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Integrated analysis reveals
effects of bioactive ingredients
from Limonium Sinense (Girard)
Kuntze on hypoxia-inducible
factor (HIF) activation

Hualong Zhao1,2, Siyuan Wang2, Yilu Zhou2,3, Ayse Ertay2,
Philip T. F. Williamson2,3, Rob M. Ewing2,3, Xinhui Tang1,
Jialian Wang1* and Yihua Wang2,3*

1School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China,
2Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton,
Southampton, United Kingdom, 3Institute for Life Sciences, University of Southampton,
Southampton, United Kingdom
Limonium Sinense (Girard) Kuntze is a traditional Chinese medicinal herb,

showing blood replenishment, ant i-tumour, ant i-hepati t is , and

immunomodulation activities amongst others. However, the mechanism of

its pharmacological activities remains largely unknown. Here, we investigated

the effects of bioactive ingredients from Limonium Sinense using an integrated

approach. Water extracts from Limonium Sinense (LSW) showed a strong

growth inhibitory effect on multiple cells in both 2D and 3D cultures. Global

transcriptomic profiling and further connectivity map (CMap) analysis identified

several similarly acting therapeutic candidates, including Tubulin inhibitors and

hypoxia-inducible factor (HIF) modulators. The effect of LSW on the cell cycle

was verified with flow cytometry showing a G2/M phase arrest. Integrated

analysis suggested a role for gallic acid in mediating HIF activation. Taken

together, this study provides novel insights into the bioactive ingredients in

Limonium Sinense, highlighting the rich natural resource and therapeutic

values of herbal plants.

KEYWORDS

Limonium Sinense (Girard) Kuntze, cell viability, cell cycle, hypoxia-inducible factor,
gallic acid
Abbreviations: BP, biological process; CC, cellular component; CMap, connectivity map; DEG,

differentially expressed gene; EPO, erythropoietin; FDR, false discovery rate; GEO, gene expression

omnibus; GO, gene ontology; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis;

HIF, hypoxia-inducible factor; HPLC, high-performance liquid chromatography; HRE, hypoxia response

elements; KEGG, kyoto encyclopedia of genes and genomes; LSW, Limonium Sinense water extract; MF,

molecular function; NES, normalized enrichment score; PHD, prolyl hydroxylase domain; RNA-Seq, RNA

sequencing; tSNE, t-distributed stochastic neighbour embedding; VHL, von Hippel-Lindau.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.994036/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.994036/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.994036/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.994036/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.994036/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.994036&domain=pdf&date_stamp=2022-10-27
mailto:yihua.wang@soton.ac.uk
mailto:wangjl@yctu.edu.cn
https://doi.org/10.3389/fpls.2022.994036
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.994036
https://www.frontiersin.org/journals/plant-science


Zhao et al. 10.3389/fpls.2022.994036
Introduction

Limonium Sinense (Girard) Kuntze is a traditional Chinese

medicinal plant belonging to the Plumbaginaceae family and is

mainly distributed along seashores and marshes in eastern and

southern China, western Taiwan, and Ryukyus Islands (Japan)

(Li, 1998; Chaung et al., 2003). Traditionally, the whole plant of

Limonium Sinense is used for the treatment of fever, hepatitis,

hemorrhage, menorrhagia, irregular menstruation, cancer, and

other disorders (Dong, 2005).

Multiple bioactive ingredients have been identified from

Limonium Sinense, including polysaccharides, tannins,

alkaloids, flavonoids, terpenes, aliphatic compounds, amino

acids, minerals, and vitamins (Xiao ZF et al., 1991, Lin and

Chou, 2000; Liu, 2011). It is reported that the major active

constituents found in Limonium Sinense are flavonoids,

including flavanones, flavonols, flavonol glycosides, flavonol

glycoside gallates, and flavones (Lin and Chou, 2000; Lin et al.,

2000), while polysaccharides are among the most abundant

constituents in the roots (Tang et al., 2011). Despite these

findings, the mechanism of its pharmacological activities

remains to be elucidated. Here we sought to investigate the

effects of bioactive ingredients from Limonium Sinense using an

integrated approach.
Materials and methods

Preparation of Limonium Sinense
water extract

Healthy whole plants of Limonium Sinense (Girard) Kuntze

were collected from the coastal region in Jiangsu, eastern China

(33°09’33.0” N, 120°46’40.4” E). Details for the preparation of

LSW are provided in the Supplementary Methods.
Cell culture and reagents

Sources of cell lines and culture conditions were reported

earlier (Wang et al., 2014; Liu et al., 2019; Ertay et al., 2020).

