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The cassava starch market is promising in sub-Saharan Africa and increasing

rapidly due to the numerous uses of starch in food industries. More accurate,

high-throughput, and cost-effective phenotyping approaches could hasten the

development of cassava varieties with high starch content to meet the growing

market demand. This study investigated the effectiveness of a pocket-sized

SCiO™ molecular sensor (SCiO) (740−1070 nm) to predict starch content in

freshly ground cassava roots. A set of 344 unique genotypes from 11 field trials

were evaluated. The predictive ability of individual trials was compared using

partial least squares regression (PLSR). The 11 trials were aggregated to capture

more variability, and the performance of the combined data was evaluated

using two additional algorithms, random forest (RF) and support vector

machine (SVM). The effect of pretreatment on model performance was

examined. The predictive ability of SCiO was compared to that of two

commercially available near-infrared (NIR) spectrometers, the portable ASD

QualitySpec® Trek (QST) (350−2500 nm) and the benchtop FOSS XDS Rapid

Content™ Analyzer (BT) (400−2490 nm). The heritability of NIR spectra was

investigated, and important spectral wavelengths were identified. Model

performance varied across trials and was related to the amount of genetic

diversity captured in the trial. Regardless of the chemometric approach, a

satisfactory and consistent estimate of starch content was obtained across

pretreatments with the SCiO (correlation between the predicted and the

observed test set, (R2
P): 0.84−0.90; ratio of performance deviation (RPD):

2.49−3.11, ratio of performance to interquartile distance (RPIQ): 3.24−4.08,

concordance correlation coefficient (CCC): 0.91−0.94). While PLSR and SVM

showed comparable prediction abilities, the RF model yielded the lowest

performance. The heritability of the 331 NIRS spectra varied across trials and
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spectral regions but was highest (H2 > 0.5) between 871−1070 nm inmost trials.

Important wavelengths corresponding to absorption bands associated with

starch and water were identified from 815 to 980 nm. Despite its limited

spectral range, SCiO provided satisfactory prediction, as did BT, whereas QST

showed less optimal calibration models. The SCiO spectrometer may be a

cost-effective solution for phenotyping the starch content of fresh roots in

resource-limited cassava breeding programs.
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Introduction

Theglobal starchmarket is experiencing increaseddemand,with

anestimatedvalueofUS$51.5billion in2021andaprojectedvalueof

US$70.5 billion by 20271. Starch is a polysaccharide that plants

produce as a carbohydrate reserve. Approximately 54% of the

starches produced globally are used for food. In comparison, 46%

are used in non-foodproducts such as textiles, pharmaceuticals, pulp

and paper, adhesives for packing industries, and cosmetics

manufacturing (Omojola, 2013; Desta and Tigabu, 2018; Raji,

2020). Cassava starch, with its excellent characteristics and

favorable physicochemical and functional properties, could be an

alternative source of starch in a market traditionally dominated by

cereal and potato starches (Oladunmoye et al., 2014; Spencer and

Ezedinma, 2017; Chisenga et al., 2019).

Cassava (Manihot esculanta Crantz) is a climate-resilient crop

owing to its tolerance to drought, poor soils, and wide adaptability

to various climate and cropping systems. It is also a poverty

alleviating crop, primarily grown for human consumption.

Cassava is gradually evolving into an industrial crop (Chisenga

et al., 2019). The significantly increased demand for starch and

starch-based products combined with the inability of traditional

exporters to meet market demand provides new opportunities for

the crop in sub-Saharan Africa. Cassava has the potential to

contribute to income, social progress and development, and

economic growth in countries that produce it (Dada, 2016).

Therefore, cassava production in sub-Saharan Africa should

increase to meet rising market demand. In the face of resource

depletion, land scarcity, urbanization, and rapid population

growth, increasing starch production by expanding cassava

cultivation land areas is not a sustainable solution. An alternative

solution to close the demand gap is developing high starch content

cassava varieties.
220408005379/en/
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Breeding efforts for cassava varieties with high starch content

could be accelerated by developing high-throughput phenotyping

tools that can rapidly and precisely assess numerous genotypes at an

early stage. Phenotyping remains one of the major limitations

hindering the power of genetic analysis of key traits and accurate

selection of superior genotypes at all stages of the breeding process

(Cobb et al., 2013; Reynolds et al., 2020). Several high-throughput,

non-invasivephenotyping technologies, suchas imageanalysis (Baek

et al., 2020), satellite imaging, and remote sensing with unoccupied

aerial vehicles (Chawade et al., 2019), have recently been developed,

opening up new opportunities in breeding. In cassava, spectroscopy-

based approaches that use near-infrared (NIR) regions of the

electromagnetic spectrum have shown promise for the rapid

estimation of key traits (Sánchez et al., 2014; Abincha et al., 2021;

Hershberger et al., 2022).Near-infrared technology could replace the

laborious and time-consuming approach currently used for root

starch content quantification.

NIR spectroscopy studies the spectral properties of an object

when exposed to electromagnetic radiation. Light from the NIR

region may be absorbed, reflected, or transmitted. The resulting

spectrum is associated with molecular vibrational excitation caused

by overtones and a combination of a specific set of chemicals bound

fromwithin amolecule (Ozaki et al., 2020; Beć et al., 2021). TheNIR

region is further classified into three sub-categories: region I

(800−1200 nm), also known as the Herschel region, region II (1200

−1800 nm), and region III (1800−2500 nm). Technological

advancement has fostered the development of miniaturized NIR

devices with limited spectral ranges but offering significant

advantages in terms of price and portability over traditional

spectrometers with full spectral ranges. However, these advantages

maycomeat theexpenseof accuracyandrobustness.Asa result, such

devices must be assessed for analytical performance and model

reliability (Ozaki et al., 2020; Beć et al., 2021).
Our study investigates the potential of a miniaturized SCiO™

spectrometer as an alternative phenotyping method for determining

starch content in fresh cassava roots.Cassava clones (hereafter referred

to as genotypes) from 11 trials were harvested and their starch was

extracted and quantified. Using three chemometric modeling
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approaches, random forest (RF), support vector machine (SVM), and

partial least squares regression (PLSR), the relationship between

reference values and NIR spectra collected with the SCiO™

molecular sensor was established. The heritability of individual

wavelengths was investigated to determine the degree to which

variation for a wavelength is due to genetic variation among

genotypes. The most effective wavelengths in this experiment for

predicting starch content were identified using variable importance

analysis. The SCiO™ sensor’s performance was compared to two

different NIRS instruments: the portable ASDQualitySpec®Trek and

thebenchtopFOSSXDSRapidContent™Analyzer. Itwas established

that SCiO™ could be a rapid analytic tool for measuring starch

content, allowing breeders to screen large populations at an early stage.
Materials and methods

