development and
multivariate analysis

For each of the three varieties, 70% of the data were used to

build the classification model and the remaining 30% were applied

for the model testing as presented in Table 1. Eight different

preprocessing methods, including normalization (mean, range,

and maximum), multiplicative scatter correction (MSC), standard

normal variate (SNV), and Savitzsky–Golay derivatives (first and

second order), were applied to the acquired spectral data.

Preprocessing was performed to remove the spectral

irregularities that may have been caused by light scattering or

the sample texture. Normalization generally compensates for

variations the source intensity, resulting in a scaled and offset

corrected spectrum at the same time (Lasch, 2012). MSC and

SNV preprocessing remove undesired scattering and slope

effects (MacDougall et al., 1985; Barnes et al., 1989). The

Savitzsky–Golay derivatives represent one of the most popular

filters for smoothing spectra by resolving overlapped peaks and

removing the baseline offset (Savitzky and Golay, 1964).

For model classification, PLS-DA was used, which is the

modified form of the partial least square regression (PLS-R) and

is expressed as

Y = X � b + E,

where X is an n × p matrix that holds the spectral values of

each class, b is the regression coefficient, and E is the error term.

In this study, for the construction of the PLS-DA model, the

spectral data of viable and nonviable seeds were arranged in

matrix X, while matrix Y contained an artificial value expressing

the class, as given below:

Y =
0 = sample   belongs   to   nonviable   group

          1 = sample   belongs   to   viable   group                          

(
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To classify the samples correctly, a classification threshold

value of ±0.5 was generally selected with respect to each group.

Samples within the range of ±0.5 from a group were classified as

belonging to that group. To build a linear relationship between

the predictors and response variables, both X and Y values were

changed by latent variables (LVs):

X = TPT + EX    

Y = UQT + EY    

Here, P and Q represent the loading matrix, and T and U

represent the score matrix. EX and EY are the residual matrices of

X and Y, respectively.

The goal of this classification model is to detect naturally

aged seeds in a nondestructive manner, which may discard some

viable seeds with the nonviable group. After applying the final

classification model using the NIR-HSI technique, separate

dataset (which will be termed as validation set-2 for further)

were used to obtain a realistic estimation of the prediction

performance. The seed samples of validation set-2 were used

to assess chemical differences and analyze the moisture content

after detecting by the proposed NIR-HSI technique and

performed another germination test.
Image processing

After applying several preprocessing methods, the model

that yielded the best level of accuracy was accepted. To

distinguish between viable and nonviable naturally aged seed

for each three varieties, the regression coefficient vectors were

multiplied by the original masked HSI images to develop the

chemical images. The resulting chemical images were converted

into binary images using same classification threshold value that

was used to construct the classification model to detect seeds in

relation with viability. In this classification model, 1 is denoted as

viable seeds and 0 for nonviable seeds.

After model selection, illustrated in Figure 3, the proposed

NIR-HSI technique was used to inspect the quality of the seeds

from validation set-2 as a continuous process. Once the button

of the conveyor belt was pressed, samples proceeded to the field

of view (FOV) of the NIR-HSI camera. This camera analyzed
TABLE 1 Details of the calibration and validation set distribution. The total sample number for each variety is given in parenthesis in the first
column.

Variety Number of samples were taken Germination rate (%) Sample number
(viable + nonviable)

Calibration samples Validation samples

V1 1000 89 126 84 42

V2 1000 32 612 408 204

V3 1000 14 242 160 82
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and identified naturally aged seeds in relation to their viability.

After identifying the viable and nonviable seeds from each of the

varieties as batch identification, were stored carefully for

further analysis.
High-performance liquid
chromatographic analysis

HPLC analysis was carried out on a modular chromatograph

containing an evaporative light scattering detector (Alltech 3300

ELSD, HP 1260) and a diode-array detector (DAD) at a wavelength

range of 190–800 nm with a quaternary pump. An analytical

column C18 (zorbax Eclipse XDB, 150 × 4.6 mm, 50 mm particle

size, and 5 μm pore size) was eluted at ambient temperature at a

flow rate of 1 mL/min. The injection volume for the liquid samples

was 20 μL. Samples were treated differently for carbohydrates and

proteins for the HPLC analysis, and the chromatograms were

evaluated with an in-built software interface.

