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Mitogenomes of most flowering plants evolve slowly in sequence, but rapidly in

structure. The rearrangements in structure are mainly caused by repeat-

mediated recombination. However, patterns of repeat-mediated

recombination vary substantially among plants, and to provide a

comprehensive picture, characterization of repeat-mediated recombination

should extend to more plant species, including parasitic plants with a distinct

heterotrophic lifestyle. Here we assembled the mitogenome of the

holoparasitic plant Aeginetia indica (Orobanchaceae) using Illumina

sequencing reads. The mitogenome was assembled into a circular

chromosome of 420,362 bp, 18,734 bp longer than that of another individual

of A. indica which was assembled before as a linear molecule. Synteny analysis

between the two mitogenomes revealed numerous rearrangements, unique

regions of each individual and 0.2% sequence divergence in their syntenic

regions. The A. indicamitogenome contains a gene content typical of flowering

plants (33 protein-coding, 3 rRNA, and 17 tRNA genes). Repetitive sequences

>30 bp in size totals 57,060 bp, representing 13.6% of the mitogenome. We

examined recombination mediated by repeats >100 bp in size and found highly

active recombination for all the repeats, including a very large repeat of ~16 kb.

Recombination between these repeats can form much smaller subgenomic

circular chromosomes, which may lead to rapid replication of mitochondrial

DNA and thus be advantageous for A. indicawith a parasitic lifestyle. In addition,

unlike some other parasitic plants, A. indica shows no evidence for horizontal

gene transfer of protein-coding genes in its mitogenome.

KEYWORDS

Aeginetia indica, mitochondrial genome, repeat-mediated recombination,
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1 Introduction

The mitogenomes of most flowering plants evolve very slowly

in sequence while very rapidly in genome rearrangement (Palmer

and Herbon, 1988; Drouin et al., 2008; Gualberto and Newton,

2017; Sloan et al., 2017). The frequent rearrangement in the

mitogenomes is thought to stem from recombination between

repeated sequences, which are common in the mitogenomes of

flowering plants (Alverson et al., 2011; Cole et al., 2018; Kozik et al.,

2019). For a circular chromosome, isomeric forms of the circle

would form when a repeat pair is present in reverse orientation;

alternatively, two small circular chromosomes (subgenomes) would

be expected when a repeat pair is present in direct orientation

(Kubo and Newton, 2008). As expected, the presence of both direct

and reverse repeat pairs would greatly enrich the mitochondrial

DNA conformations. Repeats of intermediate length (100-1,000 bp)

are thought to be subject to not-infrequent recombination

(Maréchal and Brisson, 2010; Woloszynska, 2010; Kozik et al.,

2019), while large repeats (>1,000 bp) are expected to generate

equimolar or nearly equimolar recombinedmolecules in some plant

species (Maréchal and Brisson, 2010), such as Ginkgo (Guo et al.,

2016) andmonkeyflower (Mower et al., 2012a). However, this is not

the case for Nymphaea colorata, which have some large repeats but

with very low recombination frequency (Dong et al., 2018). At the

same time, moderate to considerable recombination frequencies

were also found for small repeats (< 100 bp) in some plant species,

for example 14.7% for a 55-bp repeat pair of Picea abies (Sullivan

et al., 2020) and 24.1% for a 75-bp repeat pair of Viscum

scurruloideum (Skippington et al., 2015). In the mitogenome of

V. scurruloideum, the length of short repeats (30-100 bp) was

positively correlated with recombination rate (Skippington et al.,

2015). In contrast, little or no evidence for ongoing recombination

mediated by repeats ranging from 100 to 800 bp in the

mitogenomes of two Monsonia species (Cole et al., 2018).

Recombination mediated by small or medium repeats is

usually of low frequency and symmetrical stoichiometry between

different conformations is rare (Arrieta-Montiel et al., 2009).

Being less well studied, the biological significance of this

stoichiometric variation in different conformations is unclear.