Plant material

The set of genotypes used in this study was composed of

genotypes from preliminary yield trials (PYTs), advanced yield
Frontiers in Plant Science 03
trials (AYTs), uniform yield trials, regional nationally

coordinated research program (NCRP) trials, and genomic

selection (GS) cycles (Table 1). These trials were established

across three locations in Nigeria (Ikenne, Ibadan, and Ago-Owu)

in the 2019 and 2020 rainy seasons. Mature roots were harvested

12 months after planting (MAP). In total, 344 unique genotypes

from 11 field trials were evaluated. These included an early-stage

evaluation (PYT Trial A) with 174 unique genotypes planted in

one environment; three late-stage evaluation trials (UYT and

AYT Trials J, H, I) with between 36 and 40 genotypes planted in

two replicates in a single environment; a pre-release trial (NCRP

Trials E, F) with 18 unique genotypes planted in three replicates

across two environments; and trials of two germplasm

collections maintained by the IITA cassava breeding program.

The first collection comprised a popular landrace and improved

varieties widely cultivated in Nigeria with 33 unique genotypes

and was planted in two replicates across three environments

(Trial C, D, G). The second collection, which comprised 52

unique genotypes, was planted in replicated PYTs across two

environments (Trial B and K). This second collection (also

considered a “core collection”) was selected from a large pool
TABLE 1 Cassava breeding field trial metadata and summary statistics for root starch content.

Cassava base trial name Abbreviated
trial name

Date of
planting

Date
of

harvest

Trial
typea

Trial
designb

Location Minb Maxc SDd CVe Plots
used

Unique
genotypes

19.GS.C4B.PYT.500.IK Trial A 4
Aug.2019

27.Oct.
2020

PYT RCBD Ikenne 18.7 41.6 3.45 0.11 261 174

19.CASS.PYT.52.IK Trial B 25 June
2019

27
Oct.2020

PYT RCBD Ikenne 4.1 38.8 8.07 0.37 97 50

19.CMSSurveyVarieties.AYT33.IK Trial C 10 May
2019

23 Apr.
2020

AYT Alpha-
Lattice

Ikenne 19.9 37.8 4.21 0.15 65 32

19.CMSSurveyVarieties.AYT.33.IB Trial D 29 Apr
2019

20 Apr.
2020

AYT Alpha-
Lattice

Ibadan 10.1 30.3 5.01 0.25 52 31

19NCRPAG Trial E 2 July
2019

27 July
2020

NCRP Alpha-
Lattice

Ago-Owu 18.6 35.3 3.6 0.14 36 18

19NCRPIK Trial F 4 Aug
2019

28 July
2020

NCRP Alpha-
Lattice

Ikenne 20.2 37 3.77 0.13 36 18

20.CMSSurveyVarieties.AYT.33.IB Trial G 24 Apr
2020

24 Apr.
2021

AYT Alpha-
Lattice

Ibadan 14.3 31.35 4.34 0.18 65 33

20.GS.C2.UYT.36.SetA.IB Trial H 15 May
2020

15 May
2021

UYT Alpha-
Lattice

Ibadan 14.5 31.8 3.57 0.14 71 36

20.GS.C2.UYT.36.SetB.IB Trial I 15 May
2020

18 May
2021

UYT RCBD Ibadan 17.55 31.65 2.62 0.1 72 36

20.GS.C4B.AYT.40.IB Trial J 10 June
2020

30 July
2021

AYT RCBD Ibadan 13.65 27.85 2.94 0.13 80 40

20.CASS.PYT.52.IK Trial K 12 July
2020

17
March
2021

PYT RCBD Ikenne 10.1 34.6 6.59 0.3 88 50

4.10 41.6 6.23 0.24 921 518/344
fro
a, minimum; b, maximum, c, standard deviation; d, coefficient of variation.
aAYT, Advanced yield trial; PYT, Preliminary yield trial; UYT, Uniform yield trial; NCRP, National coordinate research program.
bRCBD, randomized complete block design.
cMin, Minimum value; Max, Maximum value.
dStandard deviation.
eCoefficient of variation.
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of historically important breeding lines from IITA (Okechukwu

and Dixon, 2008) and contains substantial variation for

important agronomic traits, including fresh root yield and

starch content.
Reference data measurement

Six healthy storage roots of varying sizes were randomly

selected from each plot to ensure representativeness. Selected

roots were free of defects such as decomposition, disease, and

bruises. These roots were harvested, placed in labeled sampling

bags, and immediately taken to the laboratory for starch

extraction with the protocol adapted from Matsumoto et al.

(2021). Briefly, roots were washed and peeled, and the proximal

and distal ends of each root were removed. The top, middle, and

bottom sides of each selected root were shredded with a hand

grater (3-mm hole diameter). All shredded roots from each plot

were mixed together. The starch of individual genotypes was

extracted using a wet-milling approach with 3 L of water. One

hundred grams of the mixed, shredded tissue was milled with

200 mL of water for one minute with two-second breaks. The

slurry was filtered through a sieve with a mesh size of 180 mm.