Several chromatographic analyses of carbohydrates have

been conducted using 190 nm for sugars (Oldfield, 2019), 240

nm for phenylisocyanate (Herrero et al., 2011), 245 nm for

saccharides (Zhang et al., 2003; Strydom, 1994), 265 nm for

carbohydrates (Yan, 2014), and 280 nm for typical syrup

(Kearsley and Dziedzic, 1995). Considering previous studies,

several UV wavelengths (nm) were applied, and the

chromatograms were recorded to identify the difference in

carbohydrate content based on seed viability for each of the

three varieties. In total, 30 seeds from validation set-2 (15 viable

—5 viable seeds from 3 varieties and 15 nonviable—5 nonviable
Frontiers in Plant Science 06
seeds from 3 varieties) were taken randomly to prepare the

sample after detection by the proposed NIR-HSI technique. The

seed samples were powdered after removing the seed coat and

prepared for HPLC analysis. The procedure used was that

described by Lopez-Hernandez et al. (1994) where 1.5 g

endosperm was taken and shaken for 30 min with 80 mL of

80% analytical alcohol (Lopez-Hernandez et al., 1994). The

extract was filtered, and the residue (alcohol-insoluble solids

(AIS)) was reserved for carbohydrate determination. In this

study, the endosperm of each individual seed was extracted

and shaken for 30 min with 80% analytical alcohol.

Chromatographic analysis of protein has been carried out

for various types of agro foods, such as oat (Lapvetelainen et al.,

1995), maize (Wilson, 1991), and cocoa seed (Voigt et al., 1994)

at 210 nm; soybean (Oomah et al., 1994), whey (Sturaro et al.,

2016), milk (Baranyi et al., 1995), and sunflower seed (Kortt and

Caldwell, 1990) at 214 nm; milk (Chabance et al., 1995) and pea

(Chambers et al., 1992) at 220 nm; lupinus spices (Salmanowicz,

1995), peanut seed (Basha, 1988), and milk (Baranyi et al., 1995)

at 280 nm. Based on previous research, in this study, several

types of detector (nm) were selected for the HPLC analysis. For

sample preparation, another set of 30 seeds (15 viable and 15

nonviable) from the validation set-2 were taken after the

detection. The seed coat from each seed sample was removed

and ground into a fine powder. One milligram of sample was

dissolved in 1 mL of buffer solution (0.1% (v/v) formic acid in

water) (Aguilar, 2004). To remove undissolved material, the

sample was filtrated through a 0.22 μm filter and used for the

HPLC analysis for protein difference between viable and

nonviable seeds.
FIGURE 3

The flowchart of the custom-built algorithm for online measurement.
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Moisture content measurement

There are several methods that can be applied for moisture

content (MC) measurement. The gravimetric method (Bonner,

1981a) was employed in this study to evaluate the MC retention

in seeds in relation with their viability. This method is a standard

laboratory technique that can be applied to detect the moisture

content difference, and it is widely used in a variety of industries

(agriculture, construction, chemical, and food). Seed moisture

content retention was detected by following the rules of the

Association of Analytical Chemists (AOAC, 1995) (AOAC,

1995). The initial weights of both viable and nonviable seeds

were measured in grams using four decimal places. After that,

the weighted seeds were dried at 105°C for 24 hours and weighed

again. Based on the initial and final weights of the samples, the

moisture content was calculated, assuming that all weight loss

occurred due to the removal of water. In this study, the moisture

content was calculated on the basis of wet weight samples and

was calculated as follows (Bonner, 1981b):

%  MC =  
(Ww −Wd)� 100

Ww

where MC is the moisture content retention expressed as a

percentage (%), Ww is the wet weight of samples, and Wd is the

dry weight of samples.

