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To accurately evaluate residual plastic film pollution in pre-sowing cotton 

fields, a method based on modified U-Net model was proposed in this 

research. Images of pre-sowing cotton fields were collected using UAV 

imaging from different heights under different weather conditions. Residual 

films were manually labelled, and the degree of residual film pollution was 

defined based on the residual film coverage rate. The modified U-Net model 

for evaluating residual film pollution was built by simplifying the U-Net 

model framework and introducing the inception module, and the evaluation 

results were compared to those of the U-Net, SegNet, and FCN models. The 

segmentation results showed that the modified U-Net model had the best 

performance, with a mean intersection over union (MIOU) of 87.53%. The 

segmentation results on images of cloudy days were better than those on 

images of sunny days, with accuracy gradually decreasing with increasing 

image-acquiring height. The evaluation results of residual film pollution 

showed that the modified U-Net model outperformed the other models. The 

coefficient of determination(R2), root mean square error (RMSE), mean relative 

error (MRE) and average evaluation time per image of the modified U-Net 

model on the CPU were 0.9849, 0.0563, 5.33% and 4.85 s, respectively. The 

results indicate that UAV imaging combined with the modified U-Net model 

can accurately evaluate residual film pollution. This study provides technical 

support for the rapid and accurate evaluation of residual plastic film pollution 

in pre-sowing cotton fields.
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Introduction

Plastic film mulching is an agricultural technique that can improve soil temperature, 
reduce soil water loss, suppress weed growth, and improve crop water use efficiency, yield, 
and quality (Yan et al., 2014; Xue et al., 2017). However, much of the waste plastic film 
remains in the soil after harvesting. With polyethylene as raw material, plastic film is 
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decomposed into residual film and microplastics over time under 
natural conditions (Qi et al., 2020; Zhang et al., 2022). However, 
complete decomposition of plastic film in the soil requires 200 to 
400 years (He et al., 2009). The increase in residual film in the soil 
has brought a series of serious problems, such as soil structure 
damage, decreased soil quality, and crop yield loss (Dong 
et al., 2015).

Cotton is one of the major cash crops in the world (Akter 
et al., 2018; Alves et al., 2020). China is one of the world’s leading 
cotton growers, and Xinjiang Province has become an important 
region for high-quality cotton production in China. In 2021, 
Xinjiang’s cotton production reached 5.129  million tons, 
accounting for approximately 89.5 percent of China’s total cotton 
output. Due to the arid climate in Xinjiang, farms have used film 
mulching in cotton planting for a long time. However, the 
accumulation of plastic film waste has caused serious white 
pollution to farmland (Zhao et al., 2017).

Farmland residual film pollution control is a systematic 
project. In addition to the development of residual film recycling 
machines, it is of great significance to carry out efficient and 
accurate residual film pollution monitoring to provide reference 
for reducing residual film pollution in farmlands.

At present, artificial collection of residual films is mostly 
used for residual film pollution evaluation. For example, Zhang 
et al. (2016) studied the status and distribution characteristics of 
residual film in Xinjiang, the results indicated that the thickness 
of the film had significantly negative correlation with the amount 
of residual film. Wang et  al. (2022) analyzed residual film 
pollution in northwest China and found that plastic debris 
residing in soil tend to be fragmented, which could make plastic 
film recovery more challenging and cause severe soil pollution. 
He et al. (2018) and Wang et al. (2018) used manually stratified 
sampling to monitor cotton fields with different duration of film 
mulching according to the weight and area of residual film. They 
found that residual film content increased year by year as the 
film mulching continued, and the residual film broke down and 
moved into the deep soil during crop cultivation. However, 
artificial collection of residual films, with high labour intensity 
and low efficiency, cannot meet the requirement for rapid 
monitoring of residual film pollution. Therefore, it is urgent to 
develop an efficient evaluation method for evaluating farmland 
residual film pollution at present.

