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Accurate and timely information on the number of densely-planted Chinese fir

seedlings is essential for their scientific cultivation and intelligent management.

However, in the later stage of cultivation, the overlapping of lateral branches

among individuals is too severe to identify the entire individual in the UAV image.

At the same time, in the high-density planting nursery, the terminal bud of each

seedling has a distinctive characteristic of growing upward, which can be used as

an identification feature. Still, due to the small size and dense distribution of the

terminal buds, the existing recognition algorithm will have a significant error.

Therefore, in this study, we proposed a model based on the improved network

structure of the latest YOLOv5 algorithm for identifying the terminal bud of

Chinese fir seedlings. Firstly, the micro-scale prediction head was added to the

original prediction head to enhance the model’s ability to perceive small-sized

terminal buds. Secondly, a multi-attention mechanism module composed of

Convolutional Block Attention Module (CBAM) and Efficient Channel Attention

(ECA) was integrated into the neck of the network to enhance further themodel’s

ability to focus on key target objects in complex backgrounds. Finally, the

methods including data augmentation, Test Time Augmentation (TTA) and

Weighted Boxes Fusion (WBF) were used to improve the robustness and

generalization of the model for the identification of terminal buds in different

growth states. The results showed that, compared with the standard version of

YOLOv5, the recognition accuracy of the improved YOLOv5 was significantly

increased, with a precision of 95.55%, a recall of 95.84%, an F1-Score of 96.54%,

and an mAP of 94.63%. Under the same experimental conditions, compared with

other currentmainstream algorithms (YOLOv3, Faster R-CNN, and PP-YOLO), the

average precision and F1-Score of the improved YOLOv5 also increased by 9.51-
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28.19 percentage points and 15.92-32.94 percentage points, respectively. Overall,

The improved YOLOv5 algorithm integrated with the attention network can

accurately identify the terminal buds of densely-planted Chinese fir seedlings in

UAV images and provide technical support for large-scale and automated

counting and precision cultivation of Chinese fir seedlings.
KEYWORDS

UAV-based remote sensing, Chinese fir seedling, YOLOv5 algorithm, deep learning,
attention machanism
1 Introduction

Cunninghamia lanceolata (Lamb.) Hook is one of southern

China’s most critical timber species for afforestation. It plays an

essential role in forest carbon sink in China, for its cultivation

area accounts for 20% of the national plantation forest area, and

its stock volume accounts for 25% of the national plantation

volume (Liu et al., 2022). Due to the increasing demand for

improved seedlings for reforestation in harvested sites, the scale

of Chinese fir seedling cultivation has been expanding recently.

In this context, it is critical to attaining the accurate number and

cultivation density of Chinese fir seedlings, which can provide

essential support for scientific cultivation and intelligent

management, such as thinning time, precise seedling

determination, and water, fertilizer, and light management

(Mateen and Zhu, 2019; Dorbu et al., 2021). Moreover, it is

vital in disease prevention and control, seedling emergence rate

estimation, and nursery asset valuation (Chen et al., 2017; Shen

et al., 2020).

Traditionally, the method of determining the number of

Chinese fir seedlings is based on statistics by manually

calculating the number of sampled plots. This method is

inefficient and may also lead to significant errors, which is

limited in its large-scale application (Marques et al., 2019;

Mohan et al., 2021). With the rapid development of spatial

information technology, the means of monitoring by remote

sensing has gradually attracted widespread attention. However,

due to the low spatial resolution, the traditional satellite-based

remote sensing cannot observe small targets such as Chinese fir

seedlings (Zhu et al., 2021b), so it is challenging to accurately

identify the seedlings with it. In recent years, the emergence of

the UAV remote sensing platform has brought an opportunity to

solve this problem. This platform, flying at a height much lower

than the satellites, can acquire images with super-spatial

resolution (pixel size<10cm) (Colpaert, 2022). Therefore, the

UAV-based images can clearly display the structural features

(shape, size, and texture) of ground objects (Bhandari et al.,

2018; Osco et al., 2021), which to a large extent overcomes the

limitations of traditional remote sensing, making the extraction
02
of tiny targets possible (Yin et al., 2021). The terminal bud is an

integral part of the morphological structure of Chinese fir

seedlings. Because of its apparent characteristics of growing

upward, the terminal bud can be a symbolic feature for

detecting a single Chinese fir seedling. The UAV-based remote

sensing can be a new potential means for acquiring accurate

numbers and cultivation density of Chinese fir seedlings by

detecting their terminal buds.

Deep learning algorithm based on artificial intelligence is a

new field of machine learning. Thanks to its robust feature

extraction capability, this algorithm has more tremendous

advantages than traditional machine learning algorithms in

processing massive high-dimensional data (Zhu et al., 2017;

Ball et al., 2018; Cheng et al., 2020; Changhui et al., 2021). The

successful application of deep learning technology in computer

vision provides essential technical support for the intelligent

extraction of plant information in agriculture and forestry (Haq

et al., 2021; Bian et al., 2022; Ye et al., 2022). Among them, the

YOLO series algorithms are the most widely used target

detection algorithms (Tong et al., 2020; Wu et al., 2020) Many

scholars have improved them for different application scenarios

to improve detection accuracy and efficiency further. Lv et al.