After the execution of chromatographic and MC test of

validation set-2 an analysis of variance (ANOVA) test was

performed separately for those tests. In the study, only one

independent variable was considered. The null hypothesis was

that the means of all levels would be equal, and the alternative

hypothesis was that the means of one or more levels would be

different. If the value of P was less than 0.05 (P ≤ 0.05), the null

hypothesis was rejected; otherwise, the alternative hypothesis

was rejected. The analysis was performed using MATLAB

(2019a, MathWorks, Natick, MA, USA).
Frontiers in Plant Science 07
Results and discussion

Spectral acquisition

After acquiring the spectra of 3000 samples (as both side spectra

for the three different varieties were acquired, the total spectral

number was 6000), seeds were stored carefully in a 96-well plate by

following their respective numbers and varieties. These seed

numbers were also used during the germination test, and the

seeds were recorded as viable and nonviable for each of the three

varieties individually. The original spectra of the seed varieties were

extracted from the images using the region between 900 and 1700

nm. Before conducting any kind of analysis on the three varieties,

Hoteling’sT2 ellipsewas used to determine the outliers.However, no

outliers were removed as the confidence level was 98.9% for the first

two principle components of each naturally aged watermelon seed

variety. Finally, the raw and mean spectra (after applying the range

normalization as preprocessing) of the viable and nonviable seeds

were plotted from the selected ROI and are illustrated in Figure 4 for

V3. Seven different preprocessingmethodswere applied on the three

varieties separately. Among them the best preprocessingmethod for

each varietywas chosen based on the prediction accuracy. Themean

spectra exhibited a lower intensity for nonviable seeds between 1425

and 1670 nm, which was significantly similar for the other two

varieties. This NIR region showed differences for the moisture,

carbohydrate, and protein contents (Aenugu et al., 2011). After

applying preprocessing methods, the spectra of each of the three

varieties displayed major absorbance differences between naturally

aged viable and nonviable seeds.
Model development

Partial least square discriminant analysis (PLS-DA) was

performed to establish the classification model. PLS-DA was
A B

FIGURE 4

(A) Original spectra and (B)mean spectra for V3, where the marked region shows a lower intensity for naturally aged nonviable seeds than viable seeds.
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suitable for use in this study due to the predictors having more

variables than the observations and because a high level of

correlation was present among the original predictors (Wold

et al., 2001). As the predicted values were denoted as 0

(nonviable seed) and 1 (viable seed) in the PLS-DA model, the

classification threshold value employed to identify the two

groups was automatically set at 0.5, resulting in some

misclassified samples in both groups. This phenomenon

indicated that some viable seeds had been classified as

nonviable and which was inspected later and found very poor

seedling growth. Generally, seeds lose their ability to germinate

due to aging in storage. Hence, nonviable seeds are always

discarded as they are no longer capable of germination

(USDA/Agricultural Research Service, 2008). In this study, all

the viable seed samples that were present in the nonviable group

was rejected. This operation would be helpful to gain a higher

germination rate (%) for validation set-2 as the proposed HSI

system will only consider the viable seed, which would be

beneficial for farmers and seed producing industries.

During the development of the classification model from the

prediction set, latent variables (LVs) were calculated in terms of the

lower error rate, which is themost common parameter employed to

measure the performance of classification models (Ballabio and

Consonni, 2013). The classification parameters of the PLS-DA

modelswere collected after applying several preprocessingmethods

and the only accepted one is presented in Table 2, for all three
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varieties. Figure 5 shows the classification group and the regression

curve for the V3 variety. Figure 5A shows some misclassified

samples in both the viable and nonviable group. To build a

matrix that will contain only the variables of viable seed in that

very group, the classification threshold value was shifted carefully.

Therefore, it will be helpful to detect viable seeds that will produce

healthy seedling from the validation set-2 as the viable seeds that

contain very close state to the nonviable group were rejected.

Therefore, the classification threshold value was shifted to ±0.53,

± 0.52, ± 0.55 respectively for the three varieties and the similar

values will be used for further detection of the validation set-2.

The spectral peak differences for the three varieties were

observed from the regression coefficient curve. The regression

coefficients were calculated and modeled from the developed

partial least square discriminant analysis (PLS-DA) models and

used to interpret the different characteristics of seeds. The

coefficient curve is the most important factor for multivariate

analysis as it gives an interpretation of the results and provides

information about wavelength selection (Cheng and Sun, 2015).

The coefficients of the PLS model show the highest absolute

values of the model, including the most important variables. For

the naturally aged triploid watermelon seed V3 variety, spectral

peak differences between the viable and the nonviable group

were due to the chemical component differences. The regression

coefficient curve agreed with the original mean spectra

(Figure 4B), which also exhibited peaks and valleys at 1415,
TABLE 2 Calibration and validation set for each three varieties.