The degree of stoichiometry equality may potentially affect the

rate of DNA replication, gene order, gene expression patterns,

and further environmental adaptability. So far, the relationships

between repeats and repeat-mediated recombination in the

mitogenomes of plants remain elusive. Therefore, mitogenome

sequencing from more plants are needed to generalize patterns

of their mitogenome evolution, including the recombination

activity of repeats.

Parasitic plants consist of ~1% flowering plants and have

independently evolved at least 12 or 13 times (Westwood et al.,

2010; Nickrent, 2020). They partially or completely obtain water

and nutrients from their hosts via haustoria due to partial or

complete loss of the capability of photosynthesis (Petersen et al.,
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2020). Plastid genomes of parasitic plants usually exhibit

reduced size and gene content, and increased AT content and

evolutionary rate (Wicke and Naumann, 2018). Parasitic plants

also show deeply altered nuclear genome architecture, such as

genome size expansion (>100 Gb in Viscum) (Marie and Brown,

1993), substantial gene loss (Cuscuta and Sapria) (Sun et al.,

2018; Cai et al., 2021) and frequent horizontal gene transfer

(HGT) from their hosts (Kado and Innan, 2018). Although

rarely characterized, mitogenomes of some parasitic plants also

show unusual features, such as minicircular chromosomes (Yu

et al., 2022), extreme size reduction, gene loss and high

substitution rate (Skippington et al., 2015); extreme

heteroplasmy (Yu et al., 2022), and rampant HGT (Petersen

et al., 2020). However, these unusual features are not universal to

parasitic plants, for example, the hemi-parasitic plant Castilleja

paramensis appears to have a mitogenome typical of flowering

plants (Fan et al., 2016), and mitochondrial substitution rates of

parasitic plants are not always higher than those of non-parasitic

plants (Zervas et al., 2019).

Aeginetia is a holoparasitic genus of Orobanchaceae, mostly

distributed in tropical Asia (Kuijt, 1969; POWO, 2022). This

genus comprises four species, of which A. indica is the most

widely distributed species. The hosts of A. indica are usually

plants from Poaceae like Miscanthus and Saccharum (sugar-

cane) (Kuijt, 1969). Previous studies showed that A. indica had

lost almost all photosynthesis-related genes in its plastome

(Chen et al., 2020) and 84 nuclear genes of A. indica had been

obtained via horizontal gene transfer (HGT) from its hosts

(Kado and Innan, 2018). A recent study attempted to assemble

the mitogenome of A. indica, but failed to get a complete

assembly (Choi and Park, 2021). Thus, its mitogenome

structure remains unknown.

In this study, we successfully assembled a complete circular-

mapping mitogenome of A. indica using Illumina sequencing

reads. We found highly active repeat-mediated recombination in

its mitogenome, implying numerous alternative genomic and

subgenomic conformations in this holoparasitic plant, which

may be advantageous for rapid replication of its mitochondrial

DNA. In addition, unlike some other parasitic plants, A. indica

shows no evidence for HGT of protein-coding genes in

its mitogenome.
2 Results and discussion

2.1 The mitogenome of A. indica
contains a gene content typical of
flowering plants

Genome assembly using Illumina reads generated 614,229

contigs > 127 bp in length for A. indica. We obtained 17 putative

mitochondrial contigs by filtering out the contigs with very high
frontiersin.org
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(putative plastid contigs) and low (putative nuclear contigs)

sequening depth. When visualized in Bandage, these putative

mitochondrial contigs are connected to a network, and several

contigs with four links to other contigs likely represent repeats in

the A. indica mitogenome (Figure 1A). Many different

conformations of the A. indica mitogenome can be inferred

from the contig network. For the illustrative purpose, we selected

for display a full-genome conformation consisting of all these
Frontiers in Plant Science 03
contigs (Figure 1B). The mitogenome size is 420,362 bp, and its

overall GC content of is 43.5%, similar to that found in most

other angiosperms (Mower et al., 2012b; Skippington et al.,

2015). The sequencing depth across the mitogenome is relatively

even (Figure S1), with an average depth of 357 ×, validating the

accuracy of our assembly.