This filtering process was repeated until the residue turned pale

white, at which point the remaining water was added to the

precipitate. The precipitate was left at room temperature for

three hours to allow the starch granules to settle. The

supernatant was slowly decanted, and the sediment (starch)

was air-dried for 72 hours at room temperature before being

oven-dried for 24 hours at 40°C. The RSC, expressed as a

percentage of fresh root yield, was calculated by weighing the

dry sediments. The amount of starch was determined using the

following equation:

RSC ( % ) =
DSM
FM

� 100

Where dry starch mass (DSM) is the weight of starch

extracted from a known weight of the root matter and fresh

root mass (FM) is the known weight of the root matter.
Spectra acquisition

NIR spectra were acquired primarily using a pocket-sized

SCiO™ (SCiO) molecular sensor (Consumer physics, Tel Aviv,

Israel) that collected spectral information from 740 to 1070 nm

with a resolution of 1 nm. The SCiO sensor was synced with a

tablet via Bluetooth, enabling communication between the two

devices for digital data transfer from the SCiO sensor to the

SCiO cloud via the SCiO smartphone application. The sensor

was calibrated before sample capture using a built-in reference

standard in the SCiO case. The thoroughly mixed, shredded

cassava roots were placed in quartz cell glasses. The SCiO optical
Frontiers in Plant Science 04
shade was connected to the sensor and placed on the top of the

cell quartz with the optical head facing down. The light source

illuminated the samples and the reflected lighted captured by the

detector was uploaded to the online SCiO cloud database. Each

genotype was measured in three technical replicates (i.e., three

independent tissue samples), and each sample was scanned three

times in different positions by rotating the quartz cell glass. The

spectra were downloaded as comma-separated value files from

the SCiO cloud database. The various repeated scans per sample

were averaged and the averaged spectrum was used for

further analyses.
Reference data analysis

Descriptive statistics for each trait [minimum and maximum

values, coefficient of variation (CV), and standard deviation

(SD)] were obtained using the R package pastecs (Grosjean

et al., 2018). Boxplots were used to visualize starch variation in

each trial. Significant differences (P< 0.05) between the trials

were estimated using the Kruskal-Wallis rank test.
Spectra data analysis

The raw spectra were used to classify cassava genotypes into

homogeneous groups using principal component analyses (PCA).

This analysis was performed using the R package factorMineR (Lê

et al., 2008). The PCA plot was visually inspected to identify

extreme values, and the two genotypes that deviated from most

data were removed. Model development and validation were

performed using the R package waves version 0.2.4 (Hershberger

et al., 2021). Twelve combinations of mathematical pretreatments,

standard normal variate (SNV), first derivative (D1), second

derivative (D2), standard normal variate and first derivative

(SNV1D), standard normal variate and second derivative

(SNV2D), Savitzky-Golay filter (SG), standard normal variate

and Savitzky-Golay filter (SNVSG), gap-segment derivative

(window size = 11) (SGD1), Savitzky-Golay filter first derivative

(window size = 5) (SG.D1W5), Savitzky-Golay filter and first

derivative (window size = 11) (SG.D1W11), Savitzky-Golay filter

and secondderivative (window size = 5) (SG.D2W5), and Savitzky-

Golayfilter and secondderivative (windowsize = 11) (SG.D2W11),

were implemented within the waves R package version 0.2.4

(Hershberger et al., 2021) to minimize the effect of uncontrolled

covariates (scatteringeffects, particle size, variation in the light path,

etc.), removenoise fromNIR spectra, correct non-linear trends and

additive and/or multiplicative effects in the spectrum, and enable a

thorough search for optimum prediction. The Mahalanobis

distance of each spectrum was calculated, and outliers were

removed based on Mahalanobis distance > 3. Individual trials

were modeled using PLSR. When data from all 11 trials were

combined, two other modeling approaches, RF and SVM with a
frontiersin.org
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radial kernel, were evaluated. The genotypes were divided into two

sets for internal cross-validation, one for calibration (training set)

and one for validation (test set). The calibration set was chosen

randomly and accounted for 70% of the total genotypes, while the

test set accounted for 30% of the total genotypes. Five-fold cross-

validation was used to identify the model with the best prediction

ability. This process was repeated 50 times (niter = 50). Several

statistical parameters, including the squared Pearson’s correlation

between predicted and observed values in the test set (R2p), the

coefficient ofdeterminationextracted fromthePLSRmodel (R2CV),

and the root mean squared error of prediction as calculated using

predicted and observed values from the test set (RMSEP) were used

to assess themodel’s goodness offit.Other parameters included the

rootmean square error of cross validation extracted from the PLSR

model (RMSECV), the ratio of performance deviation (RPD),

standard error of prediction (SEP), ratio of performance to

interquartile distance (RPIQ), and Lin ’s concordance

correlation (CCC).

Four additional cross-validation schemes that mimic

scenarios commonly encountered by plant breeders (CV2,

CV1, CV0, and CV00) were applied across the 11 trials tested.

Each trial was treated as an independent environment, as

described by Jarquıń et al. (2017). For CV2 (tested genotypes

in tested environments), 30% of the genotypes from a given trial

made up the test set. All remaining genotypes and all genotypes

from other trials were combined to form the training set. The

test sets for CV1 (untested genotypes in tested environments)

were the same as for CV2; however, genotypes present in the test

set were entirely removed from the training set. Each trial

underwent 50 iterations of training, each with a different

random sample of genotypes in the test set. For CV0 (tested

genotypes in untested environments), an entire trial was

included as the test set. All other trials, regardless of whether

they contained genotypes represented in the test set trial,

constituted the training set. CV00 (untested genotypes in

untested environments) followed the same procedure as CV0,

but all test set genotypes were removed from the training set

prior to model training. For CV0 and CV00, only a single

iteration was performed (Hershberger et al., 2022).
Variable importance and heritability
estimate

RFandPLSRmodelswereused toassess the significanceof each

wavelength in predicting root starch content by calculating variable

importance for each wavelength. The possibility of heritable

variation along the spectra was investigated. The heritability of

root starch content was also evaluated for each trial. Variance

componentswere estimated for both scenarios using amixed linear

model and the R package lme4 (Bates et al., 2015). The trial design

was used to define themodel. The followingmodel was used for the

randomized complete block design (RCBD) trials:
Frontiers in Plant Science 05
Yij   = m + Gi + bj + eij

eij eN 0,  s 2
� �

GieN 0,  s 2
G

� �
bj eN 0,  s 2

b

� �

8>><
>>:

Where Yij represents the reflectance data of the wavelength

derived from genotype i with block j;

μ represents the overall mean; Gi is the random effect of

genotype i, bj is the effect of block j, and eij is the error associated

with the observation. All random effects were assumed to have a

normal distribution. The following model was used for the alpha

lattice trials:

Yijk   = m + Gi + Repj +  bk(j) + eijk

eijk eN 0,  s 2
� �

Gi eN 0,  s2
G

� �
bk eN 0,  s 2

b

� �
Repj eN 0,  s 2

b

� �

8>>>>><
>>>>>:

Where Yijk denotes the reflectance value of each of the

wavelengths derived from genotype i in replicate j and block k.