Sample
name

Viable Seed
number

Preprocessing Threshold Latent variables
(LVs)

CalibrationAcc.v
(%)

ValidationAcc.v
(%)

V1 63 Mean norm 0.53 15 89.0 81.3

Max norm 14 87.6 79.9

Range norm 14 88.2 81.1

MSC 15 82.9 80.0

SNV 10 89.3 83.3

S-G 1st 15 83.7 82.1

S-G 2nd 15 85.7 82.9

V2 306 Mean norm 0.52 8 93.4 86.7

Max norm 10 93.2 84.3

Range norm 9 90.0 79.9

MSC 10 92.7 83.5

SNV 10 91.6 86.1

S-G 1st 9 90.1 85.2

S-G 2nd 9 90.6 85.9

V3 121 Mean norm 0.55 12 94.6 85.6

Max norm 12 93.7 84.6

Range norm 10 95.6 87.8

MSC 11 89.9 81.1

SNV 12 91.2 83.7

S-G 1st 13 92.3 84.8

S-G 2nd 13 93.1 85.2
*Acc.v, Accuracy for viable seed number.
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1475, and 1605 nm in the NIR region. The NIR region near to

1415 nm is related to C–H bonds, which may be due to the

presence of carbohydrates. Additionally, the 1475 nm N–H

stretch first overtone may be due to the presence of proteins

(Burns and Ciurczak, 2007), and 1605 nm is responsible for the

O—H first overtone which may be due to the moisture content

(Davies, 2014). The regression coefficient curves for the other

two varieties provided similar information.
Viability prediction and visualization

After applying the selected preprocessing methods with the

classification threshold values, the regression coefficients for

each of the three varieties were recorded carefully. Afterwards,

the images collected for the seed varieties were evolved by

multiplying the clean and masked 3D HSI images with the

respective regression coefficients. Post-processing applications,

such as masking and morphological area opening on the PLS

images, resulted in good classification models. The difference

between the two groups in relation to the viability was

significantly evident in the middle part of the seed (embryo

region), which was predicted by the respective regression

coefficient plots. Based on the model accuracy, the

classification images were obtained and for V3 the HSI images

are illustrated in Figure 6.

For clear visualization of the seed viability status, binary

classification models of each of the three varieties were

developed. Here, for seed detection in relation to the viability,

misclassification had occurred for each seed variety as the

validation accuracy was near to (≥) 83%. This may have

occurred due to the temperature variation in the system,

imperfect lighting, and vibration during data collection.
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Another reason may be due to the dormancy state of the seeds

which could be germinated under favorable conditions

(Bradford and Nonogaki, 2007). However, the image-based

germination accuracy for the prediction group was still quite

satisfactory in comparison with the actual germination rate.

After seed detection related to the viability of each variety,

seed samples from validation set-2 were used to predict the

germination test and the differences in chemical and moisture

contents as predicted from the regression coefficients. The PLS

models for the three varieties exhibited carbohydrate, protein,

and moisture related differences in relation to the viability

(Figure 5B); hence, these three components were inspected for

further analysis. For this purpose, seed samples were placed over

the conveyor belt irrespective of sides, facing to the camera, and

the speed was similar (49 mm/s) to that used in the model

development process. After detection seeds were stored carefully

as two groups: viable and nonviable.
Real-time germination test

The objective of this study was to detect the germination rate

(%) of naturally aged seed varieties in a nondestructive way. To

investigate this, 590 seed samples of three varieties from

validation set-2 were chosen randomly. After classifying seeds

into two groups in relation to their viability, a between paper

germination test was performed following the similar method

that was used to predict the classification models. Here also a

5 mm root length was denoted as viable seed following the

International Seed Testing Association (ISTA) rules of viability

detection (International Seed Testing Association, 1985). For the

viable group, in each of the varieties, the germination rate was

moderately increased with healthy seedling emergence. This may
A B

FIGURE 5

(A) Classification result after applying the preprocessing method with a shifted baseline, and (B) regression coefficient derived from the partial
least square discriminant analysis (PLS-DA) model for the V3 variety.
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happen as the classification threshold value discarded the seeds

