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Predicting plant growth is a fundamental challenge that can be employed

to analyze plants and further make decisions to have healthy plants with

high yields. Deep learning has recently been showing its potential to address

this challenge in recent years, however, there are still two issues. First,

image-based plant growth prediction is currently taken either from time series

or image generation viewpoints, resulting in a flexible learning framework and

clear predictions, respectively. Second, deep learning-based algorithms are

notorious to require a large-scale dataset to obtain a competing performance

but collecting enough data is time-consuming and expensive. To address the

issues, we consider the plant growth prediction from both viewpoints with

two new time-series data augmentation algorithms. To be more specific, we

raise a new framework with a length-changeable time-series processing unit

to generate images flexibly. A generative adversarial loss is utilized to optimize

our model to obtain high-quality images. Furthermore, we first recognize

three key points to perform time-series data augmentation and then put

forward T-Mixup and T-Copy-Paste. T-Mixup fuses images from a di�erent

time pixel-wise while T-Copy-Paste makes new time-series images with a

di�erent background by reusing individual leaves extracted from the existing

dataset. We perform our method in a public dataset and achieve superior

results, such as the generated RGB images and instance masks securing an

average PSNR of 27.53 and 27.62, respectively, compared to the previously

best 26.55 and 26.92.

KEYWORDS

plant growth prediction, deep learning, data augmentation, T-Mixup, T-Copy-Paste,

generative adversarial loss

1. Introduction

It is estimated that one in ten people worldwide suffered from hunger and nearly

one in three people lacked regular access to adequate food in 2021 according to the

United Nations1. In addition, 149.2 million children under the age of five suffered from

stunting in 2021. Hence, one goal of the United Nations is to end hunger, achieve

1 https://sdgs.un.org/goals/goal2
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food security and improved nutrition, and promote sustainable

agriculture (Sachs et al., 2022). Simultaneously, high-quality

food production has been becoming a high-level social problem

in many countries, especially in developing countries mainly

because agricultural development and food availability are not

compatible with the distribution and changes in population

in the world (Xu et al., 2021). Securing a high yield at an

affordable cost is one way to mitigate this problem. To achieve

this goal, analyzing plant growth under different controlled

conditions is essential as they are impacted by many factors such

as the supply of fertilizer and water, and further can instruct

growers to take early measures when plants are not growing

well. Image-based plant growth prediction has been developing

in recent years due to the high availability of RGB images and the

non-invasiveness of digital cameras, which can be achieved by

generating high-quality future images based on previous ones.

Deep learning-based methods have recently been showing great

potential for image-based plant growth prediction (Somov et al.,

2018; Sakurai et al., 2019; Yasrab et al., 2021), however, there are

still two challenges.

First, image-based plant growth prediction is currently taken

either from time-series or image-generation viewpoints, which

leads to a flexible prediction framework (Sakurai et al., 2019)

or more clear images (Hamamoto et al., 2020a,b; Yasrab et al.,

2021), respectively. On one hand, the time-series task using

long-short term memory (LSTM) (Sakurai et al., 2019) allows

a changeable length of input and output, which gives more

flexibility to train or test a prediction model. On the other

hand, the image generation task aims to produce desired images

such as high quality and high diversity (Isola et al., 2017),

with which conditional generative adversarial network (GAN)

loss (Goodfellow et al., 2014) can be leveraged (Hamamoto

et al., 2020a; Yasrab et al., 2021) to have high quality generated

images. As the advantages of time-series and image generation,

we consider the plant growth prediction from both viewpoints

to have clear images and a flexible framework simultaneously.

Besides, plant growth prediction can be performed on two

levels to get diverse information, plant-level and leaf-level. The

plant level (Hamamoto et al., 2020a; Jung et al., 2022; Kim

et al., 2022) requires generating RGB images, that are visually

meaningful to humans, and gives the whole plant situation.

In contrast, the leaf-level (Sakurai et al., 2019; Yasrab et al.,

2021) demands the assignment of a leaf identity to each plant

pixel and thus can be further utilized to analyze each leaf

individually. However, current articles tend to perform only one

level prediction (Hamamoto et al., 2020a; Yasrab et al., 2021;

Jung et al., 2022; Kim et al., 2022). Diversely, we cast predicting

RGB image to a regression task but instance mask as a multi-

class classification task to have better plant-level and leaf-level

prediction simultaneously. Table 1 gives a glimpse of related

studies on the prediction content.