The A. indica mitogenome contains 33 protein-coding, 3

rRNA, and 17 tRNA genes (Table S1). The 33 protein-coding
A

B

FIGURE 1

The mitogenome of Aeginetia indica. (A), A network of the mitochondrial contigs of Aeginetia indica visualized in Bandage. (B), Gene map.
Genes shown outside the outer circle are transcribed counterclockwise, whereas those inside the outer circle are transcribed clockwise. The
darker and light shading inside the inner circle indicates GC and AT content, respectively. The eight largest repeats (R1-R8) are also shown in
blue in this figure.
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genes includes 24 core genes usually present in seed plants

(Adams et al., 2002) and nine genes variably present in seed

plants. The protein-coding genes contain 16 cis-spliced and six

trans-spliced introns. As shown in Table S2, the mitogenomes of

all eight Orobanchaceae species (including the autotrophic plant

Lindenbergia philippensis) have highly similar gene contents,

with occasional loss and/or psedogenization of several genes

variably present in seed plants. Compared with its close relative

Castilleja paramensis, A. indica has lost one gene sdh3. In

addition, rps10 is intact in C. paramensis while pseudogenized

in A. indica, and rpl2 is intact in A. indica while pseudogenized

in C. paramensis. In addition to the three introns (cox2-i1, nad7-

i3, and rpl2-i1), which were also missing in seven other

Orobanchaceae species (Fan et al., 2016), one more intron

(rps10-i1) was lost in A. indica than Castilleja paramensis due

to pseudogenization of rps10.

Available complete plant mitogenomes suggests no

evolutionary correlation between the type of parasitic lifestyle and

mitogenome size and structure (Petersen et al., 2020). Also, the

effects of the parasitic lifestyle on mitogenome gene content of

plants remain unclear, because there are so few well-annotated

mitogenomes of parasitic plants. Although the mitochondrial

genomes of the mistletoes Viscum (Petersen et al., 2015;

Skippington et al., 2015) exhibit substantial gene loss, other

parasitic plants do not show significant gene loss, including seven

Orobanchaceae species (Fan et al., 2016), Cynomorium coccineum

(Bellot et al., 2016), Rafflesia lagascae (Molina et al., 2014),

Tolypanthus maclurei (Yu et al., 2021), Cuscuta (Lin et al., 2022),

Rhopalocnemis phalloides (Yu et al., 2022), and A. indica in this

study. This suggests mitochondrial gene loss may not be directly

associated with the parasitic lifestyle in most parasitic plants.
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2.2 Intraspecific variation in the
mitogenomes of A. indica

Compared with the mitogenome of another individual of A.

indica, which was collected from Jeju Island, Korea and comprised

a linear molecule with a total length of 401,628 bp (Choi and Park,

2021), the mitogenome in this study is 18,734 bp larger in size.

The syntenic analysis of the two A. indica mitogenomes revealed

numerous rearrangements (Figure 2). 389,843 bp out of 420,362

bp (92.7% of the mitogenome in this study) can be aligned and the

alignable regions had an identity greater than 99%. The alignable

regions between the two individuals contains 864 nucleotide

substitutions (0.2% divergence). The unalignable sequences are

all in the intergenic regions. There are 33 and 25 unalignable

regions with a total length of 49,642 bp and 30,512 bp,

respectively, in the mitogenomes of the two individuals. The

largest repeat, R1, (see section 2.3 below) in the mitogenome of

this study is divided into three parts in the mitogenome of the

other individual (Figure 2).

The A. indica mitogenome reported by Choi and Park

(2021) annotated two more protein-coding genes (rps10 and

atpI) than that in this study. rps10 was annotated as a

pseudogene in this study due to substantial truncation, and

careful sequence inspection for the mitogenome sequence

reported by Choi and Park (2021) found an opening reading

frame (ORF) of only 165 bp for this gene, much shorter than

ORF length of this gene in other angiosperms (~360 bp). So it

must be a pseudogene as well. atpI was suggested to be

acquired by horizontal gene transfer (Choi and Park, 2021),

but in fact it is of plastid origin and an only 216 bp gene

fragment (~750 bp in other angiosperms) was found in both
FIGURE 2

Numerous rearrangements between the two Aeginetia indica mitogenomes. The green curve corresponds to the ~16 kb repeat pair (R1) in the
A. indica mitogenome of this study.
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this study and Choi and Park (2021). Therefore, the

mitochondrial protein-coding gene content is actually the

same for the two individuals of A. indica.