(2022) proposed an improved YOLOv3 model and used it to

detect crop pests in natural agricultural environments by

combining it with image enhancement; Wang et al. (2022)

proposed an improved lightweight YOLOv4-based model to

detect dense plums in orchards; Zhang et al. (2022) proposed

an improved YOLOv5-CA model for real-time control of disease

transmission on grapevines in precision viticulture. However,

the current standard YOLO networks are designed for objects

with large size and low density (Zhu et al., 2021b), while the

terminal buds of Chinese fir seedlings in UAV images are small

target objects. Their area ratio in the image is minimal and has

characteristics of high density, sever overlapping, and occlusion,

so they are prone to false detection and missed detection.

Meanwhile, the morphology of lateral branches of Chinese fir

seedlings is similar in shape to the terminal buds of Chinese fir

seedlings The number and density of lateral branches are both

much larger than that of terminal buds, which makes their
frontiersin.org
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background in UAV images very complicated. Moreover,

terminal buds of densely-planted seedlings vary in size,

including micro, small, medium and large ones, due to the

different growth states of individuals, which further increases

the difficulty of detection. Therefore, the direct application of the

existing target detection network of the YOLO algorithm in

detecting of the terminal buds of Chinese fir seedlings from UAV

images will have a significant error.

In this study, we propose a method for recognizing the

terminal bud of densely-planted Chinese fir seedling based on an

improved YOLOv5 algorithm using a UAV RGB image. The

method is based on the standard YOLOv5 algorithm which is

improved by adding micro-scale prediction heads, new

connections between backbone and neck networks, and

introducing an attention mechanism module consisting of a

Convolutional Block Attention Module (CBAM) and an

Efficient Channel Attention (ECA). The specific objectives of

this study are: 1) to evaluate the accuracy, stability, and efficiency

of the improved YOLOv5 algorithm that integrates attention

mechanism in detecting terminal bud of Chinese fir seedlings; 2)

to compare the performance of the improved YOLOv5

algorithm with current mainstream target detection algorithms

(YOLOv3, Faster R-CNN, and PP-YOLO).
2 Materials and methods

2.1 The study area

The study area (117°40′E, 26°50′N) is located at the breeding
base of Chinese fir seedlings in Yangkou state-owned forestry

farm in Shunchang County, Fujian Province, China (Figure 1).
Frontiers in Plant Science 03
This area is characteristic of the mid-subtropical maritime

monsoon climate, with an annual average temperature of

18.5°C, an annual average rainfall of 1756 mm, an annual

sunshine duration of about 1740 hours, and a frost-free period

of about 305 days. The Chinese fir seedlings cultivated include 14

excellent asexual lines and three generations of live seedlings,

such as “Yang 020”, “Yang 062” and “Yang 003”, of which the

seedling density is 50~55 thousand per mu and the qualified

seedlings are 40-45 thousand plants. The county’s total nursery

area reaches 11.13 ha, and the seedlings are usually planted in

mid-December every year.
2.2 Data collection and dataset
construction

On November 28th, 2021, a DJI Air2S drone (DJI

Technology Co., Ltd., Shenzhen, China) collected visible light

images of Chinese fir seedlings in the research area (Figure 2).

The drone has a visible-light sensor (1 inch) with 20 million

pixels (pixel size of 2.4 mm) and a camera equivalent focal length

of 22 mm. Rainbow software was used for route planning. The

flight altitude was set to 4.4 m, and the overlap rate in the side

direction and the heading were set to 80%. Meanwhile, the

shutter speed was set to 1/320s to avoid blurred images caused by

the slow shutter speed during the drone’s movement. A total of

1935 photos were acquired, and orthophotos were generated by

stitching with Pix4d software (Pix4D China Technology Co.,

Ltd, Shanghai, China).

Due to the vast data of UAV images and the limited

performance of computer hardware, it is hard to input the

images into the YOLO network framework for processing at
A B

C

FIGURE 1

Study area. (A) Geographical location of the study area, (B) Overview of study Area, (C) Local details of the study area.
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one time. Therefore, it is necessary to first crop the orthophoto

into sub-blocks with a size of 1200×1200 pixels. Then, a

rectangular box outside the target terminal bud was drawn

using the image data labeling software (LabelImg) to label the

terminal bud manually. To ensure that the rectangular box

contains as little background as possible, it is drawn according

to the minimum rectangular box principle. Finally, the labeled

sample data were divided into the training set, validation set, and

test set according to the ratio of 7:2:1 to construct the terminal

bud dataset of the Chinese fir seedling by the VOC format. The

dataset of the Chinese fir seedling terminal bud consists of 173

images with a size of 1200*1200, and contains a total of 25,938

terminal bud annotation boxes with different sizes, occlusions,

defects, angles, and illumination; the aspect ratio of the

annotation box is between 0.8 and 1.6, the overlap is between

0 and 0.25, and the number of pixels for length and width is

between 12 and 48.
2.3 Data augmentation

2.3.1 Data augmentation of training set
Data augmentation is an effective means to expand the

training dataset, which can enhance the robustness and

generalization of the model under uncertain factors such as

different illumination angles, growth states, and fuzzy occlusions

(Shorten and Khoshgoftaar, 2019). Traditional data

augmentation methods include two main types: global

photometric distortion and geometric distortion. Global

photometric distortion mainly performs random image
Frontiers in Plant Science 04
adjustment of hue, saturation, brightness, and contrast, while

global geometric distortion performs random scaling, cropping,

flipping, and rotating operations on standard images. This study

introduces novel augmentation methods based on the two

traditional augmentation methods mentioned above (Figure 3).