With the rapid development of UAV remote sensing and deep 
learning technology, UAV imaging combined with semantic 
segmentation has been increasingly widely used in agriculture. 
Zhao et al. (2019) collected UAV RGB and multispectral images 
of rice lodging and proposed a U-shaped network-based method 
for rice lodging identification, finding that the Dice coefficients for 
RGB and multispectral images were 0.9442 and 0.9284, 
respectively. Zou et al. (2021) proposed a weed density evaluation 
method using UAV imaging and modified U-Net, and the 
intersection over union (IOU) was 93.40%. Li et  al. (2022) 
proposed a method for high-density cotton yield estimation based 
on low-altitude UAV imaging and CD-SegNet. They found that 

the segmentation accuracy reached 90%, and the average error of 
the estimated yield was 6.2%.

In recent years, some scholars have preliminarily explored 
UAV imaging-based plastic film-mulched area detection and 
residual film identification. Zhu et al. (2019) proposed a method 
for extracting the plastic film-mulched area in farmlands using 
UAV images. Based on UAV remote sensing images, the white and 
black film-mulched areas in farmlands were extracted, and the 
accuracy reached 94.84%. Sun et  al. (2018) proposed an area 
estimation approach for plastic film-mulched areas based on UAV 
images and deep learning, and five fully convolutional network 
(FCN) models were built by multiscale fusion, finding that the 
optimal identification accuracy of the FCN-4 s model was 97%. 
Tarantino and Figorito (2012) used the object-oriented nearest 
neighbour classification method to extract mulching information 
from aerial images. In addition, focused on farmland residual film 
pollution Wu et al. (2020) proposed a method for plastic film 
residue identification using UAV images and a segmentation 
algorithm. To overcome the influence of light on the accuracy of 
residual film identification, an impulse coupled neural network 
based on the S component was built, and the average identification 
rate was 87.49%. However, this research aimed at farmland that 
was not ploughed after harvesting in autumn, residual film had 
good continuity and low fragmentation.

It is of great significance to monitor whether the farmland 
reaches the qualified conditions for sowing by the rapid detection 
of residual film pollution in pre-sowing cotton field. Before sowing 
in the spring, the agricultural mulch turned into film fragments as 
the cotton field went through a series of operations, such as straw 
crushing, ploughing, and field preparation et al. Compared with 
plastic film mulch area detection after sowing in spring and plastic 
film residue detection after harvest in autumn, residual film 
pollution evaluation in pre-sowing cotton fields is more difficult.

Aimed at detecting residual film coverage rate in pre-sowing 
cotton field surface, Zhai et  al. (2022) proposed a detection 
method based on pixel block and machine learning, however, the 
Mean Intersection Over Union(MIOU) was only 71.25%, and the 
image acquisition method was near-ground imaging, which is not 
convenient for rapid monitoring of residual film pollution. 
Therefore, this study proposed a method for residual film 
pollution evaluation in pre-sowing cotton fields based on UAV 
imaging and deep learning semantic segmentation algorithm, 
aiming to achieve rapid and accurate identification of residual 
films in pre-sowing cotton fields. This study provides a theoretical 
basis for further research on the rapid and accurate evaluation 
technology equipment for residue film pollution.

Materials and methods

Data acquisition

Residual film images were collected from Shihezi City, 
Xinjiang, China (43°26′ ~ 45°20′N, 84°58′ ~ 86°24′E, a.s.l. 
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450.8 M), where has a temperate continental climate. The main 
crops in this area were cotton, and drip irrigation - plastic film 
mulching has been widely adopted in cotton planting (Wang et al., 
2021). The amount of mulch films (thickness: approximately 
0.008 mm) used during sowing was between 75 and 120 kg·hm−2. 
After harvesting in autumn, straw return was performed after 
crushing, and films were recovered. Ploughing and other 
operations were carried out in cotton fields before sowing 
in spring.