Details are provided in the Supplementary Methods. No

mycoplasma contamination was detected in the cell lines used.
Mammosphere assay and quantifications

Mammosphere assay and quantifications were performed as

previously described (Ertay et al., 2020). Details are provided in

the Supplementary Methods.
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Cell viability assay

Cell viability assaywas performed as previously described (Ertay

et al., 2020). Details are provided in the Supplementary Methods.
RNA-Seq and bioinformatic analysis

RNA isolation and mRNA sequencing of samples were

performed following the manufacturer ’s instructions

(Novogene, UK) as previously described (Yao et al., 2021;

Brereton et al., 2022). Paired-end strategy (2×150) on the

Illumina NovaSeq 6000 platform was adopted. The quality

control of raw reads, mapping, identification of DEGs, as well

as GO term enrichment analysis, KEGG pathway analysis,

GSEA, and CMap analysis were performed with details

provided in the Supplementary Methods and results in

Supplementary Tables S1–5.
Flow cytometry

Flow cytometry was performed as previously described (Ertay

et al., 2020). Details are provided in the Supplementary Methods.
Western blot analysis

Western blot analysis was performed as previously described

(Hill et al., 2019; Wang et al., 2019; Yao et al., 2019; Ertay et al.,

2020). Details are provided in the Supplementary Methods.
qRT-PCR

qRT-PCR was performed as previously described (Hill et al.,

2019; Wang et al., 2019; Yao et al., 2019; Ertay et al., 2020).

Details are provided in the Supplementary Methods.
Immunofluorescence microscopy

Immunofluorescence microscopy was performed as

previously described (Ertay et al., 2020). Details are provided

in the Supplementary Methods.
Luciferase reporter assay

Luciferase reporter assay was performed as previously

described (Yao et al., 2019). Details are provided in the

Supplementary Methods.
frontiersin.org
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Integrated data analysis and GSVA
score calculation

Gene Expression Omnibus (GEO) datasets on human cells

treated with herbal extracts/compounds were screened

(Supplementary Figure 3), with a summary of datasets in

Supplementary Table S6. A 15-gene expression signature

(ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF,

MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6,

and VEGFA), which enables classification of hypoxia-inducible

factor (HIF) activity (Buffa et al., 2010; Ye et al., 2019) was used

to calculate the HIF score. Details are provided in the

Supplementary Methods. The herbal extracts or natural

compounds that can significantly alter the HIF score are

provided in Supplementary Table S7.
High-performance liquid
chromatography assay

Details are provided in the Supplementary Methods. In brief,

chromatography analysis for the identification of gallic acid in

LSW was conducted on a Shimadzu® HPLC system (LC-20 AT,

SHIMADZU, Japan) equipped with a C18 column (Shim-pack

GIS: 5 mm particle size; 4.6 × 250 mm2, P/N: 227-30106-08).

Peaks were detected at 271 nm using a UV-Vis detector (SPD-

20A), and the peak for gallic acid was identified by comparing

the retention time with its standard.
Statistical analysis

Statistical analyses were performed in GraphPad Prism v7.02

(GraphPad Software Inc, San Diego, CA) unless otherwise

indicated as described earlier (Yao et al., 2021; Brereton et al.,

2022). Details are provided in the Supplementary Methods.

Results were considered significant if P < 0.05, where

*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
Results

Bioactive extracts from Limonium
Sinense show a strong growth
inhibitory effect

To assess the biological effects of extracts from Limonium

Sinense, multiple cell lines, including an immortalized human

breast epithelial cell line MCF10A and 7 breast cancer cell lines

(BT20, MDA-MB-157, MDA-MB-231, MDA-MB-468,

HCC1395, HCC1806, and HCC1937), were treated with

Limonium Sinense water extracts (LSW) followed by a cell

viability assay. As shown in Figures 1A, B, compared to the
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control group, the addition of LSW led to a strong inhibition of

growth in all the cell lines tested in a dose-dependent manner at

24 (Figure 1A) or 48 hours (Figure 1B) post-treatment.