We annotated 17 tRNAs and three rRNAs in the A. indica

mitogenome (Table S1), two more tRNAs than those annotated

in Choi and Park (2021). We reannotated the tRNAs in the A.

indica mitogeome reported by Choi and Park (2021) using the

same method. We found the mitogenome reported by Choi and

Park (2021) had the same 17 tRNAs, plus one more private

tRNA (trnS-GGA) in an unalignable region.

Previous studies, albeit very few, have revealed the existence

of intraspecific variation in plant mitogenomes, including

structural rearrangements in Beta vulgaris (Darracq et al.,

2011), copy number variation in Arabidopsis thaliana (Wu

et al., 2020), chromosome presence/absence in Silene noctiflora

(Wu et al., 2015; Wu and Sloan, 2019), and nucleotide variations

in Oryza rufipogon andO. sativa (He et al., 2020). The numerous

rearrangements and abundant sequence variations between the

mitogenomes of Choi and Park (2021) and this study suggests

that there is a considerable intraspecific mitogenomic variation

in A. indica.
2.3 Highly active repeat-mediated
recombination

The A. indica mitogenome contains 377 repeat units ≥ 30

bp in size, which form 846 repeat copies and a total of 57,060

bp repetitive sequences, covering 13.6% of the mitogenome

(Supplementary Excel file 2). All repeat units >100 bp in size,

including one large repeat unit (R1, 16,366 bp) and seven

relatively small repeat units (R2-R8, 111-237 bp), have two

copies (Table 1). These eight repeat pairs are all located in the

intergenic regions (Figure 1B). We analyzed recombination

activity of the eight repeat pairs. The largest repeat pair can

mediate recombination, as verified by the results of PCR

amplification (Figure 3). Recombination mediated by seven

other repeat pairs were verified by mapping Illumina reads to

the reference and potentially recombined conformations.
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Although high-frequency recombinations is often mediated

by large repeats in many plant species, this is not necessarily the

case in A. indica. For all seven small repeat pairs of A. indica, we

observed very high recombination rates, ranging from 42.8% to

51.4% (Table 1), in nearly equimolar amounts (50.0%). Even

though recombination rates are not widely characterized in plant

species, they are higher than many of the reported fractions of

recombination. For example, Lactuca sativa and L. serriola have

a very low fraction of recombinations (~1%-10%) mediated by

their short repeats (Kozik et al., 2019), and Nymphaea colorata

possesses 0.2% and 8.2% recombination frequencies for its two

largest repeats (Dong et al., 2018). Evidence of recombination

was detected in Vigna angularis mitogenome for twelve repeat

units of 62-1,215 bp length, with recombination rates ranging

from 5% to 33% (Naito et al., 2013). In Picea abies, most of the

detected repeat pairs showed no to little evidence of repeat-

mediated recombination, but a few ranging from 50 bp to 948 bp

were found to have highly active recombination, reaching a

maximum of ~32% for a 186 bp repeat pair (Sullivan et al.,

2020). In addition, four repeat pairs (387-593 bp in length) in the

mitogenome of a parasitic mistletoe Viscum scurruloideum have

39-58% recombination frequencies, which was considered to be

the smallest repeats at recombinational equilibrium in plant

mitogenomes (Skippington et al., 2015). The repeats at

recombinational equilibrium are even smaller in the

mitogenome of A. indica. This implies highly active repeat-

mediated recombination occurring in the mitogenome of A.

indica, which is consistent with the numerous rearrangements

shown in the collinear analysis (Figure 2).