In this study, UAV images of 20 residual plastic film-polluted 
cotton fields were collected using a DJI M200 aircraft (DJI 
Innovation Technology Co., Ltd., DJI-Innovations) equipped with 
a Zen Zenmuse X4S camera from 10:00 to 19:00 on sunny and 
cloudy days from April 5 to April 15, 2021. The image resolution 
was 5,472 × 3,078 pixels. As shown in Figure  1, the waypoint 
method was used for flight for image acquisition. Each cotton field 
had 10 flight points in a straight line, and the distance between 
each point was 20 m. The flight speed of the UAV was 3 m/s, the 
camera angle was 90°, perpendicular to the ground, and the 
image-acquiring height were 5, 7, and 9 M. A total of 600 images 
were collected. Original UAV image data distribution of residual 
film in cotton field is shown in Table 1. In this study, 600 images 
were divided into a training set (480), validation set (60), and test 
set (60).

Image labelling and data enhancement

The images were manually annotated using Adobe Photoshop 
CS5 (Adobe Systems Inc., United States), and all residual films 
were manually annotated and filled with blue color. Then, the 
threshold segmentation method was used for binarization. 

Residual film pixels were labelled as 1, and background pixels such 
as soil were labelled as 0. The annotation results are shown in 
Figure 2.

As the original images were too large to directly use for 
training, to accelerate the model calculation, the image resolution 
was resized to 1,200 × 600 pixels. In addition, the training set data 
were enhanced in the process of model training. In each epoch of 
training, random cutting (size: 1024 × 512 pixels), random flipping 
(left and right), random flipping (up and down), and brightness 
adjustment were used for data enhancement. Each training epoch 
obtained 480 new training data, and 55 epochs of training were 
conducted. Finally, a total of 26,400 enhanced images were 
obtained and used for training.

Residual film images segmentation 
network structure

The U-Net model is a common semantic segmentation 
network with an “U” shape (Ronneberger et al., 2015; Zhou et al., 
2020) for image segmentation (Figure 3A). The left part of the 
network, the “encoder,” was repeatedly sampled by two 
convolution layers and one down-sampling layer. The right part of 
the network, the “decoder,” was connected by a deconvolution 
layer to the feature graph output by the “encoder.” Then 
deconvolution was performed two times. Finally, the channels 
output the desired number of categories through a 1 × 1 
convolution operation. Based on the original U-Net model, a 
modified U-Net model was proposed in this research (Figure 3B) 
by reducing the number of convolution layers to accelerate the 
running time. Moreover, the inception module was used to 
increase the generalization ability and learning ability of the 

A B

FIGURE 1

UAV image acquisition (A) and flight control parameters (B).
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neural network. In the down-sampling layer, the inception module 
was used to replace the ordinary 3 × 3 convolutional layer, and a 
1 × 1 convolution layer was connected after the inception module 
to reduce the input information and the model size.

Depth and width are important parameters that affect 
convolutional neural networks. While increasing the network 
depth and width, the inception module also solves the problem of 
too many parameters and reduces the amount of parameter 
calculation (Szegedy et al., 2015). The inception module used in 
this study is shown in Figure 4. Features of cotton fields of different 
scales were extracted using 1 × 1 and 3 × 3 convolutional layers. 
Therefore, the multiscale inception module is suitable for 
determining characteristics of the multimorphic, multiscale, and 
random distribution of residual films in pre-sowing cotton fields. 
In the inception module, the fusion of different scales and 
functional branches was realized through the construction of 
cascade relationships, and then the fusion of multiscale image 
features was realized.

Training for residual film detection

The deep learning model training hardware consisted of an 
Intel(R) Xeon(R) W-2223 CPU @ 3.60 GHz and 128 GB memory, 
and an NVIDIA GeForce RTX 3090 Graphics with 24 GB memory. 
The software environment was Windows 10, CUDA 11.2, 
CUDNN 8.1.1, Python 3.8, and TensorFlow-GPU 2.5.

To simulate the actual application scenario, the hardware 
and software for the residual film pollution evaluation 
included an Intel (R) Xeon (R) CPU E3-1230 V2 @ 3.30 GHz, 
without GPU acceleration, 16 GB memory, Windows  
10 operating system, Python 3.7, and TensorFlow- 
CPU 2.3.