Repj is the effect of the replicate j; bk(j) is the effect of block k

nested within replicate j, and eijk is the error associated with the

observation of genotype i in block k within replicate j. All

random effects were assumed to have a normal distribution.

Variance components estimated above were used to calculate

heritability. Broad-sense heritability (H2) was calculated for root

starch content and each wavelength as follows:

H2 =
s 2
g

s2
g + s 2

e
nRep

� 100

Wheresg2 is the genotypic variance;se2 is the residual variance,
andnRep is themeannumber of repetitions for one genotype in the

trial. The estimated heritabilities of the entire measured NIR

spectrum were plotted using the ggplot function from the ggplot2

package (Wickham, 2016) in R (R Core Team, 2021).
Instrument comparison

Root spectra were also captured using two additional devices to

enable instrument comparison in the five trials from the 2021

harvest season (Trials G, H, I, J, and K) (Table 1). These

spectrometers include the full range (350 to 2500 nm) portable

instrument ASD QualitySpec® Trek (QST; Malvern, Panalytical,

Cambridge, UK) with a spectral interval of 1 nm and the benchtop

FOSS XDS Rapid Content™ Analyzer NIR spectrometer (BT;

FOSS, Hillerød, Denmark) with a spectral range from 400 to

2490 nm and a spectral interval of 10 nm. For the QST, a

reference reading was taken when starting a scanning session.

Each genotype was measured three times, with each spectrum

representing the average of 50 scans. BT spectra were collected in

reflectancemode. Three separate samples per genotypewereplaced

in cell quartz glasses and measured three times each. For this
frontiersin.org
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spectrometer, each spectrum represents an average of 60 scans.

Data from all five trials were combined. Based on the raw spectra

from each spectrometer, PCA was used to classify cassava

genotypes into homogeneous groups visually. This analysis was

performed using the R package factorMineR (Lê et al., 2008). The

performance of the three devices to predict root starch content was

carried out using the same sample sets. Three approaches were

used: (1) the initial full spectral range of the three devices; (2)

comparison of the three devices in the overlapping regions (740

−1070 nm); and (3) the spectral data from the QST and BT were

trimmed at the beginning (< 600 nm) and the end of the spectra (>

1900 nm) to remove potential noise. The selected range was

determined after graphical visualization of the raw spectra.

Background noise was evident with QST. The BT spectra were

trimmed to the same range as the QST spectra for consistency and

ease of comparison.

Results

Reference data exploration

Root starch content ranged from 4.1 to 41.6% among the 344

uniquegenotypes in this study.Furthermore,weobserved root starch

content varied within and between trials, over time, and across

environments (Figure 1). The Kruskal-Wallis rank test revealed

significant (P< 0.05) differences in starch content between trials.

Trial B (coefficient of variation = 0.37) had the most genotype

variation, followed by Trial K (coefficient of variation = 0.3). Trial I

displayed the lowest level of variability (coefficient of variation = 0.1).

Table 1 shows descriptive statistics for root starch content and the
Frontiers in Plant Science 06
number of genotypes used for calibrating each trial. Supplementary

Table 1 shows the number of common genotypes between trials.

Principal component analysis of the raw
spectral data

Atotalof301averagedscanswere recordedusing theSCiOdevice

across trials (SupplementaryTable 2). SupplementaryFigure1depicts

theaveragedrawspectra recordedonground freshcassava roots.PCA

revealed variation between genotypes and subtle differences between

trials (Figure 2). The overlap between trials could be attributed to

common genotypes present and their close relatedness. The overlap

may also be due to overlap in the mean and range of root starch

content across trials (Supplementary Figure 2). The first PC

accounted for 97.0% of the variation in the NIR spectra, while PC2

accounted for 2.9%. Overall, this exploratory PCA revealed the

potential of spectral information in characterizing genotypes.

Analysis of SCiO spectra data using
partial least squares regression

Assessment of prediction accuracy between
trials

Several metrics were used to evaluate model prediction,

including R2P, RPD, RPIQ, RMSE, and SEP. These metrics,

which indicate model fitness for each trial, are reported in

Supplementary Table 3. The prediction of root starch content

differed between trials (Figure 3). A high-quality model should

have higher R2P and R2
CV values, lower RMSEP and RMSECV,

and SEP and bias close to zero. Standard guidelines for the
FIGURE 1

Root starch content distributions for the 11 evaluated cassava trials.
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interpretation of R2P (Williams and Norris, 2001; Lebot et al.,

2009; Polinar et al., 2019) and RPD (Williams and Norris, 2001;

Williams, 2014; Polinar et al., 2019) were applied. Based on the

R2
P values for each pretreatment and trial and the R2

interpretation guidelines suggested by Williams and Norris

(2001), the trained models could be used for: (a) rough

screening (Trial A; R2
P =0.61.-0.64); (b) screening and other

approximate calibration (Trials E, I, J; R2
p = 0.71-0.81); (c) most

applications but with caution (Trials B, D, G, K, and Combined;

R2p = 0.86-0.90); (d) rough screening to screening and other

approximate calibration (Trials C and F, R2p = 0.59-0.68); and

(e) screening and other approximate calibration to use for most

applications but with caution (Trial H; R2
p =0.82-0.85). Based on
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the RPD values, the predicted models could be used for

screening (Trials B, K, and Combined; RPD ≥ 3) and very

rough screening (Trials D and H; RPD = 1.593 – 2.306) in some

trials, but not in others (Trials A, C, E, F, J; RPD = 1.595 - 2.306).

A combination of factors, including the small sample range

between the reference data and the number of samples used,

could have hampered efficient model prediction in trials E and F.