Second, a large-scale dataset is entailed for deep learning-

based algorithms in the training process to obtain competitive

TABLE 1 Related study is considered from two points, the predicting

content and the adopted strategy.

Prediction content Adopted strategy

Level RGB IM TS IG DA

Sakurai et al. (2019) Leaf X X X ✗ ✗

Hamamoto et al.

(2020a)

Plant X ✗ X X ✗

Hamamoto et al.

(2020b)a

Leaf X X X X ✗

Yasrab et al. (2021) Plant ✗ X ✗ X ✗

Kim et al. (2022) Plant X ✗ X ✗ ✗

Jung et al. (2022) Plant X ✗ X ✗ ✗

Ours Leaf X X X X X

Level denotes the predicting level, plant-level, or leaf-level. RGB and IM suggest

predicting RGB image and instance mask. TS, IG, and DA are time-series, image

generation, and data augmentation. aOne more input, depth information of leaves, is

used in this article.

performance, however, collecting data is time-consuming and

expensive in most applications and more inconvenient for plant

growth prediction as the time-series character. Although many

data augmentation methods have been proposed and verified to

address this challenge (DeVries and Taylor, 2017; Zhang et al.,

2018; Yun et al., 2019; Xu et al., 2022), the time-series data

augmentation algorithm seems underdeveloped. Since plants

grow in three-dimensional space over time, three key points

can be considered to do data augmentation for plant growth

prediction. Time-series first is required in the sense that every

plant or leaf should appear in its proper position or size over

time. For example, plants or leaves should appear in a similar

location, new leaves should be on top of old leaves, and smaller

size of plants should exist in the beginning stage, instead of

the latter stage. Second, growth characteristics and plant growth

characteristics are considered in that every plant or leaf should

also grow relatively freely in three-dimensional space while

keeping its growth habit. Two popular non-time-series methods,

Cutout (DeVries and Taylor, 2017) and Cutmix (Yun et al.,

2019), conflict with this requirement in that they may split one

leaf and spatially combine two leaves. Third, useful variations

are embraced to make the trained model robust (Xu et al.,

2022), such as different backgrounds, locations of leaves, and

relative positions among leaves. Embracing the three points, we

propose two time-series data augmentation, time-series Mixup

(T-Mixup) and time-series Copy-Paste (T-Copy-Paste) based on

Zhang et al. (2018), Ghiasi et al. (2021). To be more specific,

T-Mixup spatially fuses two images, leading to visually no

meaningful images, and thus only be leveraged to pre-train

our model. T-Copy-Paste consists of two steps where clean

backgrounds and desired leaves are first copied and then pasted

together to form time-series images. We notice that Copy-Paste

is also used as data augmentation for leaf segmentation and
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counting via combining leaves and backgrounds (Kuznichov

et al., 2019), similar to ours but not for time-series data

augmentation. As shown in Table 1, little related study considers

the data augmentation to mitigate the limited dataset challenge

in the plant growth prediction while our experimental results

suggest that it significantly contributes to the performance of

both RGB image and instance mask.

To summarize, our contributions are as follows:

(1) We consider the plant growth prediction from two

perspectives of time series and image generation to generate

good-quality images and maintain a flexible framework.

Furthermore, we execute plant growth prediction at

leaf-level which is more challenging and beneficial to

downstream works, instead of just plant-level.

(2) We recognize three key points to perform time-series

data augmentation for plant growth prediction, time-series,

growth characteristics, and useful variations. Based on these

points, we propose two time-series data augmentation, T-

Mixup, and T-Copy-Paste, which can also be utilized for

other time-series tasks.

(3) We perform our model and data augmentation in the

KOMATSUNA dataset (Uchiyama et al., 2017) and achieve

superior results. The generated RGB images and instance

masks secured PSNR 27.53 and 27.62, compared to the

previously best 26.55 and 26.92.

The remainder of this article is organized as follows. The

proposed method to do plant growth prediction is instantiated

in the next section, including the framework, loss function, and

data augmentationmethod. In the experiments section, we show

the implementation to train and test our model, comparison

with other methods, ablation study to understand our algorithm,

and flexible experiments. Finally, we conclude our study and

future study in the last section.