The A. indica mitogenome can form multiple alternative

conformations through repeat-mediated recombination. All

alternative conformations resulting from repeat-mediated

recombination contain identical genomic content. These

conformations differ only in the order and orientation of non-

repeat regions and repeat regions separating them, and in some

cases, also include differences in chromosome number (dividing

one big circular chromosome into two or more small circular

chromosomes). Here we show one of the possible recombination

scenarios (Figure 4). The circular chromosome can shift into two
TABLE 1 Repeat-mediatied recombination in the Aeginetia indica mitogenome.

Repeat pair Repeat length(bp) Repeat type Naaa Nbba Naba Nbaa Recombination frequency

R2 237 direct 235 206 167 163 42.8%

R3b 233 reverse 177 150 45.9%

R4 186 reverse 278 250 272 286 51.4%

R5b 181 direct 449 358 44.4%

R6 127 direct 590 600 662 584 51.2%

R7 111 direct 548 459 499 426 47.9%

R8 111 direct 521 447 473 442 48.6%
aNaa and Nbb are the number of reads mapped to the reference conformations; Nab and Nba are the number of reads mapped to the recombined conformations. Recombination frequency
is calculated as: (Nab+Nba)/(Nab+Nba+Naa+Nbb). bBecause R3 and R5 have an overlap of 3 bp for one copy (R3_b and R5_b) and they each have three reference conformations and three
recombined conformations, the numbers of reads supporting the reference and recombined conformations for R3 and R5 were summarized here (as shown in Figure S2).
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small subgenomic circular chromosomes by R2 mediated

recombination, and further into four smaller subgenomic

circular chromosomes by R5 and R8 mediated recombination.

A special case was found for R3 and R5, of which one copy (R3_b

and R5_b) has an overlap of 3 bp. Unlike other repeats, R3 and

R5 each have three predicted reference conformations and three

predicted recombined conformations, as illustrated in Figure S2.

Through repeat-mediated recombinations, the A. indica

mitogenome can exist in various conformations, including

many small subgenomic circular chromosomes. At the same

DNA replication speed, the smaller chromosomes will be

expected to replicate faster. Rapid replication of mitochondrial

DNA may be beneficial for holoparasitic plants like A. indica to

cope with a harsh heterotrophic lifestyle.
2.4 No to little horizontal and
intracellular gene transfer in the
A. indica mitogenome

Phylogenetic analysis for each of the 33 mitochondrial protein-

coding genes revealed that A. indica always clustered with other

species of Lamiales with high bootstrap support, and that monocots,

its potential hosts, formed a distant monophyletic clade

(Supplementary Figure 1). This is also the case for another parasitic

plant from the same family, Castilleja paramensis. Therefore, no
FIGURE 3

PCR evaluation of recombination mediated by a ~16 kp repeat pair (R1) in the Aeginetia indica mitogenome. Shown are results of DNA gel
electrophoresis of amplified PCR products. Lane 1: PCR amplification of R1_a and flanking regions (primer: a_F and a_R); Lane 2: PCR
amplification of R1_b and flanking regions (primer: b_F and b_R); Lane 3: PCR amplification for the recombined conformation 1 (primer: a_F and
b_F); Lane 4: PCR amplification for the recombined conformation 2 (primer: a_R and b_R); Lane 5: DNA ladder. Expected sizes for these PCR
products are 17734, 17589, 17809 and 17514 bp for Lane 1, 2, 3 and 4, respectively.
FIGURE 4

A schematic diagram of multiple alternative mitogenomic
conformations formed by repeat-mediated recombination. This
diagram shows only one of the possible ways of repeat-
mediated recombination. These three repeat pairs (R2, R5 and
R8) in the A. indica mitogenome are direct repeats.
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evidence for HGTwas found in the mitogenomes of the two parasitic

plants in Orobanchaceae. Some parasitic plants show rampant HGT

in their mitogenomes from their hosts (Sanchez-Puerta et al., 2019)

and a plausible explanation is that parasitic plants establish intimate

contact with their hosts via haustoria (Goyet et al., 2019). However,

no evidence for HGT in the holoparasitic plant A. indica, the

hemiparasitic plant Castilleja paramensis and two Cuscuta species

(Anderson et al., 2021) suggests that physical contact between

parasitic plants and their hosts is not always associated with host-

to-parasitic-plants mitochondrial HGT. On the other hand, the A.