In recent years, research in computer vision has shown that data

augmentation by fusing multiple images can improve the target

detection performance of models in complex scenes. Mixup

(Zhang et al., 2017), Cutmix (Yun et al., 2019), and Mosaic

(Bochkovskiy et al., 2020) are the three most commonly used

data augmentation methods for multi-image fusion. The Mixup

fusion method is a computer vision algorithm for image mixing

enhancement. It expands the training data set by fusing different

images. Its principle is to randomly select two samples from the

images contained in training set for random weighted

summation, and its sample labels are also weighted and

summed accordingly. The Mixup principle is shown in

equations 1~3.

l = Beta(a , b) (1)

mixed _ batchx = l � batchx1 + (1 − l)� batchx2 (2)

mixed _ batchy = l � batchy1 + (1 − l)� batchy2 (3)

Note: b refers to the beta distribution, a, l, mixed_batchx is

the mixed sample, and mixed_batchy is the label corresponding

to the mixed sample.

Unlike the traditional method of using 0-value pixels to

occlude the image randomly, the Cutmix method randomly uses
FIGURE 2

Flow of image data acquisition.
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a particular area of an image to complete the occlusion of the

image. As an improved version of Cutmix, Mosaic randomly

selects four images for cropping and mosaicking, which

significantly enriches the background features of the training

objects and enables the model to perform well in complex scenes.

Therefore, this study introduces two new fusion methods,

Mixup, and Mosaic, into the data augmentation processing.
2.3.2 TTA and WBF
Test Time Augmentation (TTA) is a method for extending

test datasets, which can effectively improve the performance of

deep learning models (Moshkov et al., 2021). Its working

principle is that in the inference (prediction) stage, the

standard image is first scaled, flipped, and rotated. Then the

trained model is used to predict the different versions of each

image in the test data set. Finally, the different augmentation

results of the same image are analyzed together to obtain the

result with the slightest error.
Frontiers in Plant Science 05
In the target detection task, better results can be obtained by

fusing multiple predictions. There are three main algorithms

commonly used at present (Figure 4): Non-Maximum

Suppression (NMS) (Neubeck and Van Gool, 2006), Soft-NMS

(Bodla et al., 2017), and Weighted Boxes Fusion (WBF)

(Solovyev et al., 2021). The NMS method is based on the

principle that when there are multiple overlapping boxes in

the prediction result and the Intersection over Union (IoU) ratio

is greater than a certain threshold, they are considered to belong

to the same object. This method only retains the highest

confidence box and deletes the others. Soft-NMS is an

improved algorithm based on NMS, which sets a decay

function for the confidence of adjacent prediction boxes based

on the IoU value instead of setting their confidence to 0 and

deleting them. The weighted box fusion algorithm used in this

paper (Figure 5) works differently from the previous two. WBF

calculates fusion weights according to the confidence levels of

different terminal bud prediction boxes generated after TTA

augmentation. The coordinates of multiple prediction boxes are
FIGURE 4

Schematic diagram of test time augmentation (TTA).
A B DC

FIGURE 3

Data augmentation. (A) Photometric distortion, (B) Geometric distortion, (C) Mixup, (D) Mosaic.
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fused to serve as the final prediction boundaries of the terminal

buds of Chinese fir seedlings.

Among them, in the process of generating a new box by

fusion, the shape and position of the new boxes are more

inclined towards the box with a larger weight, as shown in

Equation 4.

Xa =
oZ

i=1 Ci � Xai

oZ
i=1 Ci

,Ya =
oZ

i=1 Ci � Yai

oZ
i=1 Ci

= o
Z
i=1 Ci � Xbi

oZ
i=1 Ci

,Yb =
oZ

i=1 Ci � Ybi

oZ
i=1 Ci

,C = o
Z
i=1 Ci

Z
(4)

Where Xa, Ya, Xb, Yb are the coordinates of the top-left and

bottom-right vertices of the fused predictors, respectively; C is

the confidence level of the fused predictors; Xai, Yai, Xbi, Ybi are

the coordinates of the top-left and bottom-right vertices of the

participating predictors; Ci is the confidence level corresponding

to each predictor, and Z is the number of participating

predictors. Both NMS and Soft-NMS will eliminate some of

the prediction boxes, while WBF fuses all the prediction boxes to

form the final result, reducing the model’s prediction error to

some extent. Therefore, this paper uses the WBF algorithm. It

can be seen from Figure 6 that the actual application effect and

performance of the WBF algorithm are significantly improved

compared with both NMS and Soft-NMS.
2.4 Attentional mechanisms

2.4.1 CBAM attention module
Since the importance of the features of the target object in

each channel is different, and the importance of pixels at various

locations in each channel also varies, only by considering these
Frontiers in Plant Science 06
two different levels of importance simultaneously can the model

recognize the target object more accurately. Therefore, we insert

the Convolutional Block Attention Module (CBAM) into the

neck of the modified YOLOv5 (Woo et al., 2018), which is a

simple and effective lightweight attention module with a dual

attention mechanism, i.e., a Channel Attention Module (CAM)

and a Spatial Attention Module (SAM).

CBAM generating attention can be divided into two parts

(Figure7). First, a network intermediate featuremapF∈R(C×H×

W) is given as input, whereC represents the number of channels, H

and W denote the length and width of the feature map in pixels.