2. Methods

As discussed in the introduction section, we aim to

predict plant growth based on images from both time series

and image generation viewpoints. Besides, we predict RGB

FIGURE 1

The framework and loss function of our proposed plant growth prediction model consist of three modules, input encoder E, output decoder D,

and an intermediate time-series processing unit T. Encoder and decoder have an individual version of RGB image and instance mask because of

the heterogeneity. There are two time-series inputs, historical RGB images xi−p : i and instance masks mi−p : i with two corresponding future

predictions, RGB images x̂i+1 : i+q and instance masks m̂i+1 : i+q. ⊕ represents element-wise addition. To train the networks, we design two

specific loss functions Lx and Lm for RGB images and instance masks, respectively.
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FIGURE 2

Structure of time-series processing unit T that is composed of a time-series encoder TE and decoder TD. With TE and TD, our model can predict

di�erent lengths of outputs with length-changeable inputs.

image and leaf instance mask simultaneously to make the

downstream application possible and easier. In this section,

we first describe the whole framework of our method

and the loss function to train the framework. Then two

proposed time-series image augmentation algorithms are

introduced to facilitate the limitation of the plant growth

prediction dataset.

2.1. Framework

As illustrated in Figure 1, our framework consists of three

main modules, encoder E, decoder D, and an intermediate

time-series processing unit T. Functionally, the encoder is

utilized to extract necessary information from the input RGB

images and instance masks while the decoder aims to predict

the future ones given the historical features from the time-

series processing unit T. Differently, T is employed to integrate

the multiple time-series features and generate multiple future

features. Additionally, individual encoder and decoder for RGB

images and instance masks are utilized as their heterogeneity,

denoted as Ex, Em, Dx, and Dm. Despite the heterogeneity, we

assume that they are useful to predict each other as they are

paired in each time step, inspired by multi-task learning (Ruder,

2017). Therefore, they are added element-wise after encoding

while becoming specific before decoding. To summarize, the

framework has two inputs and two outputs by which we can

predict the future q RGB images x̂i+1 : i+q and instance masks

m̂i+1 : i+q by observing the historical p RGB images xi−p : i and

instance masks mi−p : i. Mathematically, our framework can be

formalized as:

{

x̂i+1 : i+q = Dx(T(Ex(xi−p : i)+ Em(mi−p : i))),

m̂i+1 : i+q = Dm(T(Ex(xi−p : i)+ Em(mi−p : i))).
(1)

To be more specific, we employ convolution neural networks

(CNN) to form the encoders and decoders because of their

excellent performance and good reputations in recent years

(Krizhevsky et al., 2012; He et al., 2016). In terms of the time-

series processing unit, Gated Recurrent Unit (GRU) in a CNN

version is borrowed because of its smaller computations than

LSTM. The structure of T is displayed in Figure 2 and can

be split into two parts, time-series encoder TE and decoder

TD. TE absorbs a series of input features Fi−p : i with several

CGRU (CNN-based GRU) cells while TD sequentially predicts

the future features Fi+1 : i+q by taking the final output of

the encoder. The details of each cell of CGRU can be found

in the Supplementary Material. With the times-series encoder

and decoder, our model is flexible to take length-changeable

historical inputs and predict RGB images and instance masks

with diverse time steps.

2.2. Loss function

As discussed in Section 1, we take the RGB images

and instance masks in different ways to obtain high-quality

predictions. To be more clear, we consider the RGB images

from both time series and conditional image generation

while thinking of predicting the instance masks as multi-class

classification. Formally, two-loss functions are designed to train

our model:

L = λxLx + λmLm, (2)

where Lx and Lm are the individual loss for RGB images

and instance masks, respectively. To balance the two

losses, two corresponding hyper-parameters are utilized, λx

and λm.
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First, our image loss function consists of two parts

but in time-series, following paired image generation

(Isola et al., 2017):



























Lx = λMAELMAE + LGAN ,

LMAE = 1
q

q
∑

j=1
||x̂j − xj||1,

LGAN = Ex̂∼p(gen)
1
q

q
∑

j=1
(Dis(x̂j)− 1)2,

(3)

where LMAE is the image regression loss while LGAN aims to

produce high-quality images. For image regression loss, L1 is

borrowed as its resulting sharpen images as proved in (Isola

et al., 2017). p(real) and p(gen) suggest the distribution of the real

images and the predicted RGB images, respectively. Dis denotes

the binary discriminator and the generator is our proposed

prediction model, consisting of Ex, Em, T, and Dx, but without

Dm. Different from general GAN loss with only one image (Isola

et al., 2017; Xu et al., 2021), our objective is for q time-series

image generation. Simultaneously, we use the following loss

function, LDis, to update the discriminator:

LDis = Ex∼p(real)
1

q

q
∑

j=1

(Dis(xj)− 1)2

+ Ex̂∼p(gen)
1

q

q
∑

j=1

(Dis(x̂j))
2. (4)

Second, a usual multi-class classification is utilized to optimize

the instance mask prediction model:



















Lm = 1
q

q
∑

j=1
−log(p(y|m̂j)),

p(y = k|m̂j) =
exp(m̂k

j )
∑

c
exp(m̂c

j )
,

(5)

where y is the corresponding instance label with ground truth

class k. p(y = k|m̂) is the prediction score of instance masks

produced by our model Dm.

2.3. Data augmentation method

As mentioned before, we recognize three key points

to perform time-series data augmentation for plant growth

prediction, time-series, growing character, and useful variations.

Based on these three points, we propose two time-series data

augmentation, T-Mixup, and T-Copy-Paste.

2.3.1. T-Mixup

Mixup (Zhang et al., 2018) can favor linear behavior in-

between training samples and keep both features of two samples.

Inspired by this idea, We propose T-Mixup by spatially fusing

FIGURE 3

Generated examples of T-Mixup with the di�erent merged ratios. The augmented RGB images and instance masks are not natural. Therefore,

we only use T-Mixup in a pretraining process, followed by a finetuning process for all layers.
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FIGURE 4

T-Copy-Paste data augmentation process. It consists of two steps: building up three sets of background, leaf, and mask, respectively from the

given original dataset, and generating new RGB image and instance mask sequences by doing copy and paste of element(s) from the three sets

sequentially over time. The xi : j and mi : j are the input sequences of RGB images and instance masks, respectively. After obtaining a clean

background, suitable leaves, and their corresponding masks, we can generate new time-series images with copy and paste operation. The x̄i : j
and m̄i : j denote generated new RGB image and instance mask sequences, respectively. Here, leaf-based data augmentation techniques can be

applied together.

FIGURE 5

Examples of clean background images, extracted from the plants in the KOMATSUNA dataset.
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two adjacent frames to learn the intermediate states of the same

leaf between different frames. It can be formulated as:

{

xnew = λxi + (1− λ)xi+1,

mnew = λmi + (1− λ)mi+1,
(6)

where λ, a value ranging from 0 to 1, denotes the merged

ratio of two frames. Although it shows superiority in many

applications, it results in unnatural images for human eyes (Yun

et al., 2019) as shown in Figure 3. Furthermore, we assume

that unnatural images are not beneficial to image generation,

though it contributes to image classification without time-series.

Therefore, we apply a different strategy to utilize the T-Mixup

data augmentation. Specifically, we adopt T-Mixup only to pre-

train our model, followed by finetuning all layers with natural

RGB images and instance masks. The ablation study in the next

section proves our assumption and our strategy.

2.3.2. T-Copy-Paste

Copy-Paste (Ghiasi et al., 2021) is a powerful data

augmentation method borrowed from the agricultural field

(Kuznichov et al., 2019). However, it can not be intact to deploy

in plant growth prediction due to the time-series character. To

mitigate the challenge, we instead proposed a time-series copy-

paste, termed T-Copy-Paste. As illustrated in Figure 4, T-Copy-

Paste consists of two steps:

• Collect individual sets of background, leaf, and its

corresponding mask from the existing dataset.

• Select randomly a background from the background set and

sequentially paste a leaf (or leaves) chosen randomly from

the leaf set and its (their) paired mask(s) to form new RGB

images and instance mask images.

To collect clean background without any leaves, we utilize

an open software, GNU Image Manipulation Program with

a heal-selection filter plugin (National Bureau of Statistics,

2018), that can replace manually selected areas with their

surrounding pixels. Some created backgrounds are shown in

Figure 5. Different from making a background set, the leaf and

mask set consist of leaf instances in RGB images and their

corresponding instance masks, respectively. Every leaf is in a

time series and paired with its corresponding instance mask.

To choose the appropriate leaves and masks for the following

operations, leaves that are partially invisible or divided into some

parts due to overlapping leaves have been removed because it is

difficult to recover them. We use a filter process to remove the

undesired RGB images or instance masks, as shown in Figure 4.