It is known that three-dimensional (3D) cell cultures represent

their in vivo counterparts better than two-dimensional (2D)

monolayer cell cultures (Chaicharoenaudomrung et al., 2019). To

confirm the effects of LSW on cell viability, a 3D mammosphere

assay was performed. Images of spheres were analyzed for sphere

formation efficiency and sphere volume, and cell viability was

determined using a Cell-Titer Glo® assay. A significant decrease

in cell viability (P < 0.0001), sphere volume (P < 0.001), and sphere

formation efficiency (P < 0.001) was observed in LSW-treated

MDA-MB-468 cells (Figure 1C). These experiments showed that

bioactive extracts from Limonium Sinense exhibit a strong growth

inhibitory effect.
Global transcriptomic changes in MDA-
MB-468 cells exposed to bioactive
extracts from Limonium Sinense

To determine how cells respond to bioactive extracts from

Limonium Sinense, we characterized the global transcriptomic

changes in MDA-MB-468 cells exposed to LSW by performing

RNA sequencing (RNA-Seq). Genes with a false discovery rate

(FDR) – adjusted P value less than 0.05 and ∣Log2FoldChange∣
above 1 were considered as differentially expressed genes

(DEGs). A total of 987 DEGs were identified, including 456

upregulated and 531 downregulated genes (Supplementary

Figure S1A; Supplementary Table S1). The hierarchical

clustering showed that DEGs were grouped into 2 major

clusters (Supplementary Figure S1B). t-distributed stochastic

neighbor embedding (tSNE) analysis showed a clear separation

between control and LSW-treated samples (Figure 2A).

We then performed pathway enrichment analysis using

Gene Set Enrichment Analysis (GSEA) (Figure 2B;

Supplementary Table S2), Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis (Figure 2C; Supplementary

Table S3), and Gene Ontology (GO) enrichment analysis

(Figure 2C; Supplementary Table S4). The GO enrichment

analysis was further grouped into the molecular function

(MF), biological process (BP), and cellular component (CC)

(Figure 2C; Supplementary Table S4). Interestingly, several

disease-related pathological pathways were identified,

including G2M_checkpoint (normalized enrichment score,

NES = - 1.699; FDR = 0.011) and Hypoxia (NES = 2.558; FDR

< 0.0001) in GSEA, and hypoxia-inducible factor (HIF)-1

signaling pathway (P < 0.0001) in the KEGG pathway analysis.

“Positive regulation of angiogenesis” and “negative regulation of

growth” were among the top 10 ranked GO terms from the

biological process category (Figure 2C). In line with this, GSEA

showed enrichment of angiogenesis (Figure 2B; Supplementary

Figure S2A; NES = 1.171; FDR = 0.003). Further analysis showed
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FIGURE 1

Effects of bioactive extracts from Limonium Sinense on cell viability. (A, B) Graphs showing relative cell viability in multiple cell lines treated with
Limonium Sinense water extracts (LSW) at the indicated concentration for 24 (A) or 48 hours (B) in 2D cultures. Cell-Titer Glo® assay was
performed to measure cell viability. Data are mean ± SEM; n = 3 samples per group. ns, not significant; *P < 0.05; **P < 0.01 and ***P < 0.001
by the Two-way ANOVA. (C) Representative phase contrast microscopy images showing cell viability (Cell-Titer Glo® assay), sphere volume, and
sphere formation efficiency in MDA-MB-468 cells with the indicated treatment cultured in 3D. Scale bar: 50 µm. Data are mean ± SEM. n = 3
samples per group. ***P < 0.001; ****P < 0.0001 by the Student’s t-test.
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FIGURE 2

Global transcriptomic changes in MDA-MB-468 cells exposed to bioactive extracts from Limonium Sinense. MDA-MB-468 cells were treated
with or without Limonium Sinense water extracts (LSW, 500 mg/ml) for 48 hours followed by RNA-Seq. (A) t-distributed stochastic neighbor
embedding (tSNE) plot showing a clear sample separation for control vs. LSW-treated MDA-MB-468 cells (n = 3 samples per group). (B) Scatter
plot showing Gene Set Enrichment Analysis (GSEA) in MDA-MB-468 cells treated with LSW. The sizes of circles represent gene count, and the
colours of circles represent the -Log10 of the false discovery rate (FDR) values. (C) Scatter plot showing enriched Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) terms from 3 categories (BP, biological process; CC, cellular component; and MF, molecular
function) in MDA-MB-468 cells treated with LSW. The sizes of circles represent gene counts, and the colours of circles represent the -Log10 of
the P-values.
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several angiogenesis-related genes, including VEGF, were up-

regulated upon LSW treatment (Supplementary Figure S2B).