Trials E and F are both NCRP trials; the final testing stages

before varieties can be commercialized. These trials include

superior genotypes with high yield and starch content and

little variation because they are all high performers. Variation

in the environment is also an important factor that could have

influenced model prediction. Trials E and F, which had similar
FIGURE 3

Individual trial performance using partial least squares regression. Pearson’s correlation between predicted and observed values in the test set
(R2

p); no spectral pretreatment (raw data); standard normal variate (SNV); standard normal variate and first derivative (SNV1D); standard normal
variate and second derivative (SNV2D); first derivative (D1); second derivative (D2); Savitzky-Golay with window size = 11 (SG); standard normal
variate and Savitzky-Golay (SNVSG), gap segment derivative with window size = 11 (SGD1), Savitzky-Golay with window size = 5 and first
derivative (SG.D1W5); Savitzky-Golay with window size = 11 and first derivative (SG.D1W11); Savitzky-Golay with window size = 5 and second
derivative (SG.D2W5); and Savitzky-Golay with window size = 11 and second derivative (SG.D2W11).
FIGURE 2

Principal component analysis of NIR spectral data from fresh cassava root scans captured with the SCiO.
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genotypes, were tested at two different phenotyping sites (Ikenne

and Ago-Owu). Similar findings apply to Trials C and D, which

were also evaluated in two different agroecological zones (Ikenne

and Ibadan). Trials B, K, and the combined trials showed good

predictive ability (RPIQ ≥ 4.0) consistent with their RPD values

(Williams, 2014). The similarity of the RMSEP and RMSECV for

most trials confirmed the fair and robust fitting of the validation

samples. Overall, Trials B, D, G, K, and Combined best predicted

root starch content. An effect of spectral pretreatment on model

prediction was observed in some cases. (Figure 3). The spectral

pretreatments with the best performing models from Trial B

were D2, SGD2W5, and SGD2W11. The model based on SGD1

and SGD1W11 pretreated spectra performed best in Trial G. The

optimal model from Trial D was pretreated with SNV1D.

The best performing pretreatment in the Combined trial was

SG. The variability of genotypes within each trial had a greater

impact on model prediction performance (rs = 0.78, P< 0.05)

than the number of genotypes (rs = 0.18, P< 0.05)

(Supplementary Figures 3, 4). In terms of prediction, trials

with the highest coefficient of variation performed better.

Trial A had the most genotypes (261) but a lower R2
P value

than Trials B (97), K (88), and D (52), which had smaller sample

sizes but high coefficients of variation. As a result, model

prediction can be linked to the level of sample variability.

Comparison of different prediction models
using aggregated data

Spectral data from all 11 trials were combined and the

model prediction was assessed using three chemometric

modeling approaches: RF, PLSR, and SVM. Using PLSR,

high prediction accuracies were obtained regardless of the
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pretreatment applied (R2
P = 0.89, RPD > 3.0, RPIQ > 3.9,

SEP ≤ 2.07%) (Figure 4; Supplementary Table 4). SVM

performance was also consistently satisfactory across the 11

pretreatments. This was supported by a high RPD value (> 3),

RPIQ (>3.9), low SEP (≤ 2.07%), and low bias (0.01−0.06)

(Figure 4; Supplementary Table 4). Regarding statistical

performance parameters, SVM and PLSR models yielded

comparable predictions. When the RF model was applied,

models based on SNV1D (R2
P = 0.89, RPD = 3.03, RPIQ =

3.97, SEP = 2.07%) and SNV2D (R2
P = 0.89, RPD = 3.04,

RPIQ = 4.01, SEP = 2.04%) were deemed reasonable for root

starch content prediction, while other pretreatments showed

only a fair RPD value (2.5 ≤ RPD ≤ 2.9). The lowest

predictability for the RF model was obtained when no

spectral pretreatment was applied (R2
P = 0.84, RPD = 2.49,

RPIQ = 3.24, SEP = 2.52%) (Figure 4; Supplementary

Table 4). Four cross-validation schemes (CV1, CV2, CV0,

and CV00) were used to evaluate the ability of each model to

correctly predict root starch content across a range of realistic

scenarios. Supplementary Tables 5, 6 show the performance

statistics of the models developed using PLSR and SVM. The

SVM and PLSR models performed nearly identically across all

CV schemes. (Figure 5; Supplementary Figure 5). The overall

mean model performance based on R2
P ranged from 0.76 to

0.79, which is lower than within-trial R2
P (0.89 to 0.90). The

performance of other metrics was also lower (Supplementary

Table 7), but the difference in performance between groups

was negligible. Model prediction was slightly improved when

the tested set of genotypes was represented in the training set.

Likewise, the SEP decreased in the schemes in which the test

set environment was represented in the training set (CV1,
FIGURE 4

Comparison of three chemometric modeling approaches using SCiO spectral data and all accessions combined. Pearson’s correlation between
predicted and observed values in the test set is represented by the y-axis (R2p). The various pretreatment approaches and the model without spectral
pretreatment (raw data) are depicted on the x-axis (standard normal variate (SNV), standard normal variate and first derivative (SNV1D), standard normal
variate and second derivative (SNV2D), first derivative (D1), second derivative (D2), Savitzky-Golay with window size = 11 (SG), standard normal variate
and Savitzky-Golay (SNVSG), gap segment derivative with window size = 11 (SGD1), Savitzky-Golay with window size = 5 and first derivative (SG.D1W5),
Savitzky-Golay with window size = 11 and first derivative (SG.D1W11), Savitzky-Golay with window size = 5 and second derivative (SG.D2W5), and
Savitzky-Golay with window size = 11 and second derivative (SG.D2W11)). Three modeling approaches were evaluated: random forest (RF), partial least
square regression (PLSR), and support vector machine (SVM) (SVM). SVM and PLSR both produced consistent and comparable predictions.
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CV2). The genetic similarity of the genotypes may have

contributed to the comparable model performance observed

across scenarios.
Wavelengths of importance and
heritability

The variable importance analysis identified the relative

contribution of wavelengths in predicting root starch content.

The most informative wavelengths for both PLSR and RF models

were between 815 and 980 nm, corresponding to a) the third

overtone of C-H and C-H2 stretching related to the presence of

carbohydrates and b) the second overtone for O-H bands, the

most prominent signal for water (Bantadjan et al., 2020a;

Bantadjan et al., 2020b; Farhadi et al., 2020) (Table 2;

Supplementary Figure 6).

The extent to which NIR spectral variation is due to genetic

variation among genotypes was examined by computing the

heritability of NIR reflectance values for each trial. The

heritability of NIR spectra varied between trials and across

spectral regions (Figure 6). Trials K and B had higher

heritabilities across all wavelengths (H2 ≥ 0.79), whereas Trial H

had the lowest range of heritability (H2< 0.4) (Supplementary

Table 8). This finding implies that most of the variation in NIR

spectral patterns is due to the genetic variation among genotypes.