After collecting the clean background, suitable leaves, and

paired masks, we can produce a new set of time-series images

consisting of RGB and mask that represent a plant by using the

copy and paste operation. First, a background image is randomly

selected and shared in time with the same plant. Then, leaf

instances and their masks for the plant are selected, followed by

FIGURE 6

Examples of images and masks generated from T-Copy-Paste with leaf-based rotation.
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random rotation or scale. Finally, they are copied and pasted to

the chosen background to form a series of new RGB images and

instance masks. The generated new RGB images and instance

masks are illustrated in Figure 6.

3. Experiments

3.1. Experimental settings

3.1.1. Metric

We use three evaluation metrics to assess the proposed

method’s performance: Dice (Eelbode et al., 2020), peak-signal-

to-noise ratio (PSNR), and the structural similarity index

measure (SSIM) (Hore and Ziou, 2010). Specifically, the Dice

coefficient is employed to quantify the performance of image

segmentation, defined as twice the overlap area of predicted and

ground truth over the total number of pixels in both images. In

the plant growth prediction task, the generated leaves are more

important than the background and thus we borrow Dice to

measure the quality of generated plant leaves. PSNR is derived

from MSE but is more sensitive to image noise. SSIM is used

for measuring the similarity between two images. Generally, the

higher the value of Dice, PSNR, and SSIM, the better the quality

of the predicted image.

3.1.2. Dataset

We use KOMASTUNA (Uchiyama et al., 2017) dataset to

evaluate our proposed model and data augmentation methods.

The dataset contains 5 plants taken from the top and each plant

consists of 60 frames acquired every 4 h in 10 days from 3

viewpoints. Besides, it also offers instance masks for each plant,

in which the same label is assigned to the same leaf in all the

TABLE 2 The architectural details adopted in our model.

Network Input size Operation Normalization Active function

Ex (256,256,3) Conv7-C32-S1-P3 BN ReLU

(256,256,32) Conv3-C64-S2-P1 BN ReLU

(128,128,64) Conv3-C128-S2-P1 BN ReLU

(64,64,128) Conv3-C256-S1-P1 BN ReLU

(64,64,256) Residual block * 3

Em (256,256,9) Conv7-C32-S1-P3 BN ReLU

(256,256,32) Conv3-C64-S2-P1 BN ReLU

(128,128,64) Conv3-C128-S2-P1 BN ReLU

(64,64,128) Conv3-C256-S1-P1 BN ReLU

(64,64,256) Residual block * 1

T (64,64,256) Conv3-C256-S1-P1 GN Sigmoid

(64,64,256) Conv3-C256-S1-P1 GN Tanh

(64,64,256) Conv3-C256-S1-P1 GN Sigmoid

(64,64,256) Conv3-C256-S1-P1 GN Tanh

Up sampling (64,64,256) Scale2

(128,128,256) Conv3-C128-S1-P1 BN ReLU

(128,128,128) Scale2

(256,256,128) Conv3-C64-S1-P1 BN ReLU

Dx (256,256,64) Conv3-C32-S1-P3 BN ReLU

(256,256,32) Conv3-C3-S2-P1 BN ReLU

Dm (256,256,64) Conv3-C32-S1-P1 BN ReLU

(256,256,32) Conv3-C9-S1-P1 BN ReLU

Dis (256,256,3) Conv4-C64-S2-P1 InstNorm LeakyReLU

(128,128,64) Conv4-C128-S2-P1 InstNorm LeakyReLU

(64,64,128) Conv4-C256-S2-P1 InstNorm LeakyReLU

(32,32,256) Conv4-C512-S1-P1 InstNorm LeakyReLU

(31,31,256) Conv4-C1-S1-P1 InstNorm Sigmoid

The input size is height, width, and channel. In the operation, Convk is a convolution layer with kernel size as k. Ck, Sk, and Pk denote the number of channels, stride, and padding,

respectively. Scale2 means the up-sampling factor is 2. Batch normalization (BN), Group Normalization (GN), and Instance normalization (InstNorm) (Wu and He, 2018) are used. We

utilize three residual blocks (He et al., 2016) to extract necessary information from the image while fewer residual block is used in the mask encoder as the mask is much simpler than the

image.
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frames and the label corresponds to the order of new leaves. In

the dataset, plants have eight leaves at most, and therefore, eight

is the number of classes to predict the instance mask. For the

experiments, the original data are split into testing and training

data at the plant level. We use 12-plant data for the training

and 3-plant data for testing. Besides generic data augmentation,

random rotation is utilized. The details are referred to the in

Supplemental Material. Simultaneously, 40 plants in time-series

are made with our proposed T-Copy-Paste data augmentation.