These results provide novel insights into the pharmacological

activities of bioactive ingredients in Limonium Sinense.
Connectivity Map analysis in MDA-MB-
468 cells exposed to bioactive extracts
from Limonium Sinense

We next employed CMap to explore the small molecular

compounds with similar activities to LSW. CMap is a systematic

approach that has been applied in pharmacological research to

define drug-disease connections (Lamb et al., 2006). CMap

analysis reports connectivity between top the 150 up- and

down-regulated genes from MDA-MB-468 cells exposed to

LSW and 2,837 compounds across 9 cell lines (Subramanian

et al., 2017). The connectivity score, which summarizes the

connectivity among signatures across cell lines using the

median, ranged from + 98.17 to - 96.59 in this analysis

(Supplementary Table S5). Compounds with connectivity

scores above 90 were defined as “positive connectivity”, while

compounds with connectivity scores less than -90 were “negative

connectivity” (Uva et al., 2021). In total, we identified 8

compounds with positive connectivity and 7 with negative

connectivity (Figure 3A; Supplementary Figure S3A). Among

those with positive connectivity, two are Tubulin inhibitors

(vinorelbine and vincristine) and 1 HIF modulator (VU-

0418946-1). The compound-target network analysis showed

distinct clusters among the aforementioned compounds,

including Tubulin inhibitors (vinorelbine and vincristine)

targeting TUBB and HIF modulator (VU-0418946-1) targeting

HIF1A (Figure 3B; Supplementary Figure S3B). The CMap

analysis supports earlier findings in pathway enrichment

analysis showing effects of LSW on G2M_checkpoint in cell

cycle and HIF/hypoxia.
Bioactive extracts from Limonium
Sinense induce G2/M phase arrest in the
cell cycle and HIF activation

As described above, GSEA identified “Hallmark_G2M_

Checkpoint” negatively enriched upon LSW treatment in MDA-

MB-468 cells (Figure 4A; NES = - 1.699; FDR = 0.011). The effect of

LSW on the cell cycle was further verified with flow cytometry

analysis (Figure 4B), showing a G2/M phase arrest in the cell cycle

(Figure 4E; P < 0.05), with no significant changes in G0/G1 phase

(Figure 4C) and S phase (Figure 4D).

In addition, our analysis also strongly suggested a role of

LSW on HIF activation (Figures 2, 3), including GSEA showing

enrichment of “Hallmark_Hypoxia” (Figure 5A; NES = 2.558;

FDR < 0.0001). To assess the activity of a specific pathway, Gene
Frontiers in Plant Science 06
Set Variation Analysis (GSVA) was used to calculate the score

(Hanzelmann et al., 2013). A 15-gene expression signature

(ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF,

MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6,

and VEGFA), which enables classification of hypoxia-inducible

factor (HIF) activity was used to calculate the HIF score (Buffa

et al., 2010; Ye et al., 2019). The 15-gene expression signature

was derived by selecting genes that were consistently co-

expressed upon hypoxia in multiple cancers. A significant

increase in the HIF score was observed in LSW-treated

samples compared to controls (Figure 5B; P < 0.001). The

expression levels of the 15 genes were visualized in a heatmap

with upregulations observed in a majority upon LSW treatment

(Figure 5C). To validate this finding, the protein level of HIF-1a
was measured in MDA-MB-468 cells upon LSW treatment. As

shown in Figures 5D–F, HIF-1a levels were significantly induced

upon LSW treatment in MDA-MB-468 cells in a dose-

(Figure 5D) and time-dependent manner (Figure 5E) as

demonstrated by the results from the western blot

(Figures 5D, E), as well as immunofluorescence staining of

HIF-1a (Figure 5F). Similar effects on the protein level of

HIF-1a were also observed in a human embryonic kidney cell

line HEK293T (Supplementary Figure S4). Interestingly, the

mRNA level of HIF1A was not changed, while prolyl

hydroxylase domain (PHD) proteins (encoded by EGLNs)

were not decreased following LSW treatment (Supplementary

Figure S5), suggesting that LSW treatment induces HIF-1a at

the protein level and this is not mediated by down-

regulating PHDs.