In this study, in the segmentation of residual films, a pixel is 
either classified as a residual film pixel or not. Similar to other 
binary classification networks, the “sparse categorical cross-
entropy” function was used as the loss function. The neural 
networks were trained with a gradient descent method. The Adam 
optimizer algorithm was used to optimize the network, and the 
initial learning rate was 0.001. The batch of the training set was 6. 
During the iterative training process, changes in accuracy and loss 
were recorded, while only the best model was saved. When the 
number of training iterations reached 55, the training process 
converged and stopped.

Network segmentation performance 
evaluation

In this study, the accuracy, F1-score, and mean IOU 
(MIOU) were used to assess the segmentation performance. 
The F1-score represents the combined results of precision  
and recall. The segmentation time and parameters of model 
were used to assess the segmentation speed and size, 
respectively.
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TABLE 1 Original UAV image data distribution of residual film in 
cotton field.

5 m 7 m 9 m Total

Sunny 100 100 100 300

Cloudy 100 100 100 300

Total 200 200 200 600

A B

FIGURE 2

Image labelling: (A) Original image; (B) Labeled image.
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FIGURE 3

Network structure: (A) Structure of U-Net; (B) Structure of modified U-Net.

FIGURE 4

Structure of the inception module: (A) Training and validation loss; (B) Training and validation accuracy.
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A

B

FIGURE 5

Loss and accuracy changes during training: (A) Training and 
validation loss; (B) Training and validation accuracy.
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Where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative.

Evaluation of residual film pollution

The residual film coverage rate was used as the evaluation 
index of residual film pollution. For images with a size of M × N, 
the residual film coverage rate L is the ratio of the total number of 
residual film pixels [p (x, y) =1] to the total number of pixels in the 
image (Equation 6).

L
p x,y

M N
x y
M N

=
( )

´
´= =å 1 1 100,
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%
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To test the accuracy of the modified UNet in residual film 
pollution evaluation, the L values of 60 images were calculated. 
Then, the relationship between the predicted residual film 
coverage rate (L1) and true residual film coverage rate (L2) was 
evaluated by regression analysis. The coefficient of determination 
(R2), root mean square error (RMSE), and mean relative error 
(MRE) were selected as the evaluation indexes.

R
L L

L L
i
N

i
N

2 1 2 1
2

1 2 2
21= -

-( )
-( )

=

=

å
å  

(7)

RMSE
N

L L
i

N
= -( )

=
å1
1

1 2
2

 
(8)

MRE
N

L L
Li

N
=

-
´

=
å1 100
1

1 2

2
%

 
(9)

Where L1 and L2 are the i-th predicted and true L values from 
N data, respectively.

Results

Training process of the modified U-Net

Figure  5 shows the change in loss and accuracy on the 
training and validation sets as the number of iterations increases 
during model training. The changes in the loss and accuracy of 
the training and validation sets showed the same trend. The loss 
value dropped first and then remained stable, and the accuracy 
value rose first and then remained stable. After approximately 10 
epochs of training, both loss and accuracy remained stable. 
Furthermore, there was no significant difference in the previous 
loss values and the accuracy of the training and validation sets, 
so there was no model over-fitting. After iteratively training the 
model for 55 epochs, both the loss value and the accuracy 
converged, indicating that the model achieved good training 
results. After the model training stage, the loss and accuracy of 
the validation set were 0.0037 and 99.85%, respectively.

Residual film segmentation results

Segmentation results of different models
The modified U-Net model was compared with the state-

of-the art methods such as SegNet, FCN, and U-Net. The 
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segmentation results of different models are shown in Table 2. The 
results showed that the modified U-Net model had the best 
performance and prediction accuracy on the test set. The accuracy 
of the modified U-Net was 99.72%, which was 0.25, 0.04, and 
0.03% higher than that of SegNet, FCN, and U-Net, respectively. 
The F1-score of the modified U-Net model was 85.59%, which was 
14.35, 2.91, and 1.83% higher than that of SegNet, FCN, and 
U-Net, respectively. The MIOU of the modified U-Net model was 
87.53%, which was 10.02, 2.23, and 1.39% higher than that of 
SegNet, FCN, and U-Net, respectively. In terms of segmentation 
speed, the average segmentation time per image of the modified 
U-Net model was 192.50 ms, the minimum parameters of model 
were 3.14 × 106 and was approximately 1/10 of that of the original 
U-Net model. Therefore, the modified U-Net model could 
improve the accuracy and speed of residual film segmentation, 
which facilitates the rapid and accurate identification of 
residual film.