The generic data augmentation and T-Copy-Paste are executed

in an offline way while T-Mixup is in an online way.

3.1.3. Implementation details

In the training process, we use the AdamW optimizer to

train our model for 200 epochs with a learning rate of 0.0001.

The batch size is set as 4 with two RTX 3090 GPUs (24GB

memory). The dropout is used in the convolution layer of

the CGRU cell with a dropout rate of 0.2. We execute three

times and report the mean and SD for each experiment. The

training processing without our proposed data augmentation

costs around 7 h while spending 21 h with the proposed data

augmentation as the numbers of images and instance masks

increased. By default, we predict one future frame by observing

three historical frames.

3.1.4. Architecture details

The proposed plant growth prediction model consists of

three sub-modules. First, the input encoder E consists of an

image encoder Ex and mask encoder Em. Ex, expecting to

extract features from plant RGB images, utilizes several stacks

of convolutional layers and three residual blocks, while Em,

aiming to extract features from instance masks, adopts the

same number of stacks of convolutional layers only with one

residual block since the mask is simpler than images. Second, the

time-series processing unit T leverages a convolution-Sigmoid-

GroupNorm and a convolution-Tanh-GroupNorm. Third, the

output decoder D consists of image decoder Dx and mask

decoder Dm. They employ two stacks of convolution-ReLU-

BatchNorm. To recover the size of features after convolutional,

the up-sampling operation is used which employs two up

samplings with two stacks of convolution-ReLU-BatchNorm.

We apply the discriminator in RGB image prediction processing

to generate high-quality images and the details are referred

to in Table 2. Finally, our prediction module (generator) and

discriminator have about 13 and 2 million parameters.

3.2. Comparisons with other methods

In this subsection, we compare our method to the

related articles, ConvLSTM (Sakurai et al., 2019), FutureGAN

(Yasrab et al., 2021), STN-LSTM (Jung et al., 2022), and STN-

STPD (Kim et al., 2022). The main characters of the articles

refer to Table 1. For ConvLSTM, we rewrite the model and

randomly train the model three times, and then report the mean

performance. For other three articles, we directly borrow the

evaluations from their articles as their codes are not public

and executing details are not enough to reproduce. Similarly,

direct comparison to Hamamoto et al. (2020a,b) is somehow

hard, though they are more related to our method. Furthermore,

depth information is required for the methods, and therefore,

we do not compare with them. Besides, two video prediction

methods, MC-Net (Villegas et al., 2017a) and HP-Net (Villegas

et al., 2017b), are compared since video prediction is similar to

plant growth prediction. The performances of the two articles

are borrowed from Kim et al. (2022). For our method, we train

our model three times and give the mean evaluations while

TABLE 3 Performance comparisons with other methods.

Method Ipsnr Issim Idice Mpsnr Mssim Mdice

HP-Net+ (Villegas

et al., 2017b)

24.66 0.89 - - - -

MC-Net+ (Villegas

et al., 2017a)

25.02 0.90 - - - -

ConvLSTM∗ (Sakurai

et al., 2019)

24.54 0.89 90.24 26.92 0.986 90.25

FutureGAN (Yasrab

et al., 2021)

- - - 23.20 0.959 -

STN-LSTM (Jung

et al., 2022)

25.95 0.90 - - - -

STN-STPD (Kim et al.,

2022)

26.55 0.91 - - - -

Ours 27.53 0.92 91.88 27.62 0.990 91.88

Red font shows the best performance. + suggests that the performances are taken from

(Kim et al., 2022) while ∗ denotes that we rewrite and reproduce their code, and then show

their average performance after three random training and testing processes. Otherwise,

we borrow the evaluations from the original papers. Our method is randomly trained

three times and the mean performance is reported while the variance is given in the

following subsections.

TABLE 4 Ablation study of λMAE inLx loss function for plant RGB

image generation.