Different channels perform global maximum pooling and mean

pooling on the input feature map F. The two one-dimensional

vectors after pooling are sent to a multi-layer perceptron (MLP)

composed of a hidden layer for combining operations. Second, the

Sigma function adds and activates the corresponding elements to

generate one-dimensional channel attention. Finally, the channel

attention featuremapMc ismultipliedonebyonewith theelements

of the input feature map F to obtain the feature map F’weighted in

the channel dimension; the generated featuremap F’ is input to the

spatial attention module, and the global maximum pooling and

mean pooling are performed by spatial dimension. The two feature

maps generated by pooling (the number of channels is 1) are

concatenated and activated by the sigmoid function to generate the

spatial attention feature mapMs, which is then multiplied by F’ by

element, and finally an attention-weighted feature map with two-

dimension (channel and spatial) is obtained.

2.4.2 ECA attention module
TheECA(EfficientChannelAttention) attentionmechanism is

a channel attention mechanism based on the SE (Squeeze and

Excitation) attention module with lightweight improvements

(Wang et al., 2020). Its structure is shown in Figure 8.

Since the channel attention module (CAM) in CBAM

reduces the spatial dimension of feature maps through global
FIGURE 5

Principle of the weighted box fusion algorithm.
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average pooling and max pooling operations to obtain nonlinear

correlation information among different channels, the process of

CBAM to control the complexity of the model through

dimensionality reduction will have a side effect on the

interaction information among the channels, resulting in a

decrease in the prediction accuracy. Yet the ECA model can

solve this problem. The ECA module captures nonlinear

information across channels by fast one-dimensional

convolution instead of fully connected layers, allowing the

network to learn channel attention more efficiently while

reducing the amount of computation. The size of the

convolution kernel of the one-dimensional convolution in

Figure 8 is k, which represents the coverage of cross-channel

information, i.e., the current channel and the adjacent k

channels are jointly involved in predicting channel attention.

The ECA module adopts an adaptive approach to determine k,

as shown in Equation 5.
Frontiers in Plant Science 07
k = f (c) =
log2 C + b

a

�
�
�
�

�
�
�
�
odd (5)

Note: Where, c is the channel dimension, | x | represents the

nearest odd number to x.
2.5 Target detection network structure
of improved YOLOv5

YOLOv5 is currently recognized as one of the most effective

target detection models, which is not only highly accurate and

fast but also highly flexible (Luo et al., 2022). The network

structure of YOLOv5 is mainly divided into the backbone part

for feature extraction, the neck part for feature fusion, and the

head part for target detection (Zhang et al., 2021; Xue et al.,

2022). The backbone module adopts Cross Stage Partial

Network (CSPNet) and Spatial Pyramid Pooling-Fast (SPPF)
A

B

C

FIGURE 6

Schematic diagram of Non-maximum inhibition (NMS), Soft-NMS, and Weighted Box Fusion (WBF). The red box is the real boundary box of the
terminal bud of Chinese fir seedlings, and the yellow box is the model prediction box. (A) Original prediction results, (B) NMS / Soft-NMS, (C) WBF.
FIGURE 7

Structure diagram of the convolutional block attention module (CBAM).
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to extract input image feature and transmit them to the neck

module. The neck module uses the Path Aggregation Network

(PANet) to generate a feature pyramid and bi-directionally fuse

low-level spatial features with high-level semantic features to

enhance the detection ability of objects at different scales. The

head module is responsible for generating target prediction

boxes to determine the category, coordinates, and confidence

level of the detected object (Wen et al., 2021). Its network

contains four network structures of different sizes (YOLOv5s,

YOLOv5m, YOLOv5l, and YOLOv5x), thus allowing the user to

choose the appropriate model according to their actual needs

(Song et al., 2021). Since this research mainly considers the

accuracy problem when selecting the recognition algorithm, and

does not require high real-time requirement of the algorithm,

the YOLOv5x network with the deepest network depth and the

widest feature map width is selected.

Although YOLOv5 has good detection and inference

performance, it still has certain limitations if it is directly

applied to detect of dense small targets such as terminal buds

of Chinese fir seedlings. To more accurately detect the terminal

buds of Chinese fir seedlings from UAV images, this study

optimized and improved the YOLOv5 network and proposed an

improved YOLOv5 that integrates the attention mechanism. The

specific network structure is shown in Figure 9.

This paper has the following four improvements to the

standard YOLOv5 architecture:

(1) To improve the detection performance of YOLOv5 for

tiny terminal buds of Chinese fir seedlings, a new Micro-scale

Predictive Head (MSPH) is added to the head section of

YOLOv5, which is derived from 4-fold downsampling to

generate a larger feature map (size 304 × 304). Compared with

8, 16, and 32 times downsampling detection heads of the

standard YOLOv5 model, this micro-scale head can utilize

higher-resolution feature maps in the shallow layers to capture

more delicate feature information of the tiny terminal buds. The

improved head section has four prediction heads of different

scales, which can be used to detect tiny, small, medium, and large
Frontiers in Plant Science 08
targets, respectively, which can effectively improve the model’s

ability to detect terminal buds of different sizes.

(2) Based on the idea of a residual network, a new network

connection is added (as shown by the dashed arrow in Figure 9).