Residual film segmentation results in different 
weather conditions

To study the influence of different weather conditions on 
the segmentation results. The segmentation results of cotton 
field images acquired in sunny and cloudy weather were 
compared (Figure 6). The results showed that no matter which 
model was used, the segmentation performance on images 
acquired on cloudy days was better than that on sunny days. 
Figure 7 shows the MIOU of different models based on the 
images acquired in different weather conditions. It showed that 
under the same weather conditions, the SegNet model had the 
worst segmentation performance, followed by the FCN and 
U-Net models. The modified U-Net model had the optimal 
performance, with MIOU reaching 85.44 and 89.63% on sunny 
and cloudy days, respectively.

Segmentation of images acquired at different 
heights

To study the effect of different image-acquiring height on 
the residual film segmentation results, the segmentation results 
of images acquired at the heights of 5, 7, and 9 M were 
compared (Figure 8). The results showed that the segmentation 
performance gradually decreased with the increase of height. 
Figure 9 shows the MIOU of different models based on the 
images acquired at different heights. The results showed that 

among the models, the SegNet model had the worst 
identification results at the same heights, followed by the FCN 
and U-Net models. The modified U-Net model had the optimal 
results, and its MIOU reached 90.55, 87.72, and 84.32% at 5, 7, 
and 9 M, respectively.

Residual film pollution evaluation results

The regression analysis results of the UAV images-based 
evaluation and manual evaluation of different models are shown 
in Figure 10. The regression result of the modified U-Net model 
was slightly better than that of the other models, with a regression 
equation of y = 0.9477x + 0.7305. The R2, RMSE, and MRE were 
0.9849, 0.0563, and 5.33%, respectively. Moreover, it was found 
that the intercept of the regression equations of different models 
was positive.

The average evaluation time for 60 images in the test set on the 
CPU were statistically analyzed, and it was found that the 
evaluation time was slightly different. The time required to 
evaluate residual film pollution on the CPU is shown in Figure 11. 
It was found that the modified U-Net model had a minimum 
average evaluation time of 4.85 s, which was 41.07% less than the 
evaluation time of the U-net model.

Discussion

This study identified residual film and evaluated the 
residual film pollution in cotton fields before sowing using 
low-altitude UAV imaging and deep learning. Based on the 
traditional U-Net model, a residual film semantic 
segmentation model with a modified U-Net model structure 
was proposed. This model could effectively segment the 
residual film from UAV images, the MIOU of the residual film 
recognition results reached 87.53%, which was 16.28 
percentage points higher than the residual membrane pixel 
block identification method (Zhai et al., 2022). In this study, 
the residual film coverage rate was used to evaluate residual 
film pollution, and a rapid and accurate evaluation of residual 
film pollution was achieved based on the residual film 
semantic segmentation results. The results showed that the R2 
of the modified U-Net model was 0.9849, the RMSE was 
0.0563, the MRE was 5.33%, and the average evaluation time 
per image was 4.85 s on the CPU. These results indicate that 
the modified U-Net model can rapidly and accurately evaluate 
residual film pollution.

The residual film pollution evaluation method proposed in 
this study was mainly designed to identify residual films from 
the surface of cotton fields before sowing and to evaluate the 
degree of residual film pollution based on the proportion of 
residual films’ pixels. In this study, a multi classification neural 
network model was used to identify residual film, soil, straw, 
etc. Due to the surface of cotton fields includes residual film, 

TABLE 2 Segmentation results of different models.