λMAE Ipsnr Idice Mpsnr Mdice

80 24.48±±0.07 90.07± 0.12 26.85± 0.03 90.07± 0.12

90 24.60± 0.09 90.20± 0.10 26.88± 0.02 90.20± 0.10

100 24.94± 0.03 90.63± 0.31 27.02± 0.03 90.63± 0.31

110 24.65± 0.04 90.23± 0.15 26.95± 0.06 90.23± 0.15

120 24.48± 0.10 90.10± 0.00 26.92± 0.03 90.10± 0.00

The red font shows the best average performance.
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the variance can be referred in the following subsections. All

experiments are executed in the same dataset, KOMASTUNA

(Uchiyama et al., 2017). The comparison results are displayed in

Table 3.

From the table, we observe that the performances are

gradually improved in recent years. In terms of predicting

RGB images alone, shape information introduced in STN-

LSTM (Jung et al., 2022) and STN-STPD (Kim et al., 2022)

essentially improves the quality. In contrast, only using

an instance mask may not be a good choice because of

the poor mask PSNR in FutureGAN (Yasrab et al., 2021).

We guess that RGB images have extra beneficial signals

to predict instance masks. Finally, our method significantly

surpasses the previous method by a clear margin on all

evaluation metrics. In the following subsection, we analyze the

reasons why our method contributes and the effectiveness of

each module.

3.3. Ablation study

3.3.1. Hyperparameter

In this subsection, we analyze the impacts of

hyperparameters. For this hyperparameter ablation study,

the proposed data augmentation methods are not used. First,

TABLE 5 Ablation study of λx and λm inL loss function.

λx λm Ipsnr Idice Mpsnr Mdice

1.0 1.0 24.86± 0.18 90.29± 0.12 26.94± 0.02 90.29± 0.12

1.5 1.0 24.94± 0.03 90.63± 0.31 27.02± 0.03 90.63± 0.31

1.0 1.5 24.74± 0.18 90.32± 0.07 26.95± 0.03 90.32± 0.07

1.5 1.5 24.69± 0.13 90.23± 0.06 26.93± 0.02 90.27± 0.12

The red font shows the best average performance.

FIGURE 7

Qualitative results of di�erent λMAE . Panels (A,B) are examples from the early stage, and latter stage, respectively. GT denotes the ground truth.
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TABLE 6 Ablation study of data augmentation.

T-Mixup T-Copy-Paste Ipsnr Issim Idice Mpsnr Mssim Mdice

✗ ✗ 24.94± 0.03 0.89± 0.01 90.63± 0.31 27.02± 0.03 0.99± 0.00 90.63± 0.31

X ✗ 24.86± 0.09 0.88± 0.01 90.81± 0.12 26.99± 0.06 0.98± 0.00 90.81± 0.12

Finetune ✗ 24.94± 0.09 0.89± 0.01 90.84± 0.29 27.09± 0.11 0.99± 0.00 90.84± 0.29

✗ X 27.08± 0.07 0.91± 0.00 91.21± 0.42 27.38± 0.02 0.99± 0.00 91.21± 0.42

X X 27.43± 0.02 0.92± 0.00 91.58± 0.21 27.26± 0.06 0.99± 0.00 91.58± 0.21

Finetune X 27.53± 0.04 0.92± 0.00 91.88± 0.48 27.62± 0.03 0.99± 0.00 91.88± 0.48

Because of the unnatural images, T-Mixup is first utilized to pretrain our model and then finetuned with all layers. The red font shows the best average performance.

TABLE 7 Ablation study of our algorithm with three main contributions, time-series (TS), GAN, and the proposed time-series data augmentation

(DA).

Ipsnr Issim Idice Mpsnr Mssim Mdice

TS 24.54± 0.03 0.89± 0.00 90.24± 0.05 26.92± 0.02 0.99± 0.00 90.25± 0.05

TS+ GAN 24.94± 0.03 0.89± 0.01 90.63± 0.31 27.02± 0.03 0.99± 0.00 90.63± 0.31

TS+ GAN+ DA (Ours) 27.53± 0.04 0.92± 0.00 91.88± 0.48 27.62± 0.03 0.99± 0.00 91.88± 0.48

λMAE is adopted to balance the MAE loss and adversarial

loss when generating the plant RGB images. Table 4 gives the

performance and Figure 7 gives a visual comparison. From the

table, the performances become better and then worse when

λMAE gradually varies from 80 to 120. Especially, the model

with λMAE = 100 achieves the best average Ipsnr 24.94, Mpsnr

27.02, and Dice 90.63. Visual comparison gives similar evidence

that the generated RGB images have less noise and more details

with λMAE = 100. For example, the biggest leaf in the latter

stage in Figure 7 is better with the less missing part when λMAE

equals 100, as well as the instance mask with a better shape.