We then measured the transcriptional activity of HIF using a

hypoxia response elements (HRE) reporter system (Masoud and

Li, 2015). Upon hypoxia, HIF-a is upregulated and complexed

with HIF-1b, binding to the HRE of the gene promoter for

transactivation (Kaelin and Ratcliffe, 2008). DMOG

(Dimethyloxalylglycine), a non-specific 2-OG analogue that

can stabilize and activate HIF (Chan et al., 2016), was used as

a positive control. Treatment with DMOG or LSW resulted in a

significant increase in the HRE luciferase activity (Figure 5G; P <

0.001 and P < 0.01, respectively). Furthermore, the mRNA levels

of HIF target genes, such as CA9 and VEGFA, were also

significantly upregulated upon LSW treatment (Figure 5H; P <

0.0001 and P < 0.05, respectively). Taken together, these findings

demonstrate that bioactive extracts from Limonium Sinense

induce G2/M phase arrest of the cell cycle as well as

HIF activation.
Integrated analysis suggests a role for
gallic acid within Limonium Sinense in
mediating HIF activation

In order to identify potential bioactive ingredient(s) within

Limonium Sinense that are responsible for HIF activation, an
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B

A

FIGURE 3

Connectivity Map (CMap) analysis in MDA-MB-468 cells exposed to bioactive extracts from Limonium Sinense. (A) Heatmap showing the
connectivity score for the most significant compounds in 9 cell lines. Cell ID, compound name (Perturbegan), connectivity score (and the colour
key), mechanism of action, and target genes for each compound are indicated. Compounds are considered significantly connected with the
reference signature when the connectivity score is above 90 (similar) or below -90 (opposite). Compounds are sorted by the decreasing order
of their connectivity scores. (B) Graph showing the interaction network between compounds and their target genes. The colours and shapes
represent the indicated compounds and their target genes. The sizes of the nodes indicated the degrees that the nodes connect to others, and
the width of the lines represents the EdgeBetweenness of each gene.
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integrated approach was adopted. We screened Gene Expression

Omnibus (GEO) datasets on human cells treated with herbal

extracts or natural compounds (Supplementary Figure S6). A

total of 871 samples were collected from 36 GEO datasets

(Supplementary Table 6), including 218 control and 653

compound-treated samples in different cells. A HIF score for

each sample was calculated using Gene Set Variation Analysis

(GSVA) to determine the HIF activity. A total of 31 natural

compounds or herbal extracts showed the ability to activate HIF,

demonstrated by an increase in the value of the HIF score

(Figure 6A; Supplementary Table S7). Among them, 7 were

water soluble and 2 were reported to be present in Limonium

Sinense (Liu, 2011; Hsu et al., 2015). Five natural compounds or

herbal extracts showed an opposite effect on HIF activity

(Supplementary Figure S7; Supplementary Table S7).
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The analysis suggested a potential role for gallic acid with

Limonium Sinense in mediating HIF activation, given the fact

that it is water soluble and has been reported to be present in

Limonium Sinense (Hsu et al., 2015). The HIF score was

significantly increased in breast cancer cell line MCF7

(GSE85871; Figure 6B) or cervical cancer cell line HeLa

(GSE158788; Figure 6C) upon gallic acid treatment. The

presence of gallic acid in LSW was further confirmed by using

the high-performance liquid chromatography (HPLC) analysis,

showing the peak of gallic acid in LSW and its standard with a

retention time of 2.95 min (Figure 6D). The concentration of

gallic acid in LSW is 2.24 mg/ml. To validate the effect of gallic

acid on HIF, the protein level of HIF-1a was measured in MDA-

MB-468 cells following gallic acid treatment. As shown in

Figure 6E, the HIF-1a protein level was induced upon
B

C D E

A

FIGURE 4

Effects of bioactive extracts from Limonium Sinense on cell cycle. (A) Gene Set Enrichment Analysis (GSEA) plot showing an enrichment of
Hallmark_G2/M_checkpoint in MDA-MB-468 cells treated with Limonium Sinense water extracts (LSW, 500 mg/ml). Normalized enrichment score
(NES) and false discovery rate (FDR) are indicated. (B) Representative flow cytometry histograms of the percentage of cells in G1, S and G2/M phases
of the cell cycle from MDA-MB-468 treated with or without LSW (500 mg/ml) for 24 hours. (C–E) Graphs showing the percentage of cells in G0/G1
(C), S (D), or G2/M (E) phases. Data are mean± SEM. n = 3 samples per group. ns, not significant; *P < 0.05 by the Student’s t-test.
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FIGURE 5