Spectra from 871 to 1070 nm, a range that contains spectral bands
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strongly related to root starch content (Bantadjan et al., 2020a;

Bantadjan et al., 2020b; Farhadi et al., 2020), showed higher

heritability (H2 > 0.5) (Figure 6). The heritability of root starch

content was also computed for each trial. The heritability of root

starch content on a mean entry basis ranged from moderate (H2 =

0.53; Trial J) to high (H2 = 0.88; Trial B), except for Trial I, which

had a lower heritability (H2 = 0.29). The heritability of root starch

content also varied between years and locations (Supplementary

Table 9). Except for Trial H (H2: 0.28-0.32), heritability estimates

based on spectral data were slightly higher than root starch content

heritability estimates, supporting the possibility of using spectral

information via indirect selection to improve traits in

cassava breeding.
Instrument comparison

Reflectance values varied across wavelengths, but the patterns of

reflectance recorded by the QST and BT devices were quite similar.

The SCiOpatterns, on the other hand, appear to bedifferent, possibly

due to distinct optical parameters and operational characteristics of

this miniaturized device. Furthermore, the spectral pattern

differences could be explained by the proprietary algorithm used to

remove noises from the raw signals captured by the SCiO sensor

before storing the raw spectral data in the cloud (Figure 7). PCA of

raw spectra from the different devices revealed further similarities

(Supplementary Figure 7). For BT, PC1 explained 83.7% of the
FIGURE 5

Prediction of cassava root starch content using four cross-validation schemes and the partial least squares regression algorithm. The x-axis
displays the four cross-validation (CV) schemes. The y-axis shows the squared Pearson’s correlation between predicted and observed values in
the test set (R2

p) for 50 iterations of the waves prediction pipeline with no spectral pretreatment. The colors represent the various
pretreatments. CV0 indicates leave-one-trial-out CV and CV00 indicates that there was no overlap between genotypes and environments in the
training and test sets. CV1 indicates overlap in the environment but not genotypes between the training and test sets. CV2 indicates an overlap
of both genotypes and environments in the training and test sets. However, genotypes with multiple replicates within a trial were sorted
together in all cases. Error bars show the standard deviation for schemes with subsampling (CV1 and CV2). As no subsampling occurred in either
the CV0 or CV00 schemes, the standard deviation was not calculated and, hence, no error bars are displayed.
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variability in the raw spectral data, while PC2 explained 9.9%.

Similarly, for QST, PC1 accounted for 85% of the variability, while

PC2 accounted for 9%. In contrast to BT and QST, PC1 and PC2

captured 97.1 and 2.7% of the variability of the SCiO, respectively.

Differences between genotypes and subtle differences between

trials were observed regardless of the instrument used

(Supplementary Figure 7).

When the entire spectral range (SCiO: 740−1070 nm; QST:

350−1070 nm; BT: 400−2490 nm) was used, adequate and

consistent prediction was achieved across pretreatments using the

SCiO spectrometer with PLSR (R2P = 0.89-0.90, RPD = 3.10−3.19,

RPIQ = 3.74−3.85, SEP = 1.47−1.52%) and SVM (R2P = 0.89−0.90,

RPD = 2.99−3.31, RPIQ = 3.61−4.00, SEP = 1.47−1.52%)models. In

general, the RFmodel statistics were lower (R2P = 0.77−0.87, RPD =

2.08−2.82, RPIQ = 2.53−3.37, SEP = 1.67−2.22%) (Supplementary

Figure 8). Model statistics for untrimmed spectral data derived from

the BT varied greatly depending on pretreatments and the

chemometric model used. The optimal BT PLSR model was

obtained when the SGD1W11 pretreatment was applied (R2P =

0.87, RPD = 2.99, RPIQ = 3.60, SEP = 1.66%), while the highest

statistical indicators from RF were obtained when spectra data was

processed by SNV2D (R2P = 0.89, RPD = 3.06, RPIQ = 3.70,
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SEP = 1.54%) and SNV1D (R2P = 0.89, RPD = 3.03, RPIQ = 3.64,

SEP = 1.56%). The best pretreatment approach for the SVMmodel

was SG (R2P = 0.89, RPD = 3.12, RPIQ = 3.77, SEP = 1.52%),

followed by SGD1 (R2P = 0.88, RPD = 3.11, RPIQ = 3.75,

SEP = 1.56%). Less optimal calibration models were observed

with the QST spectrometer (R2P =0.10-0.83, RPD = 0.99-2.57,

RPIQ =1.20-3.10, SEP = 1.89-4.68%) (Supplementary Table 10).

When the overlapping region between the three devices

(740−1070 nm) was used, model prediction with the BT and

QST spectrometers improved considerably (Figure 8). Model

statistics revealed that depending on the pretreatment applied,

certain models were suitable for predicting root starch content

and, in some cases, were slightly superior to the model developed

with the SCiO (Supplementary Table 11). The optimal models

for the BT were obtained using the SVM (R2P = 0.91; RPD = 3.39;

RPIQ = 4.19, SEP = 1.39) and PLSR (R2
P = 0.91; RPD = 3.37;

RPIQ = 4.17, SEP = 1.38) algorithm. Here as well, the QST

produced the models with the poorest performance (R2
P =

0.40−0.85; RPD = 1.06−2.70; RPIQ = 1.28−3.26, and SEP =

1.80−4.40%) (Figure 8 and Supplementary Table 11).

After trimming the spectra to remove noise (Supplementary

Figure 9), model calibration obtained with the BT spectrometer
FIGURE 6

Broad-sense heritability of each wavelength of cassava root NIR spectra collected with the SCiO.
TABLE 2 Top wavelengths identified through variable importance analysis for predicting root starch content with partial least squares regression

(PLSR) and random forest (RF) models using data captured with SCiO™ for all combined cassava breeding field trials at IITA.