Second, we aim to get better qualities for both RGB image

and instance mask via changing λx and λm. The ablation

results are given in Table 5. The performance becomes better

when RGB images are emphasized (λx is larger than λm).

We argue that producing better RGB images is harder than

instance masks as the RGB images have more details in a

regression task.

3.3.2. Data augmentation

In this subsection, we analyze the impact of the proposed

T-Copy-Past and T-Mixup data augmentation. The baseline

employs basic data augmentation and random rotation, with

which more details refer to the Supplementary Material. The

experimental results are displayed in Table 6. Compared to the

baseline, T-Mixup alone results in slightly worse performance

for RGB images, such as the average Ipsnr varying from 24.94

to 24.86. In contrast, the finetuning strategy is beneficial to

the performance, which suggests that plant growth is different

from generic image classification and needs natural images to

train the prediction model. Compared to T-Mixup, T-Copy-

Paste contributesmore to all performances. For example, it alone

takes a 2.14 improvement of PSNR of RGB images than the

baseline. The combination of finetuning of T-Mixup and T-

Copy-Paste leads to the largest increase, which implies that a

limited dataset is one challenge to have a better plant growth

prediction model and our time-series data augmentation is one

effective method.

3.3.3. Modules in our algorithm

Finally, we aim to distinguish the three main contributions

in our paper, time-series, GAN, and data augmentation. The

evaluation is given in Table 7 and the visual comparison is

displayed in Figure 8. GAN can slightly improve the quality of

RGB images and the instance masks. More interestingly, data

augmentation leads to a huge improvement.

3.4. Flexible plant growth prediction

As discussed in Section 1, we aim to achieve flexible plant

growth prediction. In this case, we train our model to predict

one future frame given three historical three frames, but we

can test our model in a different case. By default, our model is

tested in the same way (3to1), but we can also predict two future

frames given three frames (3to2) without retraining the model,

as well as in the 2to1 case. The testing performance in a different

case is given in Table 8. The table suggests that more history

benefits better performance and predicting more future frames

is harder.
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FIGURE 8

Ablation study of our algorithm. GT denotes the ground truth. TS and DA suggest time-series and our proposed time-series data augmentation.

TABLE 8 Testing result of flexible plant prediction model.

Ipsnr Issim Idice Mpsnr Mssim Mdice

2to1 27.20± 0.01 0.92± 0.00 90.54± 0.05 27.35± 0.01 0.99± 0.00 90.54± 0.05

3to1 27.53± 0.04 0.92± 0.00 91.88± 0.48 27.62± 0.03 0.99± 0.00 91.88± 0.48

3to2 25.41± 0.02 0.92± 0.01 87.67± 0.50 26.66± 0.01 0.99± 0.00 87.67± 0.50

atob means predicting b frames given a frames.
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4. Conclusion

In this article, we considered the plant growth prediction

from both time-series and image generation viewpoints

to produce clear RGB images with a flexible framework.

RGB images and instance masks of the leaf are predicted

simultaneously, which suggests that our prediction is at leaf-

level, instead of plant-level. With our model, we can flexibly

predict different numbers of frames given diverse historical

frames after training one specific model, such as predicting

one frame given three input frames. Furthermore, we propose

two time-series data augmentation, T-Mixup and T-Copy-Paste,

to mitigate the limited dataset. Compared to the generic data

augmentation such as rotation, the proposed T-Copy-Paste

introduces specific variations for plant growth prediction, e.g.,

the spatial relations among leaves and the background. T-Mixup

is related to the temporary information during plant growth and

is only used to pretrain a model since the augmented images are

not natural visually. The experimental results suggest that our

method outperforms the current methods with a clear margin.

To the best of our knowledge, we are the first ones to consider

data augmentation for plant growth prediction. Especially, we

believe that our data augmentation method, giving a bigger

improvement than GAN, highlights the challenge of the limited

dataset in plant growth prediction. In the future, we would like

to validate our model in other possible datasets.
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