those were very near to the nonviable group. For the nonviable

group, the seed germination rate (%) was lower than (<) 30% for

each of the three varieties where the healthy seedlings were less

than (<) 7%. Table 3 presents the final germination accuracy,

which indicates an increased germination rate (%) compared to

the germination percent provided by the seed company and this

was found to be correct by performing another lab-based

germination test mentioned in section 2.4. (Germination test)

using 200 seed samples from the three varieties. The

classification parameters that are presented in Table 3 as ‘Final

germination rate’, proved the efficiency of the classification

models developed by the proposed online NIR-HSI system.
Chromatographic analysis

To evaluate the chemical difference in viable and nonviable

seed, chromatographic analysis was carried out after the detection

of seeds in relation to viability. Seed samples were taken randomly

of each three varieties from the validation set-2 as two separate

groups (viable and nonviable) from each three varieties. The

regression coefficients of the classification models were showing

chemical differences between viable and nonviable seed which was

consistent for each three varieties. For this analysis, 120 samples in

two groups (60 for carbohydrates and 60 for proteins) fromall three

varieties were taken randomly. In this analysis, the quantities of the

denoted chemicals that passed through the detector during

chromatographic measurement were compared for viable and

nonviable seeds. Here it showed the denoted chemicals contain
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strong absorption (higher peak area (area %)) for viable seeds and

lower for nonviable seeds.Which proves that viable seeds contain a

higher amount of carbohydrates and proteins than nonviable seeds.

For the three varieties, the detector wavelength was consistent. For

carbohydrates and protein detection, the detector wavelength was

set to 265 and 220 nm respectively.

Table 4 shows the chemical differences between the two

groups of naturally aged triploid seeds in relation to their

viability. Each of the varieties exhibited a steady result for the

two groups. A graphical representation of the variability of the

data was used, as shown by the error graph in Figure 7,

demonstrating that the carbohydrate and protein differences

were statistically significant in relation to the viability for each

variety of naturally aged watermelon seed.
Moisture content measurement analysis

The targeted MC retention for naturally aged seeds in

relation to the viability displayed similar trends to those

shown in the chromatographic analysis. For this analysis, a

total of 120 seeds (60 viable and 60 nonviable seeds from all

varieties included in validation set-2) were used and a one-way

analysis of variance (ANOVA) was performed to evaluate the

performance. As shown from the test results in Table 5, a

significant difference (P< 0.05) existed between the groups

(viable and nonviable seeds). Another graphical representation

of the variability of the MC data shown by the error graph in

Figure 8 represents that the MC in nonviable seeds was less than

that of viable seeds.
A B C

FIGURE 6

(A) The original NIR-HSI images, (B) sample visualization using the PLS model where a higher red pixel intensity denotes viable seeds, and (C)
binary image classification for the V3 seed variety.
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TABLE 4 Reverse-phase high-performance liquid chromatography (RP-HPLC) test results showing the chemical composition differences.

Variety Number of samples Chemical component Peak signal (nm) viability Retention time Area %

V1 20 Carbohydrates 265 viable 35.163 36.1586

nonviable 35.163 23.4867

20 Protein 220 viable 35.246 35.6213

nonviable 35.246 25.1953

V2 20 Carbohydrates 265 viable 35.242 33.3985

nonviable 35.242 25.9633

20 Protein 220 viable 35.034 32.4334

nonviable 35.034 20.0022

V3 20 Carbohydrates 265 viable 35.035 34.6988

nonviable 35.035 14.5625

20 Protein 220 viable 35.156 34.1842

nonviable 35.156 28.6951
Frontiers in Pla
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TABLE 3 The germination rate detection accuracy from validation set-2 and its confusion matrices.