Wavelength (nm)

Model PLSR 878 879 880 911 912 959 960 973 974 975

RF 815 913 963 964 965 979 980
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was slightly superior (R2P = 0.82−0.91; RPD = 2.37−3.52; RPIQ =

2.86−4.35; SEP = 1.32−1.98%) to the model developed with the

SCiO (R2P = 0.77−0.90; RPD = 2.08−3.31; RPIQ = 2.53−4.00;

SEP = 1.43−2.22%) depending on the pretreatment and the

chemometric model used (Supplementary Figure 10,

Supplementary Table 12). It is critical to use the appropriate

pretreatments to achieve more accurate predictions. Regarding

root starch content prediction, although the effect of

pretreatment on model prediction was more pronounced

when using the benchtop device, both the BT and SCiO

outperformed QST. Even though the SCiO sensor only

captures information in the second and third overtones, its

limited spectral range did not affect root starch content

prediction in this study. Supplementary Tables 13–15 show the

average prediction value from multiple predictions from a

random sampling of the test set, while Supplementary

Figure 11 shows the correlation between the obtained

predicted values and the reference values. However, newly

selected samples from the next harvesting season would

accurately correlate the observed laboratory values with the

root starch content obtained from the three devices.
Discussion

Trial selection, sample coverage, and
model prediction

Breeding programs devoted to developing cassava varieties

with high root starch content for industry necessitate robust,

fast, and low-cost methods for screening breeding populations,
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evaluated. Laboratory-based quantification of root starch

content is tedious and time-consuming. The potential of NIRS

technology for quantifying root starch content was investigated.

The importance of training set composition, including

consideration of the trial type and phenotypic variation within

a trial, was demonstrated in developing a robust model. The

current study found that some trials with more genotypes (e.g.,

Trial A) had lower prediction accuracy than trials with fewer

genotypes and a wider range of root starch content (e.g., Trials B

and K), highlighting the importance of capturing a diverse range

of phenotypes (Cafferky et al., 2020; Zerihum et al., 2020).

Environment factors may also impact trait prediction. This is

evidenced by Trials C and D, which were carried out in two

distinct agroecological zones. Trial C was conducted in Ikenne (a

rainforest) and Trial D was conducted in Ibadan (a derived

savanna). The effects of edaphic and climatic conditions on

cassava root content and their physiochemical properties have

been previously reported (Benesi et al 2004; Gu et al., 2013). For

a robust model, selecting a set of genotypes representative of the

breeding pool from different selection stages, locations, growing

seasons, and years is preferable to maximize the number of

genotypes. Routine model updates capturing new variations are

advised to prevent bias (Lebot, 2012).
Assessment of model prediction

Various pretreatments were used to correct spectral data. A

recent study by Hershberger et al. (2022) evaluated the ability of

the SCiO to predict cassava root dry matter content. Consistent
FIGURE 7

The average spectrum of the cassava accessions obtained using ASD QualitySpec® Trek (QST), Benchtop FOSS XDS Rapid Content™ Analyzer

NIR spectrometer (BT) and pocket-sized SCiO™ (SCiO). The various NIRS regions are highlighted on the background, yellow (visible; 400−800
nm), green (region1; 800−1200 nm), pink (region2; 1200−1800 nm), and blue (Region 3; 1800−2500 nm).
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results were obtained across the same 12 combinations of

pretreatments with PLSR and SVM, but the effect of spectral

pretreatment was evident with the RF model. Previous research

has highlighted the effect of pretreatment on prediction accuracy

for NIRS (Agussabti et al., 2020; Cafferky et al., 2020). Because

there is no one-size-fits-all pretreatment, care should be taken to

avoid model bias when selecting a spectral pretreatment method.

A thorough evaluation is critical to ensure that models are

appropriate for their intended uses. R2p and R2cv are commonly

used to assess model fit and predictive strength, but these metrics

should not be used as stand-alone indicators of model

performance. RPD and RPIQ are additional statistical

parameters used in the current study to evaluate model

prediction accuracy. RPD is inappropriate when the

assumption of a normal distribution is violated, and its

interpretation varies from study to study (Lebot, 2012;

Williams, 2014; Zerihum et al., 2020; Zhao et al., 2021). As a

result, RPIQ was also considered when evaluating model fit

(Bellon-Maurel et al., 2010). Other meaningful metrics to

measure model fit that were examined include RMSE, which

gives the standard residual error, model SEP, bias, and CCC.

Algorithm choice is also critical for model development. We

found that SVM models performed similarly to those trained

with PLSR, a more traditional NIRS modeling approach. This is

consistent with the findings of Mendez et al. (2019) and
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Hershberger et al. (2022). They reported a marginal

improvement in predictive ability for SVM over PLS,

contradicting Ludwig et al. (2019) and Wang et al. (2021) who

found SVM superior to PLSR. The observed variation in

algorithm performance between studies could be attributed to

differences in the trait investigated, data distribution, and

sample variability (Frizzarin et al., 2021). Consistent with

previous studies, SVM and PLSR outperformed the RF

algorithm in this study (Mendez et al., 2019; Abincha et al.,

2021; Hershberger et al., 2022). PLSR may remain the go-to

model for trait prediction with NIRS due to its sensitivity and

computational efficiency.

A decrease in model prediction accuracy was observed when

tested with additional cross-validation schemes. While it is

important to adequately account for environmental and

genotype variability to ensure broad-based calibration, it is

equally important to minimize sample bias through an

adequate calibration set and genotype representativeness (Au

et al., 2020; Hershberger et al., 2022). Within-trial cross-

validation should be interpreted cautiously because it can

produce overly optimistic statistics and may not reflect the

conditions observed in practice. Thus, the four additional

cross-validation schemes tested may provide a more realistic

assessment of the ability of the SCiO to predict unknown

samples (Li et al., 2018; Patel et al., 2020).
FIGURE 8

Comparison of model prediction using Partial least squares regression (PLSR), support vector machine (SVM) and random forest (RF) algorithms

between ASD QualitySpec® Trek (QST), the Benchtop FOSS XDS Rapid Content™ Analyzer NIRS spectrometer (BT) and the pocket-size SCiO™

(SCiO) using the overlapping wavelengths (740 1070 nm) between the three devices. The Y-axis shows the squared Pearson’s correlation
between predicted and observed values in the test set (R2