Effects of bioactive extracts from Limonium Sinense on hypoxia-inducible factor (HIF) activation. (A) Gene Set Enrichment Analysis (GSEA) plot
showing enrichment of Hallmark_Hypoxia in MDA-MB-468 cells treated with Limonium Sinense water extracts (LSW, 500 mg/ml). Normalized
enrichment score (NES) and false discovery rate (FDR) are indicated. (B) Graph showing HIF Gene Set Variation Analysis (GSVA) scores from
control vs. LSW-treated MDA-MB-468 cells. Data are mean ± SEM; n = 3 samples per group. ***P < 0.001 by the Student’s t-test. (C) Heatmap
showing the expressions of the 15 genes (ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, MRPS17, NDRG1, P4HA1, PGAM1, SLC2A1, TPI1,
TUBB6, and VEGFA) used to calculate the HIF score in control vs. LSW-treated MDA-MB-468 cells. Red indicates up-regulation and blue down-
regulation. (D, E) Protein expressions of HIF-1a in MDA-MB-468 cells with the indicated treatment. b-Tubulin was used as a loading control.
Graphs showing relative protein levels of HIF-1a. Data are mean ± SEM; n = 3 samples per group. ns, not significant; *P < 0.05; **P < 0.01;
****P < 0.0001 by One-way ANOVA. (F) Immunofluorescence staining of HIF-1a (green) in MDA-MB-468 cells with the indicated treatment.
4’6-Diamidino-2-Pheylindole (DAPI) (blue) was used to stain nuclei. Scale bars: 50 mm. (G) Graph showing the Hypoxia Response Element (HRE)
reporter assay in MDA-MB-468 cells with the indicated treatment. Values represent the relative fold change of Firefly luciferase to Renilla
luciferase, normalized against control (1.0). Data are mean ± SEM; n = 6 samples per group. ns, not significant; **P < 0.01; ***P < 0.001 by
Dunnett’s multiple comparisons test. (H) Graph showing fold change in mRNA levels of HIF-1a target genes (CA9 and VEGFA) in MDA-MB-468
cells with the indicated treatment. b-actin-normalized mRNA levels in control cells were used to set the baseline value at unity. Data are mean
± SEM; n = 9 samples per group. *P < 0.05; ****P < 0.0001 by the Student’s t-test.
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treatment in MDA-MB-468 cells in a time-dependent manner.

Together, these results suggest a role for gallic acid within

Limonium Sinense in mediating HIF activation, at least partially.
Discussion and conclusions

Limonium Sinense used in traditional Chinese medicine is

often extracted with boiling water to make an aqueous extract for

oral uptake (Chaung et al., 2003). Water extracts from
Frontiers in Plant Science 10
Limonium Sinense (LSW) show antiviral, antitumour, and

immunomodulatory activities in previous studies (Kuo et al.,

2002; Tang et al., 2008; Tang et al., 2012; Tang et al., 2014; Hsu

et al., 2015). In this study, we were able to show that LSW

treatment leads to a strong inhibition of growth, potentially by

arresting the cell cycle at the G2/M phase. CMap analysis

identified Tubulin inhibitors as similarly acting therapeutic

candidates in LSW. Tubulin inhibitors are chemotherapy

drugs that interfere directly with the tubulin system that

enables a cell to undergo mitosis (Janke and Magiera, 2020).
B

C

D

E

A

FIGURE 6

Integrated analysis suggests a role for gallic acid within Limonium Sinense in mediating hypoxia-inducible factor (HIF) activation. (A) Scatter plot
showing natural compounds or herbal extracts that can up-regulate the HIF score. Compounds with red colour are water soluble, and those
framed are reported to be present in Limonium Sinense. The sizes of circles represent the -Log10 of the Padj values, and the colours of circles
represent the HIF score mean difference of each compound compared with control samples. (B, C) Graphs showing the effect of gallic acid on
the HIF score from Gene Expression Omnibus (GEO) dataset GSE85871 (B) and GSE158788 (C). Data are mean ± SEM. ns, not significant; *P <
0.05; **P < 0.01 by the Student’s t-test (B) and one-way ANOVA (C), respectively. (D) Chromatograms (HPLC/UV) of Limonium Sinense water
extracts and gallic acid (insert) in 271 nm. The retention time (2.95 min) and structure for gallica acid are indicated. (E) Protein expressions of
HIF-1a in MDA-MB-468 cells treated with or without gallic acid (50 mg/ml) for the indicated time. b-Tubulin was used as a loading control.
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Among the various mechanisms of action of natural compounds