Variety Preprocessing Given germination rate
(%)

Final germination rate
(%)

Confusion Matrices

V1 SNV 89 91.4

V2 Mean
normalization

32 80.5

V3 Range
normalization

14 77.7
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Comparison with deep learning techniques

Deep learning techniques have recently emerged as a

promising tool for replacing conventional machine learning

classifiers due to better classification performance and the lack

of redundancy of the feature extraction from handcrafted images

(Krizhevsky et al., 2012; Cireşan et al., 2013). Deep learning

techniques can autonomously extract image features based on

artificial neural networks, performing high-accuracy detection

and classifications. In the agricultural field, deep learning

networks such as a convolutional neural network (CNN),

AlexNet, VGG-19, and residual network (ResNet) have been

recently used for morphological pattern classification of

watermelon seeds (Ahmed et al., 2020), detection of seedless

from seeded watermelon seeds (Mukasa et al., 2022), and

automatic detection of chickpea varieties (Taheri-Garavand

et al., 2021).

However, despite its high accuracy, deep learning techniques

havehardlybeenapplied to theoptical sortingsystembecauseof their

relatively heavier computation load and cost thanmachine-learning

methods (Heo et al., 2018). In our previous study, the cost of deep-

learningbasedsorting systemismainlyaffectedbythecomputational

cost (US$60000), including high-quality central processor units,

graphics cards, and multiple NIR cameras (each US$15000)

(Mukasa et al., 2022). A cost-effective real-time recognition system
Frontiers in Plant Science 12
for detecting full-surface defects of soybean has been recently

developed using various CNN models (Zhao et al., 2021).

However, its total cost was not revealed to readers. Therefore, in

the current study, the PLS-DA model, a machine-learning-based

classifier, was suggested for real-time online measurement of the

viability detection of naturally aged watermelon seeds.
Impact on genetic resources

Detecting the seed viability is essential for maintaining seed

germplasm conservation. Most germplasm collections for the

Cucurbitaceae crop family are provided by the Cucurbit Genetics

Cooperative and the United States Department of Agriculture

(USDA) for breeders and entrepreneurs interested in the genetic

information and breeding of species. In the USDA germplasm

collections, some of the seeds (approximately 10%) are used to

increase seed germination and quantity. Furthermore, the breeding

program for watermelon cultivars is usually performed by

intercrossing the best cultivars which are currently available or

crossing the outstanding cultivars with accessions including more

valuable features missing from the outstanding cultivars (Whitfield

and Last, 2017). Accordingly, it is important to acquire seeds of the

best vigor cultivars, a set of accessions from germplasm resources

having high-quality and valuable genes.
A B

FIGURE 7

Chemical difference between the naturally aged viable and nonviable group that was developed by taking five random seeds from the three
varieties. (A) Carbohydrates and (B) protein.
TABLE 5 Statistical parameter difference for moisture retention between viable and nonviable seeds.

Variety Number of samples Mean square F value Prob > F

V1 40 3.189 14.39 0.001*

V2 40 3.993 12.98 0.002*

V3 40 4.182 14.02 0.001*
fro
*Significantly different.
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Conclusion

In the current study, NIR-HSI system and PLS-DA

classification models were developed for the viability detection

of naturally aged watermelon seeds. The classification models

employed in this study were focused on the detection of viable

seeds, which rendered some viable seeds as nonviable. Based on

the developed PLS-DA model outcome, resultant images for

viability visualization of watermelon seeds were acquired with

the validation accuracy of 83%. The image-based accuracy

was relatively higher than the actual germination results.

Finally, the potential of the online measurement of the

developed NIR-HSI system has been demonstrated through a

continuous inspection process by a custom-built scripted

algorithm. The chromatographic and MC retention tests on the

inspected viable and nonviable seed groups showed significant

differences in carbohydrate, protein, and moisture contents.

Deep-learning-based optical techniques can be another

option for agricultural sorting systems due to their high

accuracy. However, its total cost and computational load are

still much higher and heavier than the machine-learning-based

system. Moreover, developing a real-time online sorting system

will be beneficial in maintaining seed germplasm conservation

and conducting the breeding program. Therefore, in this study,

the PLS-DA-based VIS-NIR system showed high potential for

real-time online measurement of the viability detection of

naturally aged watermelon seeds. Using the developed system,

seeds can be inspected rapidly, which benefits farmers, breeders,

and seed companies. In our future work, we will develop an
Frontiers in Plant Science 13
automated online seed sorter integrated with the developed VIS-

NIR HSI system for watermelon viability sorting.
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MC retention test between the naturally aged viable and nonviable seed for the three varieties.
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