By introducing the feature information of the backbone network

into the feature fusion layer of the neck network, the back

propagation of the gradient can be strengthened, the

phenomenon of gradient decay can be avoided, and the loss of

feature information of small objects can be reduced.

(3) The attention module was added to the neck feature fusion

layer to highlight the critical information of the terminal buds of

Chinese fir seedlings (Figure 10). The new attention module is

implemented by a combination of CBAMand ECA-Net, where the

ECA-Net module implements channel attention and spatial

attention is derived from the original CBAM module. The ECA-

Net module first learns the features processed by global average

pooling through one-dimensional convolution. It multiplies the

updated channel weights with the input feature map to generate a

new feature map. Secondly, the spatial attention module (SAM) in

theCBAMmodule takes the featuremapgeneratedby theECA-Net

module as input, generates a spatial attention featuremap, and adds

it to the original feature map to simulate the residual block

structure. Finally, a Relu activation function is applied to the

summed feature maps to generate feature maps with a dual

attention mechanism. By integrating the CBAM-ECA attention

module in thenetwork structure of theneck, themodelmakes it less

susceptible to the complex background and can obtain more

important feature information of the terminal buds from the

complex background. This can effectively increase the model’s

robustness and improve its recognition ability.

(4) The TTA multi-scale test method is introduced in the

image inference prediction stage, i.e., data augmentation is

performed on the images of the test dataset. The test images are

scaled (3 different multiples) and horizontally flipped to obtain six

images of different scales. The model can achieve better prediction

performance and reduce generalization errors by testing these six

images and fusing the prediction results using theWBF algorithm.
FIGURE 8

Structure diagram of the Efficient Channel Attention (ECA) module.
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The workflow of the improved YOLOv5 is shown in

Figure 11. In the data preprocessing stage, the data

augmentation process is mainly performed for MixUp, Mosaic,

photometric distortion and geometric distortion, and the

enhanced image dataset will be input into the improved

YOLOv5 network for training. In the prediction stage, the

model is firstly tested with TTA multiscale, and the test

images are scaled by 1.30 times, 0.83 times and 0.67 times.

Then the images are flipped horizontally, and finally, the

enhanced test images are input into the improved YOLOv5

network and the TTA prediction results are fused using theWBF

algorithm to obtain the final results.
2.6 Accuracy evaluation

Five metrics are used to evaluate the model accuracy:

precision, recall, F1-Score, Mean Average Precision (mAP),

and Frames Per Second (FPS). If the intersection over union
Frontiers in Plant Science 09
(IoU) ratio between the prediction box and the manually labeled

bounding box of the terminal buds of Chinese fir seedlings is

greater than 0.5, the prediction box is marked as correctly

identifying the sample TP; otherwise, it is marked as FP. If the

manually labeled bounding box of the terminal buds of Chinese

fir seedlings has no matching prediction box, it is marked as FN.

Precision evaluates the number of true positive cases in the

predicted positive case results from the perspective of model

prediction results, i.e., the accurate number of terminal buds

predicted by the model. Recall is from the perspective of true

data set samples, describing the number of true positive cases in

the test set identified by the model, i.e., the number of true

terminal buds correctly determined by the model. F1-Score is the

weighted summed average of the precision and recall; the higher

the value, the higher the robustness of the model. The mAP is

often used as an indicator to measure detection accuracy in

target detection. Compared with precision and recall, it can

better reflect the model’s global performance. The equation for

calculating the above indicators is as follows:
FIGURE 10

The structure of the attention modules.
FIGURE 9

Improved YOLOv5 network structure diagram.
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Precision =
TP

TP + FP
� 100% (8)

Recall =
TP

TP + FN
� 100% (9)

F1 − Score = 2� Precision� Recall
Precision + Recall

� 100% (10)

mAP = o
N

K=i
P(k)DR(k) (11)

Note: Where, N represents the number of IoU threshold, k is

the IoU threshold, P (k) is the precision, and R (k) is the recall.
3 Result

3.1 Model training and validation

The hardware and software environment of this experiment is

shown in Table 1. Since the VisDrone2021 UAV image dataset

contains many targets of different sizes, the improved YOLOv5

model was first pre-trained using the VisDrone2021 large dataset.

Then the dataset of the terminal buds of Chinese fir seedlings was

trained through transfer learning. The Adam optimization

algorithm was used in the training process, and the initial

learning rate was set to 0.0025. The learning rate was reduced by

theCosineannealingmethodso that the last iteration’s learningrate

decayed to 0.12 of the initial learning rate. Due to the high

resolution of the dataset (1200×1200 pixels), only the batch size is

set to 16 to prevent GPU memory overflow.

The trends of different accuracy indicators in the training

process are shown in Figure 12A. It can be seen that, in the first

100 iterations of training, the accuracy rate and recall rate of the

model increased rapidly, while the loss value decreased rapidly. All

the indicators leveled off after 100 iterations, indicating that the

model was close to convergence. After 300 iterations of training,

the slope of each accuracy indicator curve of the improved model

converged to 0, and the loss rate was close to the minimum,
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indicating that the model had converged. The loss rate is close to

the minimum value, indicating that the model has converged, and

the training is terminated at this time to prevent overfitting.