indica nuclear genome indeed possesses some genes derived from its

hosts (Kado and Innan, 2018), which implies that patterns of HGT

from hosts to parasitic plants might differ between mitogenomes and

nuclear genomes.Why the extent of HGT differ substantially between

mitogenomes of parasitic plants, and between the mitogenome and

nuclear genome of a parasitic plant deserves further investigation.

In terms of intracellular gene transfer (IGT) between the

mitogenome and the plastome of A. indica, we found two

regions (220 bp and 251 bp) in the mitogenome with hits to

the psuedogene yndhB in its plastome. BLASTN search of the A.

indica mitogenome against the plastome of L. philippensis

revealed a 611-bp hit to the ndhB gene of L. philippensis (gene

length = 2,212 bp). Therefore, we suggest that the pseudogene

yndhB in the A. indica mitogenome was transferred from its

plastome and that little IGT has occurred between the

mitogenome and the plastome of A. indica.
3 Materials and methods

3.1 Plant sampling, Illumina sequencing
and mitogenome assembly

Plant collection and Illumina sequencing of an individual of

Aeginetia indica were performed as described in (Chen et al.,

2020). The individual was collected from Shimentai Forest Park,

Yingde, Guangdong, China. 21.4 Gb of 150 bp paired-end reads

with an insert size of 300 bp were generated. Raw reads were

filtered by Trimmomatic v 0.39 (Bolger et al., 2014) with default

parameters. The mitogenome was assembled using Illumina

reads in GetOrganelle v1.7 (Jin et al., 2020) with the

parameters: -F embplant_mt, -k 57,77,97,117,127, and the

mitogenomes of Liriodendron tulipifera and Castilleja

paramensis were used as references. We identified putative

mitochondrial contigs when they have a depth of coverage >

100× (based on the depths of several contigs containing the

mitochondrial genes), BLASTN (evalue set to 1e-5) hits to the

plant mitochondrial databases, or with direct or indirect links

(based on the GFA output) to the contigs with mitochondrial

hits. By visualizing these potential mitochondrial contigs in

Bandage v0.8.1 (Wick et al., 2015), the complete mitogenome
Frontiers in Plant Science 07
could be manually connected into a circular chromosome, but

with many alternative conformations of the same genome size.

We selected for display one full-genome conformation for

subsequent analysis. All Illumina reads were mapped back to

the mitogenome using BWA-mem (Li, 2013) with default

parameters except -T set to 100 and the depth of coverage

across the chromosome was calculated using Samtools v1.9 (Li

et al., 2009). To avoid the influence of plastid-derived reads on

the sequencing depth of the mitogenome, the plastid genome of

A. indica (GenBank accession number MN529629) was also

used as reference during mapping of Illumina reads. To avoid

the influence of nuclear-derived reads, the mapped alignment

shorter than 100 bp were filtered.
3.2 Mitogenome annotation

The mitochondrial protein-coding genes and rRNAs of A.

indica were annotated with Geseq (Tillich et al., 2017) and

BLASTN with default settings (Camacho et al., 2009). Available

mitogenomes of Lamiales species were used as references and

manual adjustment was conducted when necessary. Genes that

contain one or more premature stop codons or frameshift

mutations were considered as pseudogenes. Transfer RNAs

(tRNAs) were identified using tRNAscan-SE v2.0.7 (Lowe and

Chan, 2016) with the organelle option. Mitochondrial gene maps

(including eight repeats >100 bp in size) were plotted by

OGDRAW (Greiner et al., 2019).
3.3 Collinear analysis with another
individual of A. indica and comparative
analysis with other species
in Orobanchaceae

The mitogenome of another individual of A. indica

characterized by Choi and Park (2021) were used for

comparison. This individual was collected from Jeju Island,

Korea, which is more than 1,700 km away from the collection

site of the individual we studied here. Collinear analysis between

the two mitogenomes were conducted in Mummer (Kurtz et al.,

2004). Collinear regions were identified using the nucmer

module with 85% identity as the threshold with many-to-

many alignment mode. Nucleotide substitutions in the

collinear regions were analyzed using the dnadiff module. The

collinear results were visualized using RIdeogram in the R

package (Hao et al., 2020).