or herbal extracts, their ability to interact with Tubulin is one of

the most important (Kingston, 2009). Whether the effect of

Limonium Sinense on the cell cycle is via its interaction with

Tubulin merits further investigation.

The name of Limonium Sinense in Chinese means “an herb

that can increase blood count”. It is often used to replenish blood

in the body, and also for the treatment of hemostasis, anemia,

menorrhagia, irregular menstruation, and blood collapse.

However, the reason why Limonium Sinense possesses such an

outstanding blood-enriching function along with its mechanism

of action is largely unknown. The production of red blood cells

relies predominantly on the cytokine erythropoietin (EPO) and

its transcription factor HIF (Lee and Percy, 2011). Studies have

shown that regulating HIF levels provide novel therapeutic

strategies for a broad variety of diseases, including anemia (De

Bels et al., 2011; Semenza, 2012; Schodel and Ratcliffe, 2019). In

our analysis, GSEA showed enrichment of angiogenesis. In

addition, “positive regulation of angiogenesis” was the top-

ranked GO term in the biological process category. Further

analysis showed several angiogenesis-related genes, including

VEGF, were up-regulated upon LSW treatment. We found LSW

treatment induces a strong HIF activation. The integrated

analysis identified gallic acid as a potentially bioactive

ingredient within Limonium Sinense mediating this effect,

although further experiments are needed to investigate

whether the biological effect of LSW is mainly mediated by

gallic acid.

Hypoxia plays a crucial role at both cellular and physiological

levels in all animals (Wang et al., 2018) and is one of the

characteristic pathophysiological features of many common

disorders (Semenza, 2019). HIF-a is the most important

regulator of cellular responses to hypoxia (Darby and

Hewitson, 2016). Under normoxia, the protein level of HIF-a
is low due to the oxygen-dependent hydroxylation bymembers of

the prolyl hydroxylase domain (PHD) family (Myllyharju, 2013).

This allows HIF-a to interact with tumor suppressor von Hippel-

Lindau (pVHL), thereby leading to polyubiquitylation and

degradation (Kaelin and Ratcliffe, 2008). When the oxygen

level is low/deprived (hypoxia), or cells lack a functional pVHL,

HIF-a accumulates and dimerizes with HIF-1b, translocates to
the nucleus, and activates the transcription of multiple genes

involved in erythropoiesis, angiogenesis and energy metabolism

(Kaelin and Ratcliffe, 2008). The genes targeted by HIFmake it an

appealing pharmacological target, especially for the treatment of

diseases including anaemia, ischaemic stroke, and wound healing

via PHD inhibition-mediated upregulation of HIF (Davis et al.,

2018). For example, PHD inhibitors FG4592 (Roxadustat,

FibroGen), GSK1278863 (Daprodustat, GlaxoSmithKline),

Bay85-3934 (Molidustat, Bayer), and AKB-6548 (Vadadustat,

Akebia) are currently in clinical use or trials for anaemia

treatment in patients with chronic kidney disease

(Chan et al., 2016; Yeh et al., 2017). In our analysis, we found
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the mRNA level ofHIF1Awas not changed, while PHDs were not

decreased by LSW treatment. These results suggest that LSW

treatment induces HIF-1a at the protein level and this is not

mediated by down-regulating PHDs. In line with our findings,

Tsukiyama and colleagues reported that gallate can inhibit PHD

activity, thereby reducing the HIF degradation rate and

increasing the protein level of HIF-1a (Tsukiyama et al., 2006).

The gallate binds to the active site of PHD with its phenolate

oxygen atoms chelating Fe2+ and the carboxyl group binding

to Arg383.

Taken together, this study provides novel insights into the

bioactive ingredients in Limonium Sinense, highlighting the rich

natural resource and therapeutic values of herbal plants.

However, given its potential to generate many other effects,

consideration is required when Limonium Sinense is

used clinically.
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