It can be seen from the confidence versus accuracy curves

(Figure 12B) that when the confidence level is greater than 0.15,

the accuracy rate of the model is greater than 80%. When the

confidence level is less than 0.8, the recall rate is maintained at a

fairly high level, and when the confidence is greater than 0.8, the

recall rate sharply drops until it approaches 0. When the

confidence level is between 0.05 and 0.8, the F1-Score is all

greater than 80%, indicating that the improved YOLOv5 has

higher accuracy and stability within the large-span confidence

interval. The above three indicators show that the improved

YOLOv5 model has good prediction performance.
3.2 Ablation experiments

In this paper, various improvements were made to the

standard YOLOv5 model . To assess whether these

improvements were effective and their interactions, the causality

of each improvement component was analyzed using ablation

experiments (Zhu et al., 2021a). The testing results of the

performance of different models using the constructed dataset of

Chinese fir seedling terminal buds are shown in Table 2.

By comparing the M1 model with the standard YOLOv5

model, it can be found that the addition of the micro-scale
FIGURE 11

Improved YOLOv5 workflow chart.
TABLE 1 Experimental software and hardware environment.

Name Parameters and versions

Central Processing Unit (CPU) AMD EPYC 7543 32-Core Processor @ 2.8
GHz

Memory (RAM) 64GB

Hard Disk Drive (SSD) INTEL S3710 (1.2 TB)

Graphics Card (GPU) NVIDIA A40 (48 GB)

Operating System (OS) Ubuntu 18.04

Programming Environment
(ENVS)

PyTorch 1.11.0+Python 3.9
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prediction head can effectively increase the model’s accuracy. The

M1model has a recall rate 3.96 percentage points higher than that

of the standard YOLOv5, and it has a precision and a recall

significantly higher than that of the standard YOLOv5 (p<0.05),

indicating that the use of the micro-scale prediction head can

reduce the leakage of tiny terminal buds to a certain extent. M2 is

based on M1, on which new connections are added, leading to an

increase by 0.39 and 1.34 percentage points in the precision and

recall rates, respectively, and it has a precision and a recall

significantly higher than that of the standard YOLOv5 (p<0.05).

The performance of different attention modules was also tested to

evaluate their effectiveness. In order to highlight the key feature

information of the terminal buds and suppress the useless

background information, attention modules were added to the

network and the detection abilities of different modules were

evaluated. When M3 model incorporates CBAM dual channel

attentionmechanism, the performance of theM3model was poor,
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and its precision and recall rate decreased by 0.81 and 0.65

percentage points, respectively. No significant difference (p>0.05)

between M3 and M2 indicates that the new microscale prediction

head and the new connection method have a functional conflict

with the CBAMattentionmodule, leading to certain side effects. By

replacing theCBAMattentionmodulewithECAattentionmodule,

the M4 model has a precision rate of 93.04% and a recall rate of

93.45%, which is significantly higher (p<0.05) than the M3model.

When combining ECA and CBAM in M5 to implement the

attention mechanism, although there is no significant difference

(p>0.05) in performance between M5 and M4, the M5 model’s

performance is better than the model using the CBAM or ECA

attention module alone. Its precision and recall rates are as high as

93.43% and 93.87%, respectively. This result indicates that the

attention mechanism combining ECA-Net and CBAM can

improve the model’s accuracy to a greater extent, which is an

ideal combination. In addition, the performance of the multi-scale
A B

FIGURE 12

(A) Variation trend of different accuracy indicators during the model training, (B) Performance evaluation results of improved yolov5 with
different IoU thresholds.
TABLE 2 Results of ablation experiment.

Methods Model number MSPH Newconnections Attention mechanism TTA Precision (%) Recall (%)

CBAM ECA CBAM+ECA

YOLOv5 – – – – – – – 88.36 ± 0.92d 87.78 ± 0.58d

Improved model M1 √ – – – – – 90.63 ± 1.85c (↑2.27) 90.56 ± 1.86c (↑3.96)

M2 √ √ – – – – 91.02 ± 0.96c (↑0.39) 90.98 ± 0.21c (↑1.34)

M3 √ √ √ – – – 90.21 ± 0.70c (↓0.81) 90.33 ± 1.03c (↓0.65)

M4 √ √ – √ – – 93.04 ± 0.69b (↑2.83) 93.45 ± 0.50b (↑3.12)

M5 √ √ – – √ – 93.43 ± 0.50b (↑0.39) 93.87 ± 0.74b (↑0.42)

M6 √ √ – – √ √ 95.55 ± 0.54a (↑2.12) 95.84 ± 0.87a (↑1.97)
MSPH represents the micro-scale predictive head and all experimental results were tested five times by taking the mean, CBAM represents the Convolutional Block Attention Module, ECA
represents the Efficient Channel Attention Module. Different letters indicate that there is significant difference (p ≤ 0.05) for one-way ANOVA and Duncan test. Bars indicate ± SD as
calculated from one-way ANOVA.
Bold values means the best value among multiple data sets.
The symbol “↑” indicates an increase in the improved model’s presicion compared with original model, and the symbol “↓” indicates a decrease in the improved model’s presicion compared
with that using original model.
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test with the introduction of TTA was also tested, and the results

showed that the accuracy of the model (M6) with TTAwas further

improved, and its precision and recall rates were 95.55% and

95.84%, respectively; there is a significant difference (p<0.05) in

accuracybetweenM6andothermodels, soweadopts theM6model

as the final version of improved YOLOv5 model in our study.