Comparative analysis of mitochondrial protein-coding genes

and introns was also performed among the two A. indica

individuals and seven other species of Orobanchaceae,

including an autotrophic plant (Lindenbergia philippensis),
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three hemiparasitic plants (Bartsia pedicularioides, Castilleja

paramensis, and Schwalbea americana), and three holoparasitic

plants (Orobanche crenata, O. gracilis and Phelipanche ramosa),

whose mitogenomes were characterized before (Fan et al., 2016).
3.4 Repeat identification and repeat-
mediated recombination analysis

We used a Python script ROUSFinder2.0.py (Wynn and

Christensen, 2019) to identify repeats (≥30 bp) in the A. indica

mitogenome. Repeat units > 100 bp in size were used to assess

repeat-mediated recombination. For all the repeats but the largest

one (~16 kb), Illumina reads were mapped to sequences of the

reference (the mitogenome we assembled) and potentially

recombined conformations (repeat pair itself and flanking 300 bp

single-copy sequences at both ends), and paired reads spanning

these conformations were counted for calculating the

recombination rate (the frequency of recombined conformations)

for each repeat pair. The influence of plastid- and nuclear-derived

reads was minimized by the same method in calculating the depth

of coverage mentioned in section 3.1. We found one copy each of

R3 and R5 (R3_b and R5_b) has an overlap of 3 bp, resulting in

three predicted reference conformations and three predicted

recombined conformations for each repeat pair (Figure S2), and

we calculated the numbers of reads supporting each of these

conformations and summarized in Table 1.

For the ~16 kb repeat pair, Illumina reads are too short to be

used for assessing its recombination rate. We then designed the

primers (Table S3) anchoring the regions flanking the repeat for

the reference and potentially recombined conformations using

Primer3 (Koressaar and Remm, 2007), performed long-fragment

PCR amplification using KOD One™ PCR Master Mix

(TOYOBO, Japan), and run agarose gel electrophoresis to

verify the presence of repeat-mediated recombination.
3.5 Horizontal and intracellular gene
transfer analysis for mitochondrial
protein coding genes

For each of the 33 mitochondrial protein-coding genes of A.

indica, we did phylogenetic analysis to infer its origin. Coding

region sequences of as many as 18 other species, including species

from the same family Orobanchaceae and its potential host family

Poaceae, were downloaded from GenBank (https://www.ncbi.nlm.

nih.gov/) (source details: Supplementary Excel file 1). Sequence

alignment for each gene was performed with ClustalW (Thompson

et al., 1997) and further adjusted manually. Phylogenetic trees were
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generated by RAxML v.8.2.11 using maximum likelihood (ML)

method under the GTRGAMMAI model opting for one thousand

bootstrap replicates. Either Amborella trichopoda or Liriodendron

tulipifera was used as an outgroup in the phylogenetic analysis.

Horizontal gene transfer (HGT) was inferred based on phylogenetic

position of A. indica. HGT was identified if A. indica was grouped

with non-Orobanchaceae species with high bootstrap

support (>80%).

To detect the presence of intracellular gene transfer from the

plastome to the mitogenome, the mitogenome of A. indica was

searched against the A. indica plastome using BLASTN with the

parameters of -evalue set to 1e-6. Due to massive gene loss in the

A. indica plastome, the same BLASTN analysis was performed

between the A. indica mitogenome and the plastome of the

autotrophic plant L. philippensi (GenBank accession number

NC_022859). Hits >100 bp in length and > 80% in identity were

considered as potential intracellular gene transfer.
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