Model Accuracy 
(%)

F1-score 
(%)

MIOU 
(%)

Time 
(ms)

Parameters 
(106)

SegNet 99.47 71.24 77.51 251.33 31.82

FCN 99.68 82.68 85.3 204.83 26.37

U-Net 99.69 83.76 86.14 245.17 31.06

Modified 

U-Net

99.72 85.59 87.53 192.50 3.14
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soil, straw, drip irrigation belts, etc., it is very difficult to label 
each item one by one by pixel. Therefore, in the labelling 
process, only residual films (1) were manually labelled one by 
one, and soil, straw, and other items were marked as 
non-residual films (0). As the surface of the residual film 
attached to soil, the reflection of soil block and other reasons, 

resulting the existence of false positive (FP) and false negative 
detections (FN) in this study. The FP represents the 
segmentation model mistakenly identifies soil, straw and other 
samples as residual film samples; the FN represents the 
segmentation model mistakenly identifies residual film samples 
as soil, straw, etc.

FIGURE 6

Residual film segmentation results under different weather conditions.
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This study proposed a model for residual film semantic 
segmentation based on a modified U-Net model. The image 
segmentation in this study is a binary classification, including 
identification and classification of residual films and 
non-residual films. Therefore, the feature extraction of the 
traditional U-Net model was simplified in this study to reduce 
the number of parameters and speed up the computation. 
Moreover, the multiscale feature extraction inception module 
was introduced to achieve accurate segmentation of residual 
films of different sizes by fusing multiscale image features. This 
modified network model may not perform as well on other 
more complex images but outperforms several traditional 
semantic segmentation models, including U-Net, SegNet, 
and FCN.

FIGURE 8

Residual film segmentation results of images acquired at different heights.

FIGURE 7

MIOU of different models under different weather conditions.
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This study compared the identification performance on 
sunny and cloudy days and found that the identification 
performance on cloudy days was better than that on sunny days. 
This may be due to that the reflection of soil blocks causing them 
to be misjudged as residual films on sunny days. In addition, by 
comparing the effect of different image-acquiring height on the 
residual film segmentation, it was found that the lower the height 
is, the better the residual film segmentation effect. This may 
be  due to that images acquired at lower heights have higher 
definition. However, when the height was too low, wind from the 
UAV’s rotor could blow away residual films, affecting the residual 
film pollution evaluation. Therefore, in practical applications, 
the height of UAV should be  considered while ensuring 
image definition.

The residual film pollution evaluation method in this paper has 
application value for the control of residual film pollution. This 

A B

C D

FIGURE 10

Regression analysis results of the UAV images-based evaluation and manual evaluation: (A) SegNet; (B) FCN; (C) U-Net; (D) Modified U-Net.

FIGURE 9

MIOU of different models based on the images acquired at 
different heights.
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evaluation system can achieve a rapid and accurate evaluation of 
residual film pollution. Moreover, rapid evaluation of the degree of 
residual film pollution can provide some reference for the objective 
evaluation of the seeding suitability of cotton fields during the 
spring sowing stage. In addition, this study also provides the 
theoretical support for the detection of residual film pollution in 
cotton field plough layer using UAV imaging, the rapid prediction 
of residual film pollution in cotton field plough layer can be realized 
by studying the residual film pollution correlation between the 
surface and plough layer. Compared to manual sampling to 
monitor residual film pollution, the approach in this study saves 
manpower and reduces time costs.

Conclusion

In this paper, residual film pollution images in pre-sowing 
cotton fields were collected by UAV imaging system. The more 
suitable residual film segmentation model was built by modified 
U-Net model. Finally, the residual film pollution was evaluated 
based on residual film coverage rate. Through the analysis of the 
test results, it was found that:

(1) The modified U-Net model was proposed by simplifying 
the U-Net model and introducing an inception module, which 
can realize the accurate segmentation of residual film from cotton 
fields before sowing. The MIOU of segmentation reached 87.53%.

(2) The identification performance on cloudy days was better 
than that on sunny days. The identification performance of 
residual films gradually decreased with increasing image-
acquiring height.

(3) The modified U-Net model outperformed other models in 
residual film pollution evaluation, with R2 of 0.9849, RMSE of 
0.0563, MRE of 5.33% and the average evaluation time per image 
of 4.85 s on the CPU.

(4) This study provides a theoretical reference for further 
development of evaluation technology and equipment for residual 
film pollution based on UAV imaging.
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