To more intuitively display the target feature information

extracted by the model, this paper visualized the features of the

model before and after improvement (Figure 13). By

comparison, it is found that the standard YOLOv5

(Figure 13A) can only detect the large terminal buds, but it

was challenging to identify the tiny terminal buds. In contrast,

the M1 model (Figure 13B), with the addition of the micro-scale

prediction head, can detect more terminal buds. Still, it also

brought more background noise, affecting terminal bud

identification accuracy. For the final improved model M6

(Figure 13C), by introducing an attention mechanism, it can

focuse on the terminal bud region to utilize more detailed

features and suppress useless background information, thereby

improving the recognition accuracy and efficiency of the model.
3.3 Comparison of recognition effect of
terminal buds of Chinese fir seedlings

By comparing the improvedYOLOv5 algorithmproposed in

this paper with the current mainstream target detection
Frontiers in Plant Science 12
algorithms (YOLOv3, Faster R-CNN and PP-YOLO)

(Figure 14), it can be seen that the YOLOv3 algorithm has a

poor recognition effect on large-scale and high-density small

target objects. It can only effectively recognize the terminal buds

with large size and apparent features, and its bounding box

localization accuracy is also the worst. Faster R-CNN, a two-

stage algorithm, has a different structure from the one-stage

YOLOv3, and its accuracy is greatly improved compared to the

YOLOv3. However, the effect of detecting tiny targets is still

unsatisfactory, and there are many omissions. The improved

PP-YOLO algorithm based on YOLOv3 performs better than

Faster R-CNN.Although the number of terminal buds identified

is still lower than the actual number, the generated prediction

box boundaries are basically consistent with the actual terminal

bud boundaries, and the accuracy is high. The improved

YOLOv5 with the fusion attention mechanism proposed in

this paper can better solve the recognition problem caused by

high density, complex background and target size differences. It

can be clearly seen from the figure that the improved YOLOv5

can accurately identify the terminal buds of different sizes (tiny,

small, medium and large). Moreover, under the action of the

dual attention mechanism (space and channel) and data

augmentation, the terminal buds with high occlusion, partial

defects and mutual adhesion can still be accurately detected. It

can be seen that the detection performance of the improved

YOLOv5 model is significantly better than that of the other

three algorithms.
A B C

FIGURE 13

Feature visualization results. (A) YOLOv5, (B) Improved model M1, (C) Improved model M6.
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3.4 Performance comparison
of different models

By comparing the quantitative evaluation indicators of the

improved model and other models (Table 3), we can see that the

YOLOv3 model has the fastest detection speed, with an FPS of

19.36. Still, its recognition effect is poor, and the precision rate,

recall rate, mAP, and F1-Score are the lowest among the four.

Faster R-CNN has a significant improvement in accuracy

compared to YOLOv3, in which mAP and F1-Score are

increased by 8.84 and 12.63 percentage points, respectively,

but its detection speed is poor, with FPS only 1.14. Compared

with Faster R-CNN, the accuracy rate of PP-YOLO is greatly

improved and significantly higher than Faster R-CNN (p<0.05),
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but it still cannot meet the requirement of accurate detection of

terminal buds of Chinese fir seedlings. Since the improved

YOLOv5 adds a micro-scale prediction head, its calculation

amount has increased. Still, its network balances the two

indicators of recognition accuracy and completeness, and has

the optimal recognition effect, with a precision rate of 95.55%, a

recall rate of 95.84%, an mAP of 87.25%, and an F1-Score of

95.69%. Compared with the other three models, the average

precision rate and F1-Score of the improved YOLOv5 are

increased by 9.51-28.19 percentage points and 15.92-32.94

percentage points, respectively. In addition, the improved

YOLOv5 is significantly higher(p<0.05) from other

mainstream algorithms in many indicators. It can be seen that

the improved YOLOv5 model can better meet the requirements
TABLE 3 Comparison of different target detection algorithms.

Model Precision Recall mAP F1-Score FPS

YOLOv3 72.13% ± 0.89c 63.43% ± 1.06d 54.31% ± 2.69d 67.50% ± 0.62d 19.36 ± 0.31d

Faster R-CNN 86.13% ± 0.39b 74.92% ± 0.91c 63.15% ± 1.66c 80.13% ± 0.43c 1.14 ± 0.19c

PP-YOLO 95.44% ± 0.22a 78.56% ± 0.24b 71.33% ± 4.43b 86.18% ± 2.39b 12.53 ± 1.01b

Improved YOLOv5 95.55% ± 0.91a 95.84% ± 0.36a 87.25% ± 1.92a 95.69% ± 0.61a 7.29 ± 0.34a
fr
Different letters indicate that there is significant difference (p ≤ 0.05) for one-way ANOVA and Duncan test. Bars indicate ± SD as calculated from one-way ANOVA.
Bold values means the best value among multiple data sets.
FIGURE 14

Comparison of recognition of the terminal bud of Chinese fir seedlings for different algorithms.
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of accurate identification of terminal buds of Chinese

fir seedlings.
4 Discussions

Accurate and rapid acquisition of information on the

number of densely planted Chinese fir seedlings is an essential

issue in the current precision cultivation of Chinese fir seedlings.

However, in the late stage of plant cultivation, the overlapping of

lateral branches among individuals is too severe to identify the

entire individual, while in the high-density planting nursery, the

terminal bud of each seedling grows upward and has distinctive

characteristics, which can be used as an identification feature.