P). The X-axis indicates the model without spectral pretreatment (raw data) and the
different pretreatment approaches used [standard normal variate (SNV), standard normal variate and first derivative (SNV1D), standard normal
variate and second derivative (SNV2D), first derivative (D1), second derivative (D2), Savitzky-Golay with window size = 11 (SG), standard normal
variate and Savitzky-Golay (SNVSG), gap segment derivative with window size = 11 (SGD1), Savitzky-Golay with window size = 5 and first
derivative (SG.D1W5), Savitzky-Golay with window size = 11 and first derivative (SG.D1W11), Savitzky-Golay with window size = 5 and second
derivative (SG.D2W5), and Savitzky-Golay with window size = 11 and second derivative (SG.D2W11)].
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The wavelength of importance and
heritability

Important wavelengths for predicting cassava root starch

content were identified between 815 and 980 nm through

variable importance analysis. This interval has previously been

linked to spectral bands associated with starch and water

absorption (Bantadjan et al., 2020a; Wang et al., 2021). In this

interval, the third overtone associated with C-H, C-H2 stretching

was reported at 900, 910, 914, 915, and 930 nm (Bantadjan et al.,

2020a). A signal from water O-H bonds was captured between

970 and 975 nm (Bantadjan et al., 2020a; Bantadjan et al., 2020b;

Farhadi et al., 2020). The peak at 980 nm is likely related to

carbohydrates and water in the root samples (Wang et al., 2021).

Given that variable importance is used to identify wavelengths

that may correspond to the most relevant information for

predicting phenotypes, the preferential targeting of these

identified wavelengths of importance could simplify the

modeling process. Fitting fewer wavelengths would also

require less computing time (Li et al., 2020; Wang et al., 2021).

Although broad-sense heritability estimates varied across the

NIR spectrum, highly heritable regions were identified. This

indicates that NIR spectral bands are influenced mainly by

genetic effects (Hein and Chaix, 2014). Heritable NIR

signatures, especially those also predictive of root starch

content, could be used to identify desirable cassava genotypes

(Hein and Chaix, 2014). Highly heritable spectral regions may

also aid in deciphering root starch content genetics (Fujimoto

et al., 2015; Razar et al., 2021). Such findings highlight the utility

of spectral data in conjunction with, for example, genomics-

assisted breeding approaches.
Instrument comparison

MiniaturizedNIR spectrometers have the potential to offermore

cost-effective and appropriate high-throughput phenotyping

procedures for plant breeding programs. Their effectiveness,

however, is still under debate. Despite its limited spectral range,

more accurate predictions were obtained using the pocket-sized

SCiO compared to the QST, regardless of the pretreatment method

applied. This contradicts the hypothesis that spectrometers with

broader spectral ranges can provide superior predictions. When

models trained with the overlapping region of the three devices (740

−1070 nm) were compared, the SCiO still had an advantage, as

evidencedby itshigherpredictive ability.Theoverlappingregionmay

contain themost influential bands for predicting root starch content.

Bittante et al. (2021) made a similar observation, emphasizing the

importance of capturing the most informative portion of the

spectrum. Rukundo et al. (2021) reported that the limited spectral

range of the smartphone NIR spectrometer used in their study did

not affect model performance. The improved prediction obtained

after spectral trimmingcouldbeattributed toan increase in signal-to-
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noise ratio, emphasizing the negative effect of the discarded spectral

regions. The poor performance of the QST in all scenarios could be

attributed to complex information captured,making their extraction

more difficult. Differences in device technology and operational

characteristics cannot be ruled out as potential contributors to

model prediction disparities between instruments (Stocco et al.,

2019; Ozaki et al., 2020; Beć et al., 2021). The number of reports in

the literature onusing aminiaturized SCiO sensor for trait prediction

is growing. Some studies have pointed out the strong performance of

spectral data from the SCiO in trait prediction (Li et al., 2018; Riu

et al., 2020;McVey et al., 2021;Hershberger et al., 2022), while others

have found models developed using SCiO data to be unreliable

(Berzaghi et al., 2021). In other cases, the analytical performance of

the SCiO sensor was comparable to that of widely used benchtop

devices, the go-to instruments in NIR spectroscopy (Li et al., 2018;

Wiedemair et al., 2019).
The routine use of near-infrared
spectroscopy for trait prediction in
cassava breeding

Recent studies have reported the value of NIRS for predicting

key cassava traits such as dry matter, carotenoids, cyanogenic

glucosides, and starch content in fresh cassava roots (Sánchez

et al., 2014; Ikeogu et al., 2019; Bantadjan et al., 2020a; Bantadjan

et al., 2020b; Abincha et al., 2021; Hershberger et al., 2022). NIR

sensors, particularlyminiaturized devices, will be helpful in cassava

breeding programswhere thousands of samples are processed, and

data turnaround is critical. A significant amount of time spent on

starch extraction will be saved. Another anticipated benefit of

routinely implementing NIRS technology in cassava breeding is

lower selection costs and a lower risk of advancing lines with

inadequate starch content. Aside from analytical performance, the

cost of technology is an essential factor that influences its adoption

anduse.The SCiO sensor ismuch cheaper than theQSTand theBT

and could appeal to breeding programs with limited resources.

However, one potential barrier to the routine use of this device by

programs with limited budgets is access to cloud-based data

storage. This necessitates a license and the need to operate via an

internet connection, which is impractical in remote breeding sites.

One crucial point to emphasize is that it ismisleading tobelieve that

the ability of SCiO to predict traits such as dry matter content and

starch content implies that it applies to all traits. The situationmay

be different for other traits. As a result, the device’s ability to predict

other traits should be assessed on a case-by-case basis.
Conclusion

The ability of the pocket-size SCiO™ spectrometer to

predict starch content was investigated, and its performance

compared to that of the Benchtop FOSS XDS Rapid Content ™
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Analyzer and ASD QualitySpec Trek®. The relevance of spectral

information was also evaluated. The SCiO sensor successfully

predicted starch content in fresh, shredded cassava roots

despite its limited spectral range. After removing noise at

the beginning and end of the spectrum, model calibration

using the BT spectrometer slightly outperformed the SCiO

sensor. With the QST, suboptimal calibration was achieved.

The SCiO could be an economically viable solution for

breeding programs with limited resources looking for a quick

analytical tool to predict cassava root starch content. We

demonstrated that spectral information could also characterize

accessions. The heritability of the spectra highlighted the

possibility of using spectral information for quantitative

genetic analyses and improvement. Capturing new variations

and continual prediction model updates will help ensure

adequate predictive performance and avoid incorrect decisions

caused by a miscalibrated model.
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