Therefore, this study optimized and improved its network

structure based on the latest YOLOv5 model. It also

constructed an improved YOLOv5 to recognize terminal buds

of Chinese fir seedlings by fusing attention mechanisms and

other advanced image processing methods. The results showed

that the improved YOLOv5 outperformed the other three

mainstream target detection models (YOLOv3, Faster R-CNN,

and PP-YOLO), indicating that it is feasible to use the improved

YOLOv5 model to detect and identify the terminal buds of

densely-planted Chinses fir seedlings with high accuracy.

The improvement of the detection accuracy of the improved

model firstly benefits from the introduction of micro-scale

prediction heads. The terminal buds of Chinese fir seedlings

account for a tiny proportion in the UAV image. The number of

pixels in the length and width is generally between 12 and 48,

which means that the three detection heads of the standard

YOLOv5 model are performing high magnification (8-fold, 16-

fold and 32-fold), it will lead to a large amount of loss of feature

information of the tiny terminal buds (Zhao et al., 2021),

resulting in a significant error of the model. The introduction

of the micro-scale prediction head (4-fold the rate of

downsampling) in the current enables the model to retain the

feature information of the tiny terminal buds better. However,

with the introduction of the micro-scale prediction head, some

small background noises were also generated, and the lush lateral

branches of Chinese fir seedlings complicate the background

information of the terminal buds. Therefore, by adding a new

attention mechanism module consisting of CBAM and ECA to

the neck network, the model can focus on the key region of the

terminal buds, further promoting the improvement of the model

accuracy. It should be noted that the channel attention module

in CBAM reduces the dimension of the feature map (Zhu et al.,

2021a) by pooling operations to obtain the correlation between

different channels. However, the pooling operation achieves

image dimensionality reduction; it will also negatively affect

the channel attention prediction, leading to poor model

performance when the CBAM module is used alone.

Therefore, this study replaces the channel attention module in

CBAM with the ECA attention module with higher learning
Frontiers in Plant Science 14
efficiency, which can effectively capture cross-channel

interaction information without dimensionality reduction and

significantly improve the model performance. In addition, due to

the typical occlusion and overlapping of terminal buds of

densely-planted Chinese fir seedlings and the differences in

individual growth states, the generalization of the network

trained using the original image data is poor. However, data

augmentation can improve the diversity of target features and

solve the problem of unbalanced or missing sample data (Wan

et al., 2021), enhancing the robustness and generalization of the

trained model to a certain extent. Finally, this study introduces

the TTA multi-scale test and WBF fusion algorithm in the

inference and prediction stage. A more realistic prediction

result is obtained by performing multi-scale transformation of

the test set images and weighted fusion of multiple prediction

results with different resolutions. Other studies have also shown

that this is an effective strategy to improve the detection effect of

small objects (Zhu et al., 2021b).

It should be noted that although the improved YOLOv5

algorithm has significantly improved detection accuracy, its

detection speed has decreased, with an FPS of only 7.29, which

has not yet reached the standard of real-time detection. Hence, it

is necessary to explore further the optimization of the model

network parameters in the later stage. For example, it is required

to promote the lightweight of the network through pruning

operation, reduce the number of model parameters, and improve

the computing efficiency to achieve real-time detection of the

terminal buds of Chinese fir seedlings, which facilitates its

deployment on mobile terminals and embedded devices, and

further expands its application scope. At the same time, since the

image collected by the UAV will be distorted, dislocated, and

ghosted to a certain extent during the stitching process, some

terminal buds cannot be well distinguished and labeled. There

are still some shortcomings in researching labeled datasets.

Therefore, it is necessary to continue focusing on the

improvement of feature extraction algorithm and image data

quality in future studies.
5 Conclusion

In this paper, we propose an improved YOLOv5 algorithm

that integrates deep self-attention networks. The algorithm

adds a new micro-scale prediction head to the standard

YOLOv5 network, which can capture more feature

information of tiny terminal buds. At the same time, the

high-resolution shallow features in the backbone network are

introduced into the feature fusion layer, which further reduces

the loss of feature information of tiny terminal buds. In

addition, the attention module combining CBAM and ECA

attention mechanisms is also added to the feature fusion layer,

which helps the model extract feature information of key

regions of terminal buds in complex backgrounds, and the
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TTA multi-scale test and WBF fusion algorithm were used to

further improve the detection ability of this method in the

dense fir seedling terminal buds in UAV images. The results of

this study show that the improved YOLOv5 has significantly

improved the recognition accuracy compared with the standard

YOLOv5. Compared with other current mainstream target

detection algorithms (YOLOv3, Faster R-CNN, and PP-YOLO),

the precision, recall, mean accuracy, and F1-score of the improved

YOLOv5 are also improved to varying degrees. Still, the complexity

of the improved YOLOv5 network is high, and the image quality

needs tobe improved. In the future, it is necessary to explore a high-

performance, lightweight network and optimize the image quality

to achieve accurate real-time detection. In summary, the improved

YOLOv5model canbeapplied toaccurately identify of the terminal

buds of densely-planted Chinese fir seedlings and target

identification in high-density, multi-occlusion, and complex

background scenes. It can provide technical reference for the

application of consumer-grade UAVs in precision breeding,

phenotype monitoring and yield prediction of Chinese fir

seedlings and has specific application